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A complex fuzzy set is an extension of the fuzzy set, of whichmembership grades take complex values in the complex unit disk.We
present two complex fuzzy power aggregation operators including complex fuzzy weighted power (CFWP) and complex fuzzy
ordered weighted power (CFOWP) operators. We then study two geometric properties which include rotational invariance and
reflectional invariance for these complex fuzzy aggregation operators. We also apply the new proposed aggregation operators to
decision making and illustrate an example to show the validity of the new approach.

1. Introduction

Complex fuzzy set (CFS) is introduced by Ramot et al. [1] as
a generalization of the traditional fuzzy set [2]. It is char-
acterized by a complex-valued membership grade including
amplitude and phase terms. ,erefore, the CFS can describe
two features of data. Hence, it is more general than the
traditional fuzzy set. For example, if we ask the way and we
obtain the data with distance and direction simultaneously,
then we may can use the complex-valued membership
grades, of which the amplitude and phase parts, respectively,
characterize the distance and direction of the destination. To
deal with complex fuzzy information, Ramot et al. [1, 3]
introduced complex fuzzy operations and complex fuzzy
relations. Hu et al. [4–6] introduced the approximate par-
allelity and orthogonality relations for CFSs. Zhang et al. [7]
introduced the δ-equalities between CFSs. Bi et al. [8] in-
troduced two classes of entropy measures for CFSs, Hu et al.
[9, 10] and Alkouri and Salleh [11] introduced several
distance measures for CFSs.

Recently, some complex fuzzy aggregation operators have
been given to aggregate complex fuzzy information. Ramot
et al. [3] used vector aggregation to aggregate complex fuzzy
information. Ma et al. [12] proposed a product-sum

aggregation operator and used it to multiple periodic factor
prediction. Bi et al. [13, 14] provided complex fuzzy geometric
aggregation operators and complex fuzzy arithmetic aggre-
gation operators. Power mean is one of the famous classical
means in classical averaging functions. Motivated by the
success of the power mean, many types of power aggregation
operators are proposed for different fuzzy environments,
including the generalized power aggregation operators
[15, 16], intuitionistic fuzzy power aggregation operator
[17–19], the interval-valued intuitionistic fuzzy power ag-
gregation operator [20, 21], Pythagorean fuzzy power ag-
gregation operator [22], neutrosophic fuzzy power
aggregation operator [23–25], and hesitant fuzzy power ag-
gregation operator [26].

However, the arguments of these power aggregation
operators are exact real values. To the best of our knowledge,
no research has been conducted on power aggregation
operators in the complex fuzzy environment. ,erefore, it is
necessary to extend the power aggregation operators to the
complex fuzzy environment. As mentioned by Ramot et al.
[1], the phase term of CFSs is the key feature which es-
sentially distinguish CFSs from other extensions of tradi-
tional fuzzy sets. Rotational invariance and reflectional
invariance [27]are two of the concepts that mostly depend
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on the phase term. Complex fuzzy logics, both with and
without rotational invariance, are examined by Dick [27].
Interestingly, all complex fuzzy aggregation operators in
[3, 13, 14] are rotationally invariant and reflectionally in-
variant. ,erefore, it is necessary to consider complex fuzzy
aggregation operators without rotational invariance (or
without reflectional invariance).

,e aim of this paper is to develop the power aggregation
operators for situations with complex fuzzy information.We
first present the complex fuzzy weighted power (CFWP)
operator which is a generalization of the CFWA operator
and develop the complex fuzzy ordered weighted power
(CFOWP) operator, which is a generalization of the complex
fuzzy ordered weighted arithmetic (CFOWA) operator.
,ese aggregation operators can be used in the complex
fuzzy environment. We also present an application of the
complex fuzzy power aggregation operators in a decision-
making problem concerning the evaluation of a target
location.

,is paper is organized as follows. In Section 2, we briefly
review some basic concepts of complex fuzzy sets. In Section
3, we present the CFWP operator on CFSs. In Section 4, we
present the CFOWP operator. In Section 5, we present an
application example in decision making. Conclusions are
made in Section 6.

2. Preliminaries

2.1. Complex Fuzzy Sets and Complex Fuzzy Operations.
First we recall some basic concepts of complex fuzzy sets and
complex fuzzy operations [1, 3].

LetD be the set of complex numbers on the complex unit
disk, i.e.,

D � x ∈ C ‖x | ≤ 1{ }. (1)

Suppose U is a fixed universe. A complex fuzzy set A on
U is a mapping A: U⟶ D. For x ∈ U, the mapping value
A(x) can be denoted as

rA(x) · e
j]A(x)

, (2)

where j �
���
− 1

√
, the amplitude term rA(x) ∈ [0, 1], and the

phase term ]A(x) ∈ R.
For convenience, this paper only considers the complex

numbers on D, which are also called complex fuzzy values
(CFVs). Let a � ra · ej]a be a CFV, in which the amplitude
term is ra ∈ [0, 1] and the phase term is ]a ∈ R.,emodulus
of a is ra, also denoted by |a|.

,ree unary operators of CFVs which include power,
rotation, and reflection are defined as follows.

(i) Power of a CFV a ∈ D:

a
t

� r
t
a · e

jt]a , t≠ 0. (3)

(ii) Rotation of a CFV a ∈ D with λ angle:

Rotλ(a) � ra · e
j ]a+λ( ). (4)

(iii) Reflection of a CFV a ∈ D:

Ref(a) � ra · e
j− ]a . (5)

Since complex fuzzy operators are defined on the
complex plane, some authors introduced several geometric
properties for complex fuzzy operators [4, 5, 13, 27]. Among
these geometric properties, rotational invariance and re-
flectional invariance are the two commonly used, which are
defined as follows [13, 27].

(i) A complex fuzzy operator v: Dn⟶ D is rotationally
invariant if and only if, for any θ,

v Rotθ a1( 􏼁, . . . ,Rotθ an( 􏼁( 􏼁 � Rotθ v a1, . . . , an( 􏼁( 􏼁. (6)

(ii) A complex fuzzy operator v: Dn⟶ D is reflec-
tionally invariant if and only if

v Ref a1( 􏼁, . . . ,Ref an( 􏼁( 􏼁 � Ref v a1, . . . , an( 􏼁( 􏼁. (7)

Rotational invariance [27] and reflectional invariance
[13] indicate that an operator is invariant under a rotation
and a reflection, respectively, as shown in Figure 1.

Theorem 1. 5e power operator is reflectionally invariant.

Proof. Let a � ra · ej]a ∈ D and t> 0. Since

Ref a
t

􏼐 􏼑 � Ref r
t
a · e

jt]a􏼐 􏼑 � r
t
a · e

− jt]a ,

(Ref(a))
t

� ra · e
− j]a􏼐 􏼑

t
� r

t
a · e

− jt]a .
(8)

,us, the power operator is reflectionally invariant. □

Theorem 2. Suppose t≠ 1, the power operator is not rota-
tionally invariant.

Proof. Let a � ra · ej]a ∈ D and t> 0. ,en,

Rotθ a
t

􏼐 􏼑 � Rotθ r
t
a · e

jt]a􏼐 􏼑 � r
t
a · e

j t]a+θ( ),

Rotθ(a)( 􏼁
t

� ra · e
j ]a+θ( )􏼒 􏼓

t

� r
t
a · e

jt ]a+θ( ).
(9)

Since (t]a + θ)≠ t(]a + θ). So, the power operator is not
rotationally invariant. □

2.2. Complex Fuzzy Aggregation Operations. Ramot et al. [3]
defined the complex fuzzy aggregation operation by a
mapping

f: D
n⟶ D. (10)

It is termed as a vector aggregation operator. ,en, they
gave the complex fuzzy weighted arithmetic (CFWA) op-
erator, i.e.,

CFWA a1, a2, . . . , an( 􏼁 � 􏽘
n

i�1
wiai, (11)
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for any a1, a2, . . . , an ∈ D, where wi ∈ D for all i and
∑ni�1|wi| � 1. Note that the complex weights are used tomake
the de�nition as general as possible [3]. In this paper, we
only consider the real-valued weights.

Bi et al. [14] studied CFWA with real-valued weights in
details. �ey [13] also gave the complex fuzzy weighted
geometric (CFWG) operator, i.e.,

CFWA a1, a2, . . . , an( ) �∏
n

i�1
waii , (12)

for any a1, a2, . . . , an ∈ D, where wi ∈ [0, 1] for all i and
∑ni�1wi � 1.

Both CFWA and CFWG operators have the following
results.

Theorem 3 (see [13, 14]). Both CFWA and CFWG operators
are rotationally invariant and re�ectionally invariant.

We see that aggregation operators in [3, 13, 14] are rota-
tionally invariant and re�ectionally invariant. Dick [27] �rstly
introduced rotational invariance for complex fuzzy operations.
Interestingly, Dick also examined complex fuzzy logics without
rotational invariance based on the framework of vector logic.

3. Complex Fuzzy Weighted Power
Aggregation Operators

In this section, we introduce the weighted power aggregation
operators in the complex fuzzy environment and discuss
their fundamental properties.

De�nition 1. Let ai(i � 1, 2, . . . , n) be a collection of CFVs, a
complex fuzzy weighted power (CFWP) operator is de�ned
as follows:

CFWG a1, a2, . . . , an( ) � ∑
n

i�1
wia

t
i

 
1/t

, (13)

where wi ∈ [0, 1] for all i, ∑
n
i�1wi � 1, and t is a parameter

such that t ∈ (0,+∞).
When wi � 1/n (i � 1, 2, . . . , n), then the CFWP oper-

ator is denoted by the complex fuzzy power average (CFPA)
operator, i.e.,

CFPA a1, a2, . . . , an( ) � ∑
n

i�1

1
n
ati 

1/t

. (14)

When ai ∈ [0, 1](i � 1, 2, . . . , n), the CFWP operator
can reduce to a traditional fuzzy weighted power operator of
real numbers on unit interval [0,1].

When ai ∈ [0, 1] and wi � 1/n (i � 1, 2, . . . , n), the
CFWP operator is the power mean of real numbers on unit
interval [0,1].

When t � 1, the CFWP operator can reduce to the
complex fuzzy weighted arithmetic (CFWA) operator [3].
When t � 2, then the CFWP operator is denoted by the
complex fuzzy weighted quadric averaging (CFWQA) op-
erator, i.e.,

CFWQA a1, a2, . . . , an( ) � ∑
n

i�1
wia

2
i

 
1/2

. (15)

When t � 2 and wi � 1/n (i � 1, 2, . . . , n), then the
CFWP operator is denoted by the complex fuzzy quadric
averaging (CFQA) operator, i.e.,

CFQA a1, a2, . . . , an( ) � ∑
n

i�1

1
n
a2i 

1/2

. (16)

a

b
v(a, b)

a′

b′
v(a′, b′)
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Figure 1: (a) Re�ectional invariance and (b) rotational invariance [13].
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Theorem 4. Let ai(i � 1, 2, . . . , n) be a collection of CFVs,
then the aggregated value CFWP(a1, a2, . . . , an) is also a
complex fuzzy value.

Proof. Since |ai|≤ 1 (i � 1, 2, . . . , n), then for t> 0, |at
i |≤ 1:

􏽘
n

i�1wia
t
i � w1a

t
1 + w2a

t
2 + · · · + wna

t
n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤w1 a
t
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + w2 a

t
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + · · · + wn a

t
n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤w1 + w2 + · · · + wn � 1.

(17)

,en, for 1/t> 0, we have |(􏽐
n
i�1wia

t
i)
1/t|≤ 1. ,us, the

aggregated value CFWP(a1, a2, . . . , an) is also a complex
fuzzy value.

,e CFWP operator is closed on D for t> 0, but it is not
closed on D for t< 0. See the following example.

Example 1. Assume that the parameter is t � − 1, two
CFVs are a1 � 1 and a2 � 1 · ej2π/3 and weights are
w1 � w2 � 0.5. ,en,

CFWP a1, a2( 􏼁 �
2

1/a1( 􏼁 + 1/a2( 􏼁

�
2

(1/1) + 1/1 · ej2π/3( )

�
2

1 · ej5π/3

� 2 · e
jπ/3

.

(18)

,us, we have CFWP(a1, a2) ∉ D.
Moreover, the CFWP operator satisfies the following

properties. □

Theorem 5. Let ai(i � 1, 2, . . . , n) and bi(i � 1, 2, . . . , n) be
two collections of CFVs, the weights be wi ∈ [0, 1]

(i � 1, 2, . . . , n), and 􏽐
n
i�1wi � 1. 5en,

(1) Idempotency: if ai � t for all (i � 1, 2, . . . , n), then

CFWP a1, a2, . . . , an( 􏼁 � t. (19)

(2) Amplitude boundedness:

CFWP a1, a2, . . . , an( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ max
i

ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (20)

Proof. (1) Trivial.
(2) Let r � max

i
|ai|. Since wi ∈ [0, 1] (i � 1, 2, . . . , n),

then

􏽘
n

i�1wia
t
i � w1a

t
1 + w2a

t
2 + · · · + wna

t
n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤ w1a
t
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + w2a

t
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + · · · + wna

t
n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

� w1 a
t
1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + w2 a

t
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + · · · + wn a

t
n

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

≤w1r
t

+ w2r
t

+ · · · + wnr
t

� r
t
.

(21)

,en, |(􏽐
n
i�1wia

t
i)
1/t|≤ (rt)1/t � r.

However, the CFWP operator does not satisfy the
property of amplitude monotonicity. See the following
example.

Example 2. Assume that the parameter is t � 1, CFVs are
a1 � 0.8, a2 � 0.8 · ej2π/3, and b1 � b2 � 0.6 and weigths are
w1 � w2 � 0.5. ,en, we have

CFWP a1, a2( 􏼁 � 0.5 · 0.8 + 0.5 · 0.8 · e
j2π/3

� 0.4 · e
jπ/3

,
(22)

and CFWP(b1, b2) � 0.6. So, |a1|> |b1| and |a2|> |b2|, but
|CFWP(a1, a2)|< |CFWP(b1, b2)|. □

Theorem 6. 5e CFWP operator is reflectionally invariant.

Proof. From Ref. [13], the complex fuzzy weighted arith-
metic operator is reflectionally invariant, then

Ref 􏽘
n

i�1
wia

t
i

⎛⎝ ⎞⎠ � 􏽘
n

i�1
wiRef a

t
i􏼐 􏼑. (23)

Since the power operator is reflectionally invariant, we
have

Ref 􏽘
n

i�1
wia

t
i

⎛⎝ ⎞⎠

1/t

⎛⎝ ⎞⎠ � Ref 􏽘
n

i�1
wia

t
i

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/t

, (24)

and for all i � 1, 2, . . . , n,

Ref a
t
i􏼐 􏼑 � Ref ai( 􏼁( 􏼁

t
. (25)

For any collection of CFVs ai(i � 1, 2, . . . , n), from the
above three equations, we have

Ref CFWP a1, a2, . . . , an( 􏼁( 􏼁

� Ref n 􏽘
i�1

wia
t
i

⎛⎝ ⎞⎠

1/t

⎛⎝ ⎞⎠

� Ref 􏽘
n

i�1
wia

t
i

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/t

(fromEquation 12)

� 􏽘
n

i�1
wiRef a

t
i􏼐 􏼑⎛⎝ ⎞⎠

1/t

(fromEquation 11)

� 􏽘
n

i�1
wiRef ai( 􏼁

t⎛⎝ ⎞⎠

1/t

(fromEquation 13)

� CFWP Ref a1( 􏼁,Ref a2( 􏼁, . . . ,Ref an( 􏼁( 􏼁.

(26)

,en, the CFWP operator is reflectionally invariant.
From [13], the CFWA operator (the case of t � 1 of the

CFWP operator) is reflectionally invariant. However, the
CFWP operator is not rotationally invariant for the pa-
rameter t≠ 1. See the following example.
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Example 3. Assume that the parameter is t � 2, CFVs are
a1 � 1 and a2 � 1 · ej2π/3 and weigths are w1 � w2 � 0.5.
,en, we have

CFWP Rotπ/3 a1( 􏼁,Rotπ/3 a2( 􏼁( 􏼁

�

�����������������������������

w1 Rotπ/3 a1( 􏼁( 􏼁
2

+ w2 Rotπ/3 a2( 􏼁( 􏼁
2

􏽱

�
������������������
0.5 · ej2π/3 + 0.5 · ej6π/3

􏽰

�
��������
0.5 · ejπ/3

􏽰

�
���
0.5

√
· e

jπ/6
,

Rotπ/3 CFWP a1, a2( 􏼁( 􏼁

� Rotπ/3
�����������

w1a
2
1 + w2a

2
2

􏽱

􏼒 􏼓

� Rotπ/3
�������������
0.5 + 0.5 · ej4π/3

􏽰
􏼐 􏼑

� Rotπ/3
��������
0.5 · ej5π/3

􏽰
􏼐 􏼑

� Rotπ/3
���
0.5

√
· e

j5π/6
􏼐 􏼑

�
���
0.5

√
· e

j7π/6
.

(27)

,en,
���
0.5

√
· ejπ/6 ≠

���
0.5

√
· ej7π/6. □

4. Complex Fuzzy Ordered Weighted Power
Aggregation Operators

Based on the partial ordering of complex fuzzy values [1] and
the ordered weighted averaging (OWA) operator [28], we
define a complex fuzzy ordered weighted power (CFOWP)
operator as follows.

Definition 2. Let ai(i � 1, 2, . . . , n) be a collection of CFVs,
then a CFOWP operator is defined as

CFOWG a1, a2, . . . , an( 􏼁 � 􏽘
n

i�1
wia

t
σ(i)

⎛⎝ ⎞⎠

1/t

, (28)

where wi ∈ [0, 1] (i � 1, 2, . . . , n) and 􏽐
n
i�1wi � 1,

(σ(1), σ(2), . . . , σ(n)) is a permutation of (1, 2, . . . , n) such
that |aσ(i− 1)|> |aσ(i)| (or |aσ(i− 1)| � |aσ(i)|, ]aσ(i− 1)

� ]aσ(i)
) for

all i.
Especially, when wi � 1/n(i � 1, 2, . . . , n), then the

CFOWP operator is reduced to the CFWP operator.
Similar to the CFWP operator, the CFOWP operator has

the following properties.

Theorem 7. Let ai(i � 1, 2, . . . , n) be a collection of CFVs,
then the aggregated value CFOWP(a1, a2, . . . , an) is also a
CFV.

Theorem 8. Let ai(i � 1, 2, . . . , n) be a collection of CFVs,
CFOWP weights be wi ∈ [0, 1] (i � 1, 2, . . . , n) and
􏽐

n
i�1wi � 1. 5en, we have the following properties.

(1) Idempotency: if ai � t for all i � 1, 2, . . . , n, then

CFOWP a1, a2, . . . , an( 􏼁 � t. (29)

(2) Amplitude boundedness:

CFOWP a1, a2, . . . , an( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ max
i

ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (30)

Theorem 9. 5eCFOWP operator is reflectionally invariant.

Theorem 10. Let ai(i � 1, 2, . . . , n) be a collection of CFVs,
CFOWP weights be wi ∈ [0, 1] (i � 1, 2, . . . , n), and
􏽐

n
i�1wi � 1. 5en, we have the following properties.

(1) If w � (1, 0, . . . , 0). 5en,

CFOWP a1, a2, . . . , an( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � max
i

ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (31)

(2) If w � (0, 0, . . . , 1). 5en,

CFOWP a1, a2, . . . , an( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � min
i

ai

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (32)

(3) If wi � 1, wk � 0, k≠ i. 5en,

CFOWP a1, a2, . . . , an( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � aσ(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (33)

where aσ(i) is ith largest of ai(i � 1, 2, . . . , n) based on
modulus of complex numbers.

Arithmetic mean, geometric mean, and power mean are
three commonly used averaging functions. Now these
functions are extended to the complex domain, such as
complex fuzzy weighted arithmetic (CFWA) operator in
[3, 13], complex fuzzy weighted geometric (CFWG) oper-
ator in [13], and complex fuzzy weighted power (CFWP)
operator in this paper. Now we give a brief summary of these
three operators.,e results can be summarized as in Table 1,
in which √ and × represent the corresponding property
holds and does not hold, respectively.

Note that for the parameter t≠ 1, the CFWP operator
does not have the property of rotational invariance, when the
parameter t � 1, it is the CFWA operator and have the
property of rotational invariance.

5. Approach to Decision Making with the
CFWP Operator

In this section, we present an approach based on the CFWP
operator to decision making with complex fuzzy
information.

Let E � e1, e2, . . . , em􏼈 􏼉 be a set of experts and
X � x1, x2, . . . , xn􏼈 􏼉 be a set of alternatives. ,en, the de-
cision maker provides a decision matrix A � (aik)n×m, where
aik is a complex fuzzy value given by the expert ek for al-
ternative xi. ,e process can be summarized as follows:

Step 1: transform the matrix A into the normalized
complex fuzzy matrix C � (cik)m×n, by cik � aik/d,
where d � maxik|aik|.
Step 2: aggregate all the CFVs aik(k � 1, 2, . . . , m) and
get the overall CFV bi corresponding to the alternative
xi by the CFWP:
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bi � CFWP ai1, ai2, . . . , ain( 􏼁. (34)

Step 3: rank all CFVs bi(i � 1, 2, . . . , n) based on the
modulus of complex numbers.

Next, we give an example to illustrate the above
approach.

Example 4. In real life, we ask strangers for directions,
such as where is the nearest supermarket? Suppose that there
are four alternatives xi(i � 1, 2, 3, 4) and five strangers ei(i �

1, 2, 3, 4, 5) with the same weight. ,e decision maker ob-
tains the decision matrix C � (aik)4×5 (see Table 2), where
cik � rik · e]ik is complex number, in which rik and ]ik, re-
spectively, represent distance and direction.

Step 1: the complex fuzzy values cik do not need
normalization.
Step 2: aggregate the complex fuzzy values bi of the
alternatives xi by the CFPA operator: b1 � 0.69475
· ej0.3576, b2 � 0.70889 · ej0.35784, b3 � 0.70354 · e− j1.1947,
and b4 � 0.69765 · ej1.2857.
Step 3: rank the complex fuzzy values bi(i � 1, 2, 3, 4):
|b1|< |b4|< |b3|< |b2|.

As we can see, depending on the aggregation used, x1 is
the nearest supermarket.

6. Conclusion

In this paper, we discussed two complex fuzzy power ag-
gregation operators, the CFWP and the CFOWP operators.
Obviously, they are not closed on D for t< 0 (see Example 1).
We discussed the CFWP and the CFOWP operators for the
parameter t> 0. ,e definition of the CFWP operator is more
comprehensive than the CFWA operator [3] because the
latter is based on a fixed parameter t � 1. Note that the CFWA
operator is rotationally invariant, but the CFWP operator is
not rotationally invariant when the parameter t≠ 1.

We have applied the CFWP operator to decision making
with complex fuzzy information. In future research, we
expect to develop more extensions of the complex fuzzy

aggregation operators and their application to other decision
making problems.
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