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)e control of body-fixed hovering over noncooperative target, as one of the key problems of relative motion control between
spacecrafts, is studied in the paper. )e position of the chaser in the noncooperative target’s body coordinate system is required
to remain unchanged, and the attitude of the chaser and the target must be synchronized at the same time. Initially, a six-
degrees-of-freedom-coupled dynamic model of a chaser relative to a target is established, and relative attitude dynamics is
described through using modified Rodrigues parameters (MRP). Considering the model uncertainty and external disturbances
of the noncooperative target system, an adaptive nonsingular terminal sliding mode (NTSM) controller is designed. Adaptive
tuning method is used to overcome the effects of the model uncertainty and external disturbances. )e upper bounds of the
model uncertainty and external disturbances are not required to be known in advance.)e actual control law is continuous and
chatter-free, which is obtained by integrating the discontinuous derivative control signal. Finally, these theoretical results are
verified by numerical simulation.

1. Introduction

On-orbit spacecraft is of great value. When breaking down
in space, on-orbit repair, component replacement, and
refueling can significantly prevent further cost of replacing a
new one [1–6]. )erefore, it has drawn much attention from
researchers. Relative hovering usually indicates that a
spacecraft stays fixed in its position and attitude in the body
coordinate system of another spacecraft. )e state of relative
hovering greatly facilitates space surveillance and
inspections.

Historically, related research studies have mainly fo-
cused on the hovering over asteroids. Scheeres first proposed
the concept of hovering orbit of the spacecraft relative to
asteroids in 1999 [7]. In general, hovering over an asteroid
mainly includes inertial hovering and body-fixed hovering
[8, 9]. Broschart simulated the hovering control of an

asteroid under slight gravity and determined the stable
region of inertial hovering [8]. In the control of hovering
over asteroids, the spacecraft needs to continuously apply
the control thrust to counteract the gravity and rotational
acceleration to maintain the desired position [9, 10]. )is
method is feasible on asteroids due to low nominal accel-
eration of the spacecraft [7, 8, 11]. Zeng proposed the solar
sail spacecraft’s hover over an asteroid, which greatly ex-
tended the hover time and hover range without fuel con-
sumption [12]. It should be pointed out that the research on
spacecraft hovering over an asteroid in the early stage mainly
concentrated on the relative position control of the space-
craft and asteroid irrespective of the relative attitude control
[7–9, 11, 13–15]. Lee et al. put forward passive tracking
control of the relative position and relative attitude of
hovering over an asteroid in the framework of geometric
mechanics [16]. Aiming at the orbit and attitude control of
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hovering over a rotating asteroid at a low speed, Lee et al.
designed a continuous finite-time convergence control
scheme [17, 18].

Strictly speaking, the situation of a spacecraft hovering
over an asteroid is different from that of hovering over the
target spacecraft. )is is because the former is influenced by
the gravity from both the asteroid and the sun, while the
latter is only influenced by Earth’s gravity. )erefore, the
dynamic equations in the two cases are also different.

In this paper, we mainly study the hovering control of
one spacecraft relative to another spacecraft. Recently, some
researchers have also published many findings concerning
hovering control between two spacecrafts. Tan analyzed and
solved the relative motions of the two spacecrafts in the near
circle and elliptical orbits, respectively. )e controller was
designed using generalized inverse matrix transformation,
and the guidance deviation was obtained by model pre-
diction [19, 20]. Xue has established a hybrid system model
for relative hovering between the two spacecrafts [21]. Based
on the description of the state transfer matrix between the
two spacecrafts, Cheng used a multipulse control method to
study the relative hovering motion [22]. To solve the
problem of hovering between the two spacecrafts at
superclose distance, Xu proposed the control method of line
of sight pointing tracking on the basis of relative orbit
control and realized the joint control of the relative orbit and
attitude [23]. Song studied the hovering closed-loop control
method based on Hill equation [24]. Dang established a
precise analytical solution for hovering between the two
spacecrafts and deduced the minimum force and minimum
fuel positions during the orbital period [25]. Huang studied
the problem of finite-time hovering control in the absence of
the radial or in-track thrust [26].

However, previous research studies on hovering control
mainly focused on the control of the relative position be-
tween the two spacecrafts. )ere are few research studies on
relative attitude control, and hovering control is mostly in
the form of open-loop control. Even if the relative attitude
control problem is considered, it is restricted to the con-
dition of the stable attitude or slow attitude change of the
target, and the relative position and relative attitude are also
controlled separately, ignoring their coupling. Further
complicating things, the model parameters of the spacecraft
are not likely to be precisely known during hovering op-
erations, and the spacecraft is always subject to external
environment disturbances [27–29]. Sun investigates relative
position and attitude control for spacecraft rendezvous and
proximity operations subject to input saturation, kinematic
couplings, parametric uncertainties, and unknown external
disturbances. State feedback control method [30], distur-
bance-observer-based robust nonlinear control scheme [31],
a six-degrees-of-freedom integrated adaptive fuzzy nonlin-
ear control method [32], and robust adaptive control ap-
proach [33] are proposed.)e terminal sliding mode control
(TSMC) method based on the conventional sliding mode
control (SMC) method has the advantage of finite-time
convergence [34]. Its sliding mode is independent of the
model parameters and external disturbances, and thus has
been widely used in nonlinear control [35, 36]. However, the

disadvantage is that the nonlinear term used in the TSMC
may cause a singularity problem leading to a control
magnitude to become unbounded. In order to solve this
problem, Feng proposed the nonsingular terminal sliding
mode control (NTSMC) method [37, 38]. Nonsingular
terminal sliding mode controllers are now widely used in a
variety of application areas like robotics [39–41], aerospace,
and process control [42, 43].

Considering the limitations of previous studies, it is
necessary to further study hovering control between the two
spacecrafts. In this paper, control problem of the chaser
hovering over the target with relatively rapid attitude change
in space is studied. A nonlinear six-degrees-of-freedom-
coupled dynamic model is established in the chaser’s body
coordinate system. A chattering-free adaptive nonsingular
terminal sliding mode (NTSM) controller is designed.
Firstly, the conventional sliding surface is established, and
then the nonsingular terminal sliding surface is constructed
on this basis. )e adaptive tuning method is used to deal
with the model uncertainty and external disturbances. )e
upper bounds of the model uncertainty and external dis-
turbances are not required to be known in advance [44–46].
)e actual control law is continuous and chatter-free, which
is obtained by integrating the discontinuous derivative
control signal.

)e rest of the sections are as follows. Section 2 intro-
duces dynamics for the chaser and the target. Section 3
presents the designs of the adaptive nonsingular terminal
sliding mode (NTSM) controller and demonstrates the
stability of the closed-loop system. Simulation studies per-
formed on the relative position and attitude control of the
hovering example are presented in Section 4. Section 5 draws
conclusions.

2. Dynamics for the Chaser and the Target

In this paper, the skew-symmetric matrix S(ζ) ∈ R3×3 de-
rived from a vector ζ � ζ1 ζ2 ζ3􏼂 􏼃

T ∈ R3 is defined as

S(ζ) �

0 − ζ3 ζ2
ζ3 0 − ζ1

− ζ2 ζ1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (1)

and it satisfies ζTS(ζ) � 0, S(ζ)ξ � − S(ξ)ζ, ξTS(ζ)ξ � 0 for
any ξ � ξ1 ξ2 ξ3􏼂 􏼃

T ∈ R3.
sgn(s) � [sgn(s1), · · · , sgn(sn)]T for any

s � [s1, · · · , sn]T ∈ Rn, where

sgn si( 􏼁 �

− 1, si < 0,

0, si � 0,

1, si > 0.

⎧⎪⎪⎨

⎪⎪⎩
(2)

2.1. Dynamics for Relative Orbit. )e relative motion sce-
nario between the chaser and the target is shown in Figure 1.
FE � OEXEYEZE􏼈 􏼉 is the Earth-centered inertial frame, with
its coordinate origin at the Earth center and nonrotating
with respect to the stars. )e OEXE axis points in the
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direction of the Earth’s vernal equinox.)eOEZE axis points
to the direction of North Pole. )e direction of OEYE axis is
determined by the right-hand rule. FT � OTXB

TYB
TZB

T􏼈 􏼉 and
FC � OCXB

CYB
CZB

C􏼈 􏼉 are the body frames of the target and the
chaser, respectively. )e body frame is fixed onto the
spacecraft body and rotates with it. rc, re􏼈 􏼉 is the position
vectors in the frame FC, and rt, rd, hf􏽮 􏽯 is the position
vectors in the frame FT.

)e position and attitude dynamic model of the chaser
relative to the frame FE is [47]

_rc � υc − S ωc( 􏼁rc,

_σc �
1
4

1 − σTc σc􏼐 􏼑I3 + 2σcσ
T
c + 2S σc( 􏼁􏽨 􏽩ωc,

mc _υc + mcS ωc( 􏼁υc � Fc + Fd,

Jc _ωc + S ωc( 􏼁Jcωc � τc + τd,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where υc ∈ R3 and ωc ∈ R3 are the chaser’s velocity and
angular velocity, respectively. rc ∈ R3 is the chaser’s posi-
tion, and σc ∈ R3 is the modified Rodrigues parameter
(MRP) vector to describe the attitude of frame FC with
respect to frame FE. Jc ∈ R3×3 and mc ∈ R are the chaser’s
inertial matrix and mass, respectively. Fc ∈ R3 and τc ∈ R3

are the chaser’s control force and control torque, respec-
tively. Fd ∈ R3 and τd ∈ R3 are unknown bounded distur-
bance force and unknown bounded disturbance torque of
the chaser, respectively. )ey are all expressed in the frame
FC.

Ignoring the external forces and torques, the position
and attitude dynamic model of the noncooperative target
relative to the frame FE is [31]

_rt � υt − S ωt( 􏼁rt,

_σt �
1
4

1 − σTt σt􏼐 􏼑I3 + 2σtσ
T
t + 2S σt( 􏼁􏽨 􏽩ωt,

_υt + S ωt( 􏼁υt � 0,

Jt _ωt + S ωt( 􏼁Jtωt � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where υt ∈ R3 and ωt ∈ R3 are the target’s velocity and
angular velocity, respectively. rt ∈ R3 is the target’s position,
and σt ∈ R3 is the attitude of frame FT with respect to frame
FE. Jt ∈ R3×3 and mt ∈ R are the target’s inertial matrix and
mass, respectively. )ey are all expressed in the frame FT.

2.2. RelativeDynamicModel. )e relative attitude σe ∈ R3 of
frame FC with respect to frame FT described by MRP is [48]

σe �
σc 1 − σTt σt( 􏼁 + σt σTc σc − 1( 􏼁 − 2S σt( 􏼁σc

1 + 2σTt σc + σTt σtσTc σc

. (5)

)e corresponding attitude transfer matrix Me ∈ R3×3 is

Me � I3 +
8S σe( 􏼁S σe( 􏼁 − 4 1 − σTe σe( 􏼁S σe( 􏼁

1 + σTe σe( 􏼁
2 , (6)

where I3 ∈ R3×3 is a unit matrix. It can be seen from Figure 1
that the position and velocity of the hovering point H de-
scribed in the frame FT are

rd � rt + hf, (7)

υd � υt + S ωt( 􏼁hf. (8)

)e relative angular velocity, relative position, and rel-
ative velocity of the two spacecrafts described in the frame
FC are

ωe � ωc − Meωt, (9)

re � rc − Mert, (10)

υe � υc − Meυt. (11)

Substituting equations (9)∼(11) into equation (3) and
using the equations _Me � − S(ωe)Me, _rd � υd − S(ωt)rd and
M− 1

e � MT
e , the relative motion equations described in the

frame FC can be derived:
_re � υe − S ωc( 􏼁re,

_σe � G σe( 􏼁ωe,

mc _υe � − mc S ωc( 􏼁υc + Me _υd − S ωe( 􏼁 υc − υe( 􏼁􏼂 􏼃 + Fc + Fd,

Jc _ωe � − S ωc( 􏼁Jcωc − Jc Me _ωt + S ωc( 􏼁ωe􏼂 􏼃 + τc + τd,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

where G(σe) � [(1 − σTe σe)I3 + 2σeσTe + 2S(σe)]/4 is a non-
singular matrix. From equations (4) and (8)–(11) and
MeS(ζ) � − S(Meζ)Me, Me _υd can be derived as
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Figure 1: Relative position and attitude motion coordinate system.
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Me _υd � Me _υt + S _ωt( 􏼁hf􏽨 􏽩

� − MeS ωt( 􏼁υt − MeS hf􏼐 􏼑 _ωt

� − S Meωt( 􏼁 Meυd − MeS ωt( 􏼁hf􏽨 􏽩 − MeS hf􏼐 􏼑 _ωt

� − S ωc − ωe( 􏼁 υc − υe − S ωc − ωe( 􏼁Mehf􏽨 􏽩

− MeS hf􏼐 􏼑 _ωt.

(13)
Also, _ωt in equation (13) can be calculated by equations

(4) and (9):

_ωt � − J− 1
t S ωt( 􏼁Jtωt

� − J− 1
t S MT

e ωc − ωe( 􏼁􏼐 􏼑JtM
T
e ωc − ωe( 􏼁.

(14)

)erefore, equation (12) can be rewritten as
_re � υe − S ωc( 􏼁r,

_σe � G σe( 􏼁ωe,

mc _υe � − mcP1 − P2 + Fc + Fd,

Jc _ωe � − S ωc( 􏼁Jcωc − JcS ωc( 􏼁ωe + P3 + τc + τd,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

where

P1 � S ωc( 􏼁υe + S
2 ωc − ωe( 􏼁Mehf,

P2 � mcMeS hf􏼐 􏼑J− 1
t S MT

e ωc − ωe( 􏼁􏼐 􏼑JtM
T
e ωc − ωe( 􏼁,

P3 � JcMeJ
− 1
t S MT

e ωc − ωe( 􏼁􏼐 􏼑JtM
T
e ωc − ωe( 􏼁.

(16)

2.3. Integrated Dynamic Model. Defining state variables
e1 � [rTe , σTe ]T and e2 � [υTe ,ωT

e ]T from equation (15) yields
_e1 � A1e1 + A2e2, (17)

M _e2 � B1 + B2 + u + d, (18)

A1 �
− S ωc( 􏼁 03

03 03
􏼢 􏼣,

A2 �
I3 03
03 G σe( 􏼁

􏼢 􏼣,

M �
mcI3 03
03 Jc

􏼢 􏼣,

B1 �
− mcP1

− S ωc( 􏼁Jcωc − JcS ωc( 􏼁ωe

􏼢 􏼣,

B2 �
P2

P3
􏼢 􏼣,

u �
Fc

τc

􏼢 􏼣,

d �
Fd

τd

􏼢 􏼣.

(19)

Remark 1. A1 in model (17) and B1 in model (18) reflect that
the relative position motion between the two spacecrafts is

affected by the relative attitude motion, which indicates that
there is a strong coupling effect between relative attitude and
relative position.

)is paper aims to design a controller so that the chaser
reaches a predetermined hovering point H, and the relative
attitude between the two spacecrafts is σe � σe0, σe0 is a
constant. In order to facilitate the analysis, the relative at-
titude is σe0 � 03×1, that is, the attitude between the two
spacecrafts is synchronized. From equations (5), (9)–(11),
(17), and (18), we can see that the control goal is equivalent
to designing the control input u to satisfy
limt⟶∞‖e1(t)‖≤ϕ1 and limt⟶∞‖e2(t)‖≤ϕ2, where ϕ1 and
ϕ2 are any small positive numbers.

3. Controller Design and Stability Analysis

Considering the model uncertainty of the system, from
equation (18) yields

Md + ΔM( 􏼁 _e2 � Bd1 + ΔB1 + Bd2 + ΔB2 + u + d, (20)

where Md ∈ R6×6, Bd1 ∈ R6, and Bd2 ∈ R6 are the nominal
model of the system. ΔM ∈ R6×6, ΔB1 ∈ R6, and ΔB2 ∈ R6

are model uncertainty terms of the system. Set d ∈ R6 as
system compound disturbances including model uncer-
tainty and external disturbances, and its expression is

d � − ΔM _e2 + ΔB1 + ΔB2 + d. (21)

Assumption 1. )e chaser can obtain its own motion in-
formation rc, υc, σc,ωc􏼈 􏼉 and relative motion information
re, υe, σe,ωe􏼈 􏼉 through its own measurement device. )e
measured relative motion and relative attitude information
are smooth and bounded.

Assumption 2. System compound disturbances d ∈ R6 and
its time derivative _

d ∈ R6 are unknown but bounded.
)e system compound disturbances d ∈ R6 satisfies the

following equation [33]:

‖d‖< k0 + k1 e1
����

���� + k2 e2
����

����
2
, (22)

where k0 > 0, k1 > 0, and k2 > 0 are constants, and ‖·‖ rep-
resents the 2 norm of the vector.

Substituting equation (21) into (20) yields

Md _e2 � Bd1 + Bd2 + u + d. (23)

From equation (23) yields

_e2 � Mp Bd1 + Bd2( 􏼁 + Mpu + Mpd, (24)

where Mp ∈ R6×6 is the generalized inverse matrix of
Md ∈ R6×6. )e expression of Mp is

Mp � MT
dMd􏼐 􏼑

− 1
MT

d . (25)

)e time derivative of equation (17) gives

€e1 � _A1e1 + A1 _e1 + _A2e2 + A2 _e2. (26)

)e time derivative of equation (24) gives
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€e2 �
d MpBd1 + MpBd2􏼐 􏼑

dt
+ _Mpu + Mp _u + D1,

(27)

where D1 � _Mpd + Mp
_
d.

)e sliding mode function is designed as

s � e2 + ce1, (28)

where c ∈ R6×6 is a sixth-order positive-definite diagonal
matrix, c � diag(c1, · · · , c6), ci > 0, i � 1, 2, · · · , 6. From
equation (28), it can be obtained that when s⟶ 0, then
e1⟶ 0 and e2⟶ 0 as well.

)e first derivative of the sliding mode function is
_s � _e2 + c _e1. (29)

Substituting equations (17) and (24) into equation (29)
yields

_s � Mp Bd1 + Bd2 + u + d􏼐 􏼑 + c A1e1 + A2e2( 􏼁. (30)

In this paper, the second-order nonsingular terminal
sliding mode (NTSM) control theory is used to design the

control law. In order to design a nonsingular terminal sliding
mode (NTSM) controller, the nonsingular terminal sliding
mode (NTSM) surface σ is defined as

σ � s + β− 1
_sp/q

, (31)

where β � diag(β1, · · · , β6), βi > 0, i � 1, 2, · · · , 6. p> 0 and
q> 0 are odd integers and satisfy the condition 1<p/q< 2. In
order to facilitate subsequent derivation, the following
definition is made.

Definition 1. GjH � [G
j
1H1, G

j
2H2, . . . , Gj

mHm]T for any
two vectors G � [G1, G2, . . . , Gm]T and
H � [H1, H2, . . . , Hm]T.

)e time derivative of equation (31) gives

_σ � _s +(p/q)β− 1
_sp/q− 1

€s

� (p/q)β− 1
_sp/q− 1

€s +(q/p)β_s2− p/q
􏼐 􏼑.

(32)

)e time derivative of equation (29) gives

€s � €e2 + c€e1

�
d MpBd1 + MpBd2􏼐 􏼑

dt
+ _Mpu + Mp _u + D1 + c _A1e1 + A1 _e1 + _A2e2 + A2 _e2􏼐 􏼑

�
d MpBd1 + MpBd2􏼐 􏼑

dt
+ _Mpu + Mp _u + c A1 A1e1 + A2e2( 􏼁 + A2 MpBd1 + MpBd2 + Mpu + Mpd􏼐 􏼑􏼐 􏼑

+ c _A1e1 + _A2e2􏼐 􏼑 + D1

�
d MpBd1 + MpBd2􏼐 􏼑

dt
+ _Mp + cA2Mp􏼐 􏼑u + Mp _u + cA1 A1e1 + A2e2( 􏼁 + c _A1e1 + _A2e2􏼐 􏼑

+ cA2 MpBd1 + MpBd2􏼐 􏼑 + D,

(33)

where D � cA2Mpd + D1. According to equation (22) and
Assumption 2 yield

‖D‖ � cA2Mpd + D1

�����

�����<D0 + D1 e1
����

���� + D2 e2
����

����
2
, (34)

where D0 > 0, D1 > 0, and D2 > 0 are constants.

Proof. Lyapunov function V1 is expressed as

V1 �
1
2

σTσ + λ0 􏽥D
2
0 + λ1 􏽥D

2
1 + λ2 􏽥D

2
2􏼐 􏼑, (35)

where λ0 > 0, λ1 > 0, and λ2 > 0 are constant parameters,
􏽥D0 � 􏽢D0 − D0, 􏽥D1 � 􏽢D1 − D1, and 􏽥D2 � 􏽢D2 − D2 are adap-
tation errors, and 􏽢D0, 􏽢D1, and 􏽢D2 are the estimations of D0,
D1, and D2, respectively.

)e time derivative of equation (35) gives

_V1 � σT _σ + λ0 􏽥D0
_􏽥D0 + λ1 􏽥D1

_􏽥D1 + λ2 􏽥D2
_􏽥D2

� σT(p/q)β− 1
_sp/q− 1

€s +(q/p)β_s2− p/q
􏼐 􏼑 + λ0 􏽢D0 − D0􏼐 􏼑 _􏽥D0 + λ1 􏽢D1 − D1􏼐 􏼑 _􏽥D1 + λ2 􏽢D2 − D2􏼐 􏼑 _􏽥D2

� σT(p/q)β− 1
_sp/q− 1 d MpBd1 + MpBd2􏼐 􏼑

dt
+ _Mp + cA2Mp􏼐 􏼑u + Mp _u + cA2 MpBd1 + MpBd2􏼐 􏼑 + D +cA1 A1e1 + A2e2( 􏼁

⎧⎨

⎩

+ c _A1e1 + _A2e2􏼐 􏼑 +(q/p)β_s2− p/q
􏽯 + λ0 􏽢D0 − D0􏼐 􏼑

_􏽢D0 + λ1 􏽢D1 − D1􏼐 􏼑
_􏽢D1 + λ2 􏽢D2 − D2􏼐 􏼑

_􏽢D2.

(36)
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)e control law u is designed as

u � 􏽚
t

0
_u dt, (37)

_u � − M− 1
p

d MpBd1 + MpBd2􏼐 􏼑

dt
+ _Mp + cA2Mp􏼐 􏼑u + cA1

⎧⎨

⎩

· A1e1 + A2e2( 􏼁 + c _A1e1 + _A2e2􏼐 􏼑+cA2

· MpBd1 + MpBd2􏼐 􏼑 +(q/p)β_s2− p/q

+ 􏽢D0 + 􏽢D1 e1
����

���� + 􏽢D2 e2
����

����
2

􏼒 􏼓sgn(σ) + γσ􏼛,

(38)

where γ � diag(c1, · · · , c6), ci > 0, i � 1, 2, · · · , 6.
)e adaptation law _􏽢D0,

_􏽢D1, and
_􏽢D2 is designed as

_􏽢D0 � ε0(p/q) β− 1����
���� _sp/q− 1σT
����

����, (39)

_􏽢D1 � ε1(p/q) β− 1����
���� _sp/q− 1σT
����

���� e1
����

����, (40)

_􏽢D2 � ε2(p/q) β− 1����
���� _sp/q− 1σT
����

���� e2
����

����
2
, (41)

where ε0 > 0, ε1 > 0, and ε2 > 0 are the tuning parameters.
Substituting equations (38)∼(41) into equation (36)

yields

_V1 � σT(p/q)β− 1
_sp/q− 1 D − 􏽢D0 + 􏽢D1 e1

����
���� + 􏽢D2 e2

����
����
2

􏼒 􏼓sgn(σ) − γσ􏼚 􏼛 + λ0 􏽢D0 − D0􏼐 􏼑ε0(p/q) β− 1����
���� _sp/q− 1σT
����

����

+ λ1 􏽢D1 − D1􏼐 􏼑ε1(p/q) β− 1����
���� _sp/q− 1σT
����

���� e1
����

���� + λ2 􏽢D2 − D2􏼐 􏼑ε2(p/q) β− 1����
���� _sp/q− 1σT
����

���� e2
����

����
2
,

(42)

then

_V1 ≤ (p/q) β− 1����
���� _sp/q− 1����

���� ‖D‖‖σ‖ − ‖γ‖‖σ‖
2

− 􏽢D0 + 􏽢D1 e1
����

���� + 􏽢D2 e2
����

����
2

􏼒 􏼓

������

������‖σ‖􏼚 +λ0ε0 􏽢D0 − D0
����

����‖σ‖ + λ1ε1 􏽢D1 − D1
����

����‖σ‖ e1
����

����

+ λ2ε2 􏽢D2 − D2
����

����‖σ‖ e2
����

����
2
􏼛≤ (p/q) β− 1����

���� _sp/q− 1����
���� ‖D‖‖σ‖ − ‖γ‖‖σ‖

2
− 􏽢D0 + 􏽢D1 e1

����
���� + 􏽢D2 e2

����
����
2

􏼒 􏼓

������

������‖σ‖􏼚 + D0 + D1 e1
����

����􏼐
�����

+ D2 e2
����

����
2
􏼓

������‖σ‖ − D0 + D1 e1
����

���� + D2 e2
����

����
2

􏼒 􏼓

������

������‖σ‖ +λ0ε0 􏽢D0 − D0
����

����‖σ‖ + λ1ε1 􏽢D1 − D1
����

����‖σ‖ e1
����

����

+ λ2ε2 􏽢D2 − D2
����

����‖σ‖ e2
����

����
2
􏼛≤ − (p/q) β− 1����

���� _sp/q− 1����
���� D0 + D1 e1

����
���� + D2 e2

����
����
2

􏼒 􏼓

������

������ − ‖D‖􏼒 􏼓‖σ‖􏼚

− 1 − λ0ε0( 􏼁 􏽢D0 − D0
����

����‖σ‖ − 1 − λ1ε1( 􏼁 􏽢D1 − D1
����

����‖σ‖ e1
����

���� − 1 − λ2ε2( 􏼁 􏽢D2 − D2
����

����‖σ‖ e2
����

����
2
􏼛

≤ − h1‖σ‖ − h2
􏽢D0 − D0

����
���� − h3

􏽢D1 − D1
����

���� − h4
􏽢D2 − D2

����
����≤ − h1

�
2

√ ‖σ‖
�
2

√ − h2

���

2λ0
􏽱 􏽥D0

����
����

���
2λ0

􏽰 − h3

���

2λ1
􏽱 􏽥D1

����
����

���
2λ1

􏽰 − h4

���

2λ2
􏽱 􏽥D2

����
����

���
2λ2

􏽰 ,

(43)

where

h1 � (p/q) β− 1����
���� _sp/q− 1����

���� D0 + D1 e1
����

���� + D2 e2
����

����
2

􏼒 􏼓

������

������ − ‖D‖􏼚 􏼛,

h2 � (p/q) β− 1����
���� _sp/q− 1����

���� 1 − λ0ε0( 􏼁‖σ‖􏼈 􏼉,

h3 � (p/q) β− 1����
���� _sp/q− 1����

���� 1 − λ1ε1( 􏼁‖σ‖ e1
����

����􏽮 􏽯,

h4 � (p/q) β− 1����
���� _sp/q− 1����

���� 1 − λ2ε2( 􏼁‖σ‖ e2
����

����
2

􏼚 􏼛.

(44)

So,

_V1 ≤ − min
�
2

√
h1,

����

2/λ0
􏽱

h2,

����

2/λ1
􏽱

h3,

����

2/λ2
􏽱

h4􏼚 􏼛

·
‖σ‖

�
2

√ +

��
λ0
2

􏽲

􏽥D0
����

���� +

��
λ1
2

􏽲

􏽥D1
����

���� +

��
λ2
2

􏽲

􏽥D2
����

����􏼠 􏼡

≤ − h
���
V1

􏽰
,

(45)

where h � min
�
2

√
h1,

����
2/λ0

􏽰
h2,

����
2/λ1

􏽰
h3,

����
2/λ2

􏽰
h4􏼈 􏼉.

According to equation (34), it can be known that h1 > 0. In
order to ensure h2 > 0, h3 > 0, and h4 > 0, the condition
1 − λ0ε0 > 0, 1 − λ1ε1 > 0, and 1 − λ2ε2 > 0 must be satisfied
when designing parameters.

6 Mathematical Problems in Engineering



‖_sp/q− 1‖> 0 for any _s≠ 0 and ‖_sp/q− 1‖ � 0 only when
_s � 0. According to the accessibility condition of the sliding
mode, the system can reach σ � 0 from any initial state
σ(0)≠ 0 within a finite time tr. )en, it will be proven that
the sliding mode function s will also reach the s � 0 plane in
the finite time ts on the nonsingular terminal sliding mode
surface σ � 0. First, the lemma for the stability of a nonlinear
system is given [49]. □

Lemma 1. If there is a continuous function V(t), the fol-
lowing conditions are met:

(1) V(t) is positive
(2) )ere is a real number χ > 0 and an open neighbor-

hood n ∈ (0, 1) so that

_V(t) + χV
n
(t)≤ 0. (46)

)en, the system is stable in finite time, and the con-
vergence time tf satisfies

tf ≤
1

χ(1 − n)
V

1− n
(0). (47)

Lyapunov function V2 is defined as

V2 �
1
2
sTs. (48)

On the nonsingular terminal sliding surface σ � 0, the
following equation can be obtained:

σ � s + β− 1
_sp/q

� 0, (49)

i.e.,

_s � − (βs)q/p
. (50)

)e time derivative of equation (48) gives
_V2 � sT _s. (51)

Substituting equation (50) in (51) yields
_V2 � − sTβq/psp/q

≤ − βq/p
min

�
2

√ ‖s‖
�
2

√􏼠 􏼡

(p+q)/p

� − βq/p
min2

(p+q)/2p
V

(p+q)/2p
2

� − χsV
ns

2 (t),

(52)

i.e.,
_V2 + χsV

ns

2 (t)≤ 0, (53)

where βmin is the smallest absolute component of β,
χs � βq/p

min2(p+q)/2p > 0, ns � (p + q/2p) ∈ (0, 1).
Let the s converge to 0 within finite time ts. It can be

deduced from Lemma 1 that when t≥ ts, s(t) � 0 and
satisfies

ts � tr + β− q/p
min

p

p − q
s tr( 􏼁

����
����

p− q/p
. (54)

Since the sliding mode function s converges to 0 within
finite time ts, according to equation (49), σwill also converge
to 0 within finite time ts. It can be seen from equation (28)
that if s⟶ 0, then e1⟶ 0 and e2⟶ 0. )is case
completes the proof.

)e control system diagram with the adaptive non-
singular terminal sliding mode controller is shown in
Figure 2.

From equation (38) yields

_u + M− 1
p

_Mp + cA2Mp􏼐 􏼑u � − M− 1
p

d MpBd1 + MpBd2􏼐 􏼑

dt
+ cA1 A1e1 + A2e2( 􏼁 + c _A1e1 + _A2e2􏼐 􏼑+

⎧⎨

⎩ cA2 MpBd1 + MpBd2􏼐 􏼑

+(q/p)β_s2− p/q
+ 􏽢D0 + 􏽢D1 e1

����
���� + 􏽢D2 e2

����
����
2

􏼒 􏼓sgn(σ) + γσ􏼛.

(55)

Remark 2. Equation (55) is essentially a low-pass filter with the
right side of the equation as the input and u as the output.
)erefore, the adaptive nonsingular terminal sliding mode
(ANTSM) controller designed in this paper can eliminate the
chattering phenomenon of the conventional sliding mode.

Remark 3. )eparameters ε0, ε1, and ε2 determine the rate at
which the estimated values 􏽢D0, 􏽢D1, and 􏽢D2 converge to their
respective boundaries. Larger ε0, ε1, and ε2 ensure that the
estimated values 􏽢D0, 􏽢D1, and 􏽢D2 quickly converge to the
actual boundary D0, D1, and D2. Considering λ0ε0 < 1,
λ1ε1 < 1, and λ2ε2 < 1, the actual value is to weigh the con-
vergence rate and constraints.

Remark 4. )e parameter γ determines the convergence rate
of the sliding surface. Larger γ means faster convergence
rate, which requires larger input. In reality, the thrust of the
spacecraft is limited. )erefore, the value of γ needs to be
weighed between thrust condition and convergence rate.

Remark 5. )e proposed methodology is applicable when ‖σ‖

is reachable. However, ‖σ‖ cannot become exactly 0 in a finite
time due to nonlinear characteristics of the system and the
switching delays. )erefore, the adaptive parameters 􏽢D0, 􏽢D1,
and 􏽢D2 may become boundless. A simple method is to use the
dead zone to overcome the above difficulties, and the adaptive
law _􏽢D0,

_􏽢D1, and
_􏽢D2 of equations (39)∼(41) are modified as
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_􏽢D0 �
ε0(p/q) β− 1����

���� _sp/q− 1σT
����

����, ‖σ‖≥ μ,

0, ‖σ‖< μ,

⎧⎪⎨

⎪⎩

_􏽢D1 �
ε1(p/q) β− 1����

���� _sp/q− 1σT
����

���� e1
����

����, ‖σ‖≥ μ,

0, ‖σ‖< μ,

⎧⎪⎨

⎪⎩

_􏽢D2 �
ε2(p/q) β− 1����

���� _sp/q− 1σT
����

���� e2
����

����
2
, ‖σ‖≥ μ,

0, ‖σ‖< μ.

⎧⎪⎨

⎪⎩

(56)

4. Simulation Example

)is section verifies the effectiveness of the designed con-
troller through simulation of a chaser’s superclose distance
hovering over a noncooperative target. )e mass of the
chaser is mc � 58.2 kg. )e moments of inertia of the target
and chaser, Jt and Jc, are [30]

Jt �

3336.3 − 135.4 − 154.2

− 135.4 3184.5 − 148.5

− 154.2 − 148.5 2423.7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
kg·m2

,

Jc �

598.3 − 22.5 − 51.5

− 22.5 424.4 − 27

− 51.5 − 27 263.6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
kg·m2

.

(57)

)e model uncertainties are Δmc � 0.5 kg and

ΔJc �

1.7 2 1.5
2.5 4.4 3
1.5 − 27 3.6

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦kg·m2.

)e hovering position in the frame FT is hf. )e initial
position and velocity are rc(t0) and υc(t0), respectively. )e
initial attitude and angular velocity are σc(t0) and ωc(t0),
respectively. )e initial relative position and relative velocity
are re(t0) and υe(t0), respectively.)e initial relative attitude
and relative angular velocity are σe(t0) and ωe(t0),

respectively. )e values of the above parameters are listed in
Table 1.

Disturbance torque τd and disturbance force Fd are

τd �

1 − 3 sin ω0t( 􏼁 − 2 cos ω0t( 􏼁

3 + 2 sin ω0t( 􏼁 + cos ω0t( 􏼁

2 − 3 sin ω0t( 􏼁 + 3 cos ω0t( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 10− 5Nm,

Fd �

2 − 3 sin ω0t( 􏼁 + cos ω0t( 􏼁

1 + 3 sin ω0t( 􏼁 + 2 cos ω0t( 􏼁

3 − 2 sin ω0t( 􏼁 − 2 cos ω0t( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
× 10− 4N,

(58)

where ωo �

������

μ/‖rc‖
3

􏽱

is the chaser’s average orbital angular
velocity, and μ � 3.986 × 1014 m3/s2 is the gravitational
constant of the Earth.

)e controller parameters are selected as
c � diag(0.1, 0.1, 0.1, 0.1, 0.1, 0.1), p � 5, q � 3, β � diag
(0.2, 0.2, 0.2, 0.1, 0.1, 0.1), γ � diag(90, 90, 90, 3, 3, 3),
ε0 � 1 × 10− 5, ε1 � 3 × 10− 5, ε2 � 3 × 10− 5, 􏽢D0(0) � 0,
􏽢D1(0) � 0, 􏽢D2(0) � 0, and μ � 0.001. )e simulation results
are presented in Figures 3 and 4.

Figure 3 shows relative motion, control torque, and
control force. )e relative attitude drops from
[0.4, − 0.5, 0.6]T to 03×1 after 58 s; the relative angular
velocity increased rapidly from [− 0.0207, 0.0125,

0.0258]T rad/s and then decreased to 03×1 rad/s after

Sliding mode function
s = e2 + ce1

Uncertain system
s e1, e2uNonsingular terminal 

sliding mode controller

Adaptation law

ANTSMC

Figure 2: Control system diagram.

Table 1: Simulation parameters.

Variable Value
hf [0, 5, 0]T

rc(t0)/m [− 2.0449, 4.6646, 4.4429]T × 106
υc(t0)/(m/s) [− 4.6536, − 5.1599, 3.2906]T × 103
σc(t0) [0, 0, 0]T

ωc(t0)/(rad/s) [0, 0, 0]T

re(t0)/m [30, 0, 25]T

υe(t0)/(m/s) [0.8, − 0.6, 0.3]T

σe(t0) [0.4, − 0.5, 0.6]T

ωe(t0)/(rad/s) [− 0.0207, 0.0125, 0.0258]T
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reaching the peak value, which indicates that the chaser
completes attitude capture for the noncooperative target
and then maintains the attitude synchronization with the
target. After 71 s, the relative position drops from
[30, − 7, 18]T m to 03×1 m and the relative velocity drops
from [0.776, − 0.485, 0.186]T m/s to 03×1 m/s. It is indi-
cated that the chaser’s center of mass has reached the
desired hovering position in the frame FT and has
remained unchanged thereafter. )e control torque re-
quired by the chaser is minimal after 73 s, and the
maximum control torque in each direction does not
exceed 0.05Nm. )e control force required by the chaser
is minimal after 48 s, and the maximum control force in
each direction does not exceed 0.2N. )e chaser’s control
torque and control force curve are smooth throughout
the entire process, indicating no chattering occurs.
Figure 4 shows estimated parameters 􏽢D0, 􏽢D1, and 􏽢D2
using the adaptive tuning method. 􏽢D0, 􏽢D1, and 􏽢D2 finally
converge to 0.0085, 0.3925, and 0.0419.

In order to verify the effectiveness of the proposed
controller, it is necessary to compare it with the conventional
sliding mode controller. )e conventional sliding mode
controller is chosen as [50]

u � − Mdc A1e1 + A2e2( 􏼁 − Bd1 − Bd2 − K sgn(s). (59)

)e parameter of the conventional sliding mode
controller is K � diag(0.2, 0.2, 0.2, 0.2, 0.2, 0.2), and all
other simulation parameters are the same as those of the
proposed sliding mode controller. )e simulation results
are presented in Figure 5. By further comparing Figure 5
with Figure 3, it can be concluded that under the effect of
the conventional sliding mode controller, the chaser
finishes the attitude synchronization with the target and

reaches the hovering point need 59 s and 74 s , respec-
tively, which is 1 s and 3 s longer than the proposed
sliding mode controller. After reaching the hovering
position and completing the attitude synchronization, the
maximum control torque and maximum control force
required by the chaser in each direction are still as high as
0.5Nm and 0.8 N, respectively. Chattering phenomenon
occurs in both control torque and control force of the
conventional sliding mode controller.

In addition, for the mean performance error index

MPE � 1/T
���������

􏽒
T

0 ‖Xe‖
2dt

􏽱

, the tracking error is
Xe � [rTe , vTe , σTe ,ωT

e ]T and the simulation time is T � 100 s. It
can be calculated that the proposed controller is
MPE1 � 1.2550, and the conventional sliding mode con-
troller is MPE2 � 1.4340. Obviously, the proposed controller
effectively improves the closed-loop system dynamic re-
sponse performance.

In order to investigate the robustness of the proposed
controller, the external bounded disturbance force Fd and
torque τd are increased to 100Fd and 100τd, respectively.
Other simulation parameters are the same. )e simulation
results are presented in Figures 6 and 7. By comparing
Figures 6 and 7 with Figures 3 and 4, it can be found that the
chaser finishes the position synchronization at the hovering
point after 71 s and finishes the attitude synchronization
with the target after 58 s. )e estimated parameters 􏽢D0, 􏽢D1,
and 􏽢D2 finally converge to 0.0085, 0.3926, and 0.0419. )e
control torque and control force curve are smooth without
chattering, and the mean performance error index is
MPE3 � 1.2551. Compared with the small disturbance, the
difference in control performance is very small, thus proving
the strong robustness of the proposed sliding mode
controller.
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Figure 4: Estimated parameters 􏽢D0, 􏽢D1, and 􏽢D2 using the adaptive tuning method.
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Figure 5: Relative motion, control torque, and control force under conventional sliding mode control.
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5. Conclusions

In this paper, an adaptive nonsingular terminal sliding
mode controller is designed based on the measurable in-
formation when the chaser hovers over a noncooperative
target, and the six-degrees-of-freedom-coupled relative
position and relative attitude control are realized. Instead
of the conventional control input, its time derivative is used
in the controller. )e derivative control contains the dis-
continuous sign function, and the actual control input is
obtained by integration, so it is continuous and chatter-
free. )e adaptive tuning method is used to deal with the
model uncertainty and external disturbances. Simulation
results show that the controller can effectively overcome
the model uncertainty and the influence of external dis-
turbance factors. )e chaser quickly reaches the hovering
position of the noncooperative target, and both the hov-
ering position error and the hovering velocity error con-
verge to a smaller range. )e required control torque and
control force are minimally, continuously, and smoothly
produced with no chattering occurring.
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