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-is paper considers an urban transit network design problem (UTNDP) that deals with construction of an efficient set of
transit routes and associated service frequencies on an existing road network. -e UTNDP is an NP-hard problem, char-
acterized by a huge search space, multiobjective nature, and multiple constraints in which the evaluation of candidate route sets
can be both time consuming and challenging. -is paper proposes a hybrid differential evolution with particle swarm op-
timization (DE-PSO) algorithm to solve the UTNDP, aiming to simultaneously optimize route configuration and service
frequency with specific objectives in minimizing both the passengers’ and operators’ costs. Computational experiments are
conducted based on the well-known benchmark data of Mandl’s Swiss network and a large dataset of the public transport
system of Rivera City, Northern Uruguay. -e computational results of the proposed hybrid algorithm improve over the
benchmark obtained in most of the previous studies. From the perspective of multiobjective optimization, the proposed hybrid
algorithm is able to produce a diverse set of nondominated solutions, given the passengers’ and operators’ costs are
conflicting objectives.

1. Introduction

-e rapid growth of many cities in the world as a result of
urbanization as well as concern over the environment im-
pact requires systematic planning to address the corre-
sponding increase in travel demand, pollution, and energy
consumption. -e solution to these problems is to utilize an
efficient public transport system. Adequately designed
transit network with appropriate vehicle frequency is ca-
pable of raising the utilization of the public transportation
system, as well as reducing the overall system costs.

Urban transit network design problem (UTNDP) con-
sists of determining route networks and schedules of an
urban public transport system [1]. Ceder and Wilson [2]
decomposed the UTNDP into a sequence of five activities:

network design, frequency setting, time table development,
bus scheduling, and driver scheduling. Because of its
combinatorial complexity, multiobjective nature, use of
assignment submodel, and spatial route layout, solving the
UTNDP becomes more complex and time consuming [3, 4].
Most of the research efforts attempted to treat each of the
activities in a sequential manner.

Solving the UTNDP requires several criteria to be
considered to efficiently account for the quality of service
offered to the passengers while at the same time reducing the
cost of running the service. For instance, the passengers
would prefer cheap, fast, and reliable services, while the
operators need to consider the cost of running the services
[1]. Hence, the different viewpoints of passengers and op-
erators can result in different criteria for evaluating
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efficiency. Specifically, the UTNDP involves several con-
flicting objectives, such as the total passenger travel time and
the number of vehicles required to operate the routes. Be-
cause of the complex nature of the components of the transit
travel time, comprising in-vehicle travel time, waiting time,
transfer time, and transfer penalties, to optimize the transit
networks has been a challenging task [5].

With the improvement in search algorithms and com-
puting technology, a variety of metaheuristic approaches
have been utilized to tackle the UTNDP. Apart from solution
methods using sole algorithms, Farahani et al. [6] noted that
solution methods can also be developed for new and existing
network design problems based on hybrids of different
metaheuristics. In addition, the combination of two pow-
erful search algorithms has been considered by several
authors to achieve better quality results, particularly when
one algorithm complements the other (see [7–8]).

Recent studies on UTNDP focus primarily on meta-
heuristics as a result of high-quality solutions produced and
computational performance. All the researchers in the
UTNDP literature have attempted to calibrate their studies
either on real-life or theoretical networks. Several authors
employed a genetic algorithm (GA) with diverse formula-
tions and coding schemes with the objective to optimize
either the passenger or operator cost or both. In particular,
Ngamchai and Lovell [10] and Fan and Machemehl [11]
utilized a GA on theoretical networks, while Arbex and da
Cunha [12] experimented on Mandl’s Swiss network. Fur-
thermore, Gundaliya et al. [13] and Tom and Mohan [14]
studied medium-size network in Chennai, India, while
Amiripour et al. [15] studied a network in Iran. More re-
cently, Owais and Osman [16] experimented a GA on a
transportation network in Rivera City, Northern Uruguay.

Over the last decade, other metaheuristic approaches
such as particle swarm optimization (PSO), bee colony
optimization (BCO), and differential evolution (DE) are
also applied to solve the UTNDP. Blum and Mathew [17]
developed an intelligent agent optimization system for the
UTNDP. Bagherian et al. [18] formulated a mixed integer
model and applied a discrete PSO to determine the optimal
bus lines. Kechagiopoulos and Beligiannis [19] developed a
PSO for tackling the urban transit routing problem
(UTRP). Nikolić and Teodorović [20] developed an effi-
cient algorithm based on BCO for UTNDP. Zhao et al. [21]
proposed a mimetic algorithm (MA) to solve the urban
transit network. Buba and Lee [22] proposed a DE for
UTRP. Buba and Lee [23] proposed a DE to solve the
UTNDP by simultaneously determining the transit net-
work configuration and the associated frequency of service.
-ese studies experimented on the benchmark Mandl’s
Swiss network and have been extensively reviewed in Buba
and Lee [23]. Ruano-Daza et al. [24] studied a transit
network design and frequency-setting problem in the
context of bus rapid transit system (BRTS) using a global-
best harmony search coupled with a simulation model for
discrete events. In the bilevel multiobjective approach, the
external level handled the problem of selection of the best
transit route configurations, while the internal level se-
lected the best frequencies generated by the first level. -e

proposed approach is applied to a real-life BRTS of the city
of Pereira, Columbia. Most recently, Jha et al. [25] studied
the transit network design and frequency-setting problem
for public buses. -e authors used a multiobjective PSO
with a number of search strategies to tackle the problem.
-e proposed algorithm has also experimented on the
benchmark Mandl’s Swiss network.

Furthermore, Canca et al. [26] formulated an optimi-
zation model that addresses the integrated network design,
line planning, and fleet investment. Later, in 2017, Canca
et al. [27] formulated a model to solve the integrated rail
rapid transit network design and line planning problem. An
adaptive large neighborhood search metaheuristic is used to
tackle the network design and line planning problems si-
multaneously. López-Ramos et al. [28] proposed an opti-
mization-based approach to simultaneously solve the
network design and the frequency-setting phase in the
context of railway rapid transit networks. A combined
lexicographic goal programming technique and a line
splitting algorithm is used to solve the model. Gutiérrez-
Jarpa et al. [29] investigated the rapid transit network design
with modal competition in the case of a real city through a
multiobjective mathematical model for a rapid transit net-
work at a strategic level. In addition, an approach that can
address modal competition for realistic size instances is also
presented by the authors.

Over the decades, the hybridization approaches for
UTNDP are gaining attention from the researchers. Zhao
and Zeng [7] applied a hybrid SA-GA algorithm to optimize
the transit route network design problem. Subsequently,
Zhao and Zeng [30] extended their method to determine the
public transport network layout and headways. Liu et al. [8]
proposed a hybrid SA-GA strategy to solve the problem of
bus route design and frequency setting. Szeto and Wu [9]
proposed a hybrid approach to solve a transit network design
problem for a suburban residential area in Hong Kong. Szeto
and Jiang [31] proposed a model for solving UTNDP with
the objective of minimizing the weighted sum of the number
of transfers and the total travel time of users through a
hybrid enhanced artificial BCO. Later, in 2014, Szeto and
Jiang [32] developed a hybrid artificial BCO to solve a bilevel
UTNDP where transit route design and frequency settings
are determined simultaneously.

In this paper, we consider the UTNDP aiming to de-
termine a set of transit routes with associated service fre-
quencies simultaneously for transit networks with
homogeneous buses, with the objective of minimizing the
conflicting interests of passengers and operators. -ere are a
few research efforts that have used the hybrid differential
evolution with particle swarm optimization (DE-PSO) to
solve a range of continuous optimization problems (see
[33–35]). However, to the best of our knowledge, no such
research has been reported in the UTNDP literature. Hence,
the main motivation is to propose a hybrid DE-PSO to solve
effectively and efficiently the UTNDP. -e proposed hybrid
algorithm is an extension from our previous study [23],
which is designed to adapt the strength of both the ap-
proaches in solving the discrete problem aiming to achieve
better quality results.
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-e remainder of the paper is organized as follows: the
problem formulation is presented in Section 2, while the
details of the proposed hybrid DE-PSO framework for
UTNDP is described in Section 3, followed by the experi-
mental design in Section 4. Comparisons of results are
presented in Section 5. Lastly, conclusions and future re-
search are addressed in Section 6.

2. Problem Formulation

-e problem considered in this article comprised two se-
quences of activities: (i) bus network design and (ii) fre-
quency setting. -e network design aspect consists of
constructing a feasible set of transit routes on a given urban
road network with predetermined stop points purposely to
achieve an efficient transit network that optimizes passen-
gers’ total travel time as well as the operator cost. -e
frequency setting aspect involves assigning service fre-
quencies to transit routes so that several parameters in-
cluding waiting times, flow capacities for transit routes, and
the fleet size required for overall network operation are
established.

-e UTNDP is modeled as a multiobjective optimization
problem so that an efficient set of transit routes and the
associated frequencies are established that simultaneously
produce a minimum total passenger and operator costs
while all the requirements and constraints are being satisfied.
In a real-life scenario, a number of constraints need to be
included in the formulation such as bus line feasibility, bus
capacity, and fleet size. -e same design approach in Nikolić
and Teodorović [20]; and Zhao et al. [21] is considered in
this study. -e problem can be defined as follows.

Let G � (V, E) be a weighted graph representing the
candidate transportation network with vertex setV (demand
points) and edge set E (street segment). E is the set of feasible
edges ((i, j) ∈ E) that links the vertices and P⊆ (i, j) ∈ V×􏼈

V: i≠ j} satisfying origin-destination (OD) pairs. Each edge
is linked to a pair of vertices (i, j), where i is the source and j

is the sink of the edge. A symmetric matric of passenger
travel demand and overall travel time associated with each
OD pair (i, j) ∈ P are known. Consequently, G should be
connected to enable passengers to traverse the path between
node i and node j through an undirected path in G. -e
optimization model is as follows:

min Cp � 􏽘
i∈N

􏽘
j∈N

tinv,ij + twt,ij + ttr,ij􏼐 􏼑dij + α 􏽘
i∈N

􏽘
j∈N

udij,

(1)

Co �
1
2

􏽘
rk∈SR

vk, (2)

subject to Lmin ≤Lk ≤ Lmax, ∀k ∈ SR, (3)

fk ≥fmin, ∀k ∈ SR, (4)

ϕmax
k � maxϕk(s), ∀k ∈ SR, (5)

2fktk � vk, ∀k ∈ SR, (6)

􏽘
k

vk ≤Vmax, ∀k ∈ SR, (7)

trij ≤ trmax, (8)

M≤Mmax, (9)

where SR � set of transit routes in a solution to UTNDP;
tinv,ij � in-vehicle time for travel from nodes i to j;
twt,ij �waiting time for travel from nodes i to j;
ttr,ij � transfer time for travel from nodes i to j; dij � demand
for travel from nodes i to j; udij � unserved demand for
travel from nodes i to j; α� penalty factor of the unserved
passengers; rk � transit route/bus line k; vk � fleet size on
route k; Lmin �minimum length of a route for travel;
Lk � length of route k for travel; Lmax �maximum length of a
route for travel; fk � frequency of buses plying on route k ;
fmin �minimum allowable frequency of buses operating on
a route; ∅max

k �maximum flow occurring on any link of
route k ; ∅k(s) � flows on the critical link of route k ;
tk � round trip time on route k ; Vmax � fleet size available for
operation on the route network; trij � number of transfers
for travel from nodes i to j; trmax �maximum allowable
transfer; M � number of routes in the given route set;
Mmax �maximum number of routes allowed in a given
solution; N � number of nodes in the route set (graph size).

-e objective functions (equation (1)) represent gener-
alized passenger cost, Cp, in terms of total travel time of all
passengers plus the unmet demand, whereas equation (2) is
the operator cost, Co, (total fleet size), respectively. Con-
straint (3) provides the lower and upper limits of the route
length in a given solution. Constraint (4) ensures that service
frequency should not be lower than the minimum value.
Constraint (5) limits the maximal flows on the critical link of
transit routes. Constraint (6) defines the relationship be-
tween fleet sizes and frequencies of transit routes. Constraint
(7) ensures that the sum of fleet size does not exceed the
maximum allowable value from the operators’ point of view.
Constraint (8) restricts the number of transfers to be below a
given maximum value. Lastly, constraint (9) restricts the
maximal number of routes from the operator’s perspective.

2.1. Decision Variables and Input Data. -e decision vari-
ables considered in the proposed model can be categorized
as either continuous or integer variable. -e continuous
variables include the travel time between nodes i and j; tij,
in-vehicle travel time between nodes i and j; tinv,ij, waiting
time between nodes i and j; twt,ij, transfer time between
nodes i and j; and ttr,ij, round trip time of route k, tk . On the
other hand, the integer variables include the frequency of the
route k; fk, the number of vehicles to be assigned to route k;
vk, length of route k; and Dk, the maximum flow occurring
on the route k, ∅max

k .
-e same input data of the UTNDP used by the previous

approaches in the literature are utilized in this study. -ere
comprises (i) the road network structure available for the
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vehicle routes including the designation of nodes and the
available edges in the network, (ii) the travel times of each
edge in the network indicating how long it takes for a vehicle
to travel between any two nodes of the road network, (iii)
travel demand by transit between every O-D pair (origin-
destination matrix), and (iv) the design parameters that
include penalty per transfer, the minimum frequencies of
bus service on each route, the bus seating capacity (assumed
all buses are homogeneous in terms of seating capacity), and
the maximum load factor allowed on any transit routes [23].

2.2. Passenger Assignment. When the transit route net-
works are constructed, the passengers travel demand
should be distributed on the candidate routes to evaluate
the fitness of the vector/particle as explained in Section
3.3. We [23] have described in detail how to determine the
flow of passengers on paths selected by the passengers for
every OD pair on the basis of the passenger assignment
procedure in Baaj and Mahmassani [3]. We also assume
that transit users can use a maximum of two bus lines to
get to their destination (i.e., at most one transfer) similar
to Mauttone and Urquhart [36]; Yan et al. [37]; and
Nikolić and Teodorović [20]. -e passenger assignment is
briefly performed as follows:

(i) -e passengers look for a direct route (i.e., a route
without transfer) that would serve a given pair of
OD nodes.

(ii) If direct route(s) is/are located, then the routes are
screened on the basis of in-vehicle travel time such
that any route with in-vehicle travel time greater
than the smallest value by 50% is avoided.

(iii) -e demand is shared with the candidate routes that
scale through the screening process.

(iv) However, if it is not possible to find the direct
route(s), the passengers will then try to look for a set
of one transfer routes with the smallest travel time to
meet the travel demand.

(v) If one transfer route(s) is/are found, then the total
travel time is evaluated for each possible path in-
volving one transfer, and a screening process is
invoked to determine the candidate paths similar to
the zero transfer, in such a way that, all paths be-
tween OD pair whose total travel time is greater
than the smallest value produced by any path by
more than 10% are also avoided.

(vi) If it is not possible to find any path, then the demand
is regarded as unserved.

We assign randomly the initial service frequencies of all
routes in the solution taking into account that the least
frequency of service allowed on any route is one vehicle per
hour. After the first iteration, frequencies are updated and
demand is allocated. -e iteration process is repeated until
the stopping criterion is met: (i) a fixed number of iterations,
(ii) the system converges to a solution [17], or (iii) no
significant improvement in frequencies attained. Conse-
quently, the four basic properties associated with a given

route are determined: nodes list, service frequency, turn-
around trip times, and link-flows list [23].

2.3. Bus Line Characteristics and Travel Time Calculation.
It is essential to calculate the values of basic quantities
(frequency of service, required number of buses, bus
headway, etc.) that is associated with any considered solu-
tion after performing the passenger assignment (Section
3.3).-ese parameters can be expressed mathematically.-e
same mathematical expressions as in [23] are adopted in this
study. Additionally, we included the following equations
(equation (10)–(13)) to calculate the values of the maximum
and average route headways.

-e passenger waiting time:

twt �
1
2

h �
T

2􏽐kfk

, (10)

where h is the bus headway at route k

-e bus headway at the route k:

hk �
T

fk

. (11)

Maximum route headway:

hmax � max
T

f1
, . . . ,

T

fk

􏼨 􏼩. (12)

Average route headway:

Ave · h �
􏽐khk

M
, (13)

where 􏽐khk is the total route headway.

3. Hybrid DE—PSO for the UTNDP

3.1. Representation. Each vector (in DE) or particle (in PSO)
is a candidate route set from the given transit network
configuration. A list data structure is used to represent the
vectors (particles) as shown in Figure 1, which are the
permutations of them transit lines withm transit routes and
their associated frequencies. A transit line k, (1, 2, . . . , m)

comprises an adjacent sequence of transit nodes stored in a
transit route list, rk, and its associated frequency, fk, stored
in a sublist (rk, fk). A separator “∗” is used to demarcate the
set of transit lines.-ese frequencies are randomly initialized
to individual routes of every vector/particle of the pop-
ulation (see [23]. For example, Figure 1, shows that route 1
has a service frequency of 5 vehicles per hour, while route 2
has a service frequency of 4 vehicles per hour in the sublist,
etc.

3.2. Initialization. -e route construction heuristic pro-
posed by Mumford [38] is utilized to generate the initial
population of vectors/particles. In this heuristic algorithm,
several parameters need to be defined: (i) the number of
routes per route set to be predefined by the user (i) the
minimum and maximum length of individual routes, and
(iii) the population size of the route sets. In the UTNDP, at
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least two routes emanating from a list of nodes should
constitute a complete route set. -e routes are constructed
one at a time with vertices added one after the other.
However, we observe that the construction heuristic does
not always produce feasible route sets (i.e. not all the
nodes are connected). Hence, we [22] recently proposed
an improved subroute reversal repair mechanism (iSRR)
to deal with the infeasible route sets. In the literature,
some requirement concerning each typical route of the
route set is specified by the operator. For instance, each
typical route must contain a minimum of two or three
nodes and a predefined number of maximum nodes fora
feasible route set. Note that a fixed population size is
maintained during the implementation of the proposed
algorithm.

3.3. Fitness Evaluation. -e solution is evaluated when the
demand is assigned and the frequency determined through
the assignment model (see Section 2.2). -e objective
functions (1) and (2) for an individual vector/particle are
considered as the fitness functions. Consequently, the overall
passenger cost, as well as the operator cost, could be eval-
uated to be the fitness value.-e passenger cost consisting of
two terms in objective function (1) is calculated by summing
the travel cost and the unmet demand for every OD pair.-e
required fleet for each bus line can be obtained from
equation (6). Finally, summing the buses of all routes gives
the total fleet.

3.4. Mutation and Crossover. Two mutation schemes are
used in the proposed hybrid algorithm: (i) identical point
mutation, which is a modified form of the mutation operator
by Ngamchai and Lovell [10] and (ii) mutation operator
proposed in Kechagiopoulos and Belligiannis [19]. -e
identical point mutation is utilized in the DE to create a noisy
random vector, Vi,G, as follows: a random node that has at
least two identical nodes from the random vector (route set)
is selected. -en, two routes that contain the random node
are selected and the substrings preceding the random node
in the routes interchange their position between the two
routes to create a noisy random vector (see Figure 2). -e
second mutation operator is utilized in the PSO to update
the personal and global best of the swarm (see Figure 3).
However, in our case, if there is a cycle after the modification
of the particle, then the repair is attempted using iSRR. -e
steps of the mutation are as follows:

(i) Select two routes randomly: one from the particle to
be modified and the other from the personal or
global best.

(ii) A common node is searched between these pairs of
routes.

(iii) If the common node is found, then copy substring
(route parts) from the personal or global best be-
tween the selected nodes to modify the current
particle.

(iv) If a cycle is identified, then repair with iSRR.

In the case of no common node being found between the
pair of the selected routes, a new pair of routes is selected by the
algorithm, again randomly, in an attempt to locate a common
node for swapping parts of routes. However, if a candidate
node is located, then the process terminates and a new particle
is selected from the swarm to undergo modification.

-e crossover is applicable only to the DE. Specifically,
the uniform route crossover (interstring crossover opera-
tion) inspired by Beasley et al. [39] is utilized. -is crossover
is performed as follows: each subroute in the trial vector is
generated by interchanging the corresponding subroute
either from the target or noisy random vector on the basis of
a randomly generated binary crossover mask whose length is
equal to the number of routes in the solution. When there is
a “1” in the crossover mask, the subroute is copied from the
target vector, but when there is a “0” in the mask, the
subroute is copied from the noisy random vector. -e
process is repeated with the target and noisy random vector
exchanged to yield the second trial vector (see Figure 4).
Note that for each pair of vectors, it is required to generate a
new crossover mask [40]. It is advisable to ensure that the
trial vectors are feasible; otherwise, attempt to repair the
infeasible trial vectors with iSRR.

3.5. Replacement. -e population for the next generation is
constructed through elitism selection for the DE, such that
the best vector between the target vector and the trial vector
is selected for the next generation. -is is to maintain the

4 3 5 2 1 0 (5, 1) ∗ 11 10 12 13 9 6 14 8 (4, 2) ∗ . . . ∗ 0 1 2 5 14 6 9 7 (9, m)

Transit line 1 Transit line mTransit line 2

Transit route 1, r1 Transit route 2, r2 Transit route m, rm
(f1, r1) (f2, r2) (fm, rm)

Figure 1: A sample vector/particle.

(7 8 9 3 4 6 ∗ 1 10 3 9 5) (7 8 3 9 10 ∗ 1 2 3 4 5 6)
Current particle Personal or global best

(7 8 9 3 4 5 6 ∗ 1 10 3 9 5)
Current particle after modification

Figure 3: Modified identical point mutation.

Vector before mutation: Vector after mutation:

(10 9 6 ∗ 1 4 3 ∗ 2 4 5 7) (10 9 6 ∗ 2 4 3 ∗ 1 4 5 7)

Chosen node: 4

Figure 2: Identical point mutation.
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average fitness of the population [41]. For the PSO, the
fitness value is updated for the personal and global best,
provided the fitness of the current particle is better than the
fitness of its personal best and global best after the appli-
cation of the mutation operator (see Figure 3).

-e proposed framework of the proposed hybrid DE-
PSO is structured as follows: the population (for DE) or
swarm (for PSO) is initialized using a construction heuristic
proposed by Mumford [38]. -e DE algorithm (see Algo-
rithm 1) is run for a finite number of generations, I (e.g., 20)
to initialize the swarm for the PSO. -e PSO is the main
algorithm to search for the optimal solution. Note that it is
not appropriate to use the velocity vector of the classical PSO
due to the discrete nature of the problem. Instead, a new
mutation scheme is utilized to update the personal and
global best (see Figure 3). -e proposed algorithm will only
alternate once, and both of the objective functions will start
with the same initial population that has been recorded
earlier. At the end of each DE-PSO iteration, the non-
dominated solution is accumulated and isolated by dis-
carding all the dominated solutions. -e detailed framework
of the proposed DE-PSO is provided in Algorithm 2.

4. Experimental Design

Two sets of experiments are conducted to assess the effec-
tiveness of the proposed hybrid algorithms. In the first ex-
periment, the computational results obtained by hybrid DE-
PSO and PSO-DE are compared to verify that the hybrid DE-
PSO yields better solutions. In the second experiment, the
computational results obtained from the hybrid DE-PSO al-
gorithm are compared with other approaches reported in the
literature. All experiments are performed on the well-known
benchmark Mandl’s Swiss network [42]. -e road network
consists of connected edges, edge weights (i.e., travel times of
link), and feasible locations of the bus stop, and others (see
Section 4.1). It is also assumed that each route must contain at
least three nodes (stations) as in Nikolić and Teodorović [20]
and Arbex and da Cunha [12]. -e proposed algorithms are
coded in Python 2.7.6.4 on a computer with 1.60GHz Intel
Core™i5-4200 CPU with 4.00GB of RAM.

4.1. Benchmark Data. Mandl’s Swiss network [42] is a re-
alistic transportation network in Switzerland (see Figure 5).
-e graph comprises 15 vertices, the shortest travel time
between the two farthest vertices is 33 minutes, 21 undi-
rected edges, and overall passenger travel demand is 15570.
-e highest travel demand between a node pair is 880
passengers. -e network is small and dense. In this matrix,
the nonzero demand is 82% of the node pairs. -e network

information for the transit operator includes travel demand
and existing road network data. -e demand is often rep-
resented by a symmetric OD matrix whose elements may
include the time, day of the week, boarding point, alighting
point, and potential coverage of transit passengers. -e road
network information includes connectivity of link, lengths of
link, travel times of link, and feasible locations of a bus stop.

4.2. Parameter Configuration and Performance Metrics. A
population of 30 vectors and a computation time of 200
iterations are performed for the computational experiment.
Five scenarios are considered to investigate the non-
dominated solutions: route sets consisting of 4, 6, 7, 8, and 12
bus lines, respectively. To make a fair comparison with other
approaches in the literature, the standard parameter con-
figuration and the performance metrics used by Nikolić and
Teodorović [20]; Arbex and da Cunha [12]; and Zhao et al.
[21] are provided in Tables 1 and 2, respectively.

5. Results and Discussions

5.1. Comparison of Hybrid DE-PSO and Hybrid PSO-DE.
Computational experiments on benchmark Mandl’s Swiss
network are conducted to assess the effectiveness of the two
proposed hybrid algorithms: hybrid DE-PSO and hybrid
PSO-DE. -e initial population of both hybrid algorithms
are obtained by the route set generation heuristic by
Mumford [38], embedded with iSRR mechanism. -e iSRR
mechanism is used to repair the resulting infeasible can-
didate route sets. For hybrid DE-PSO, the DE algorithm is
initially run for a finite number of generations, I (e.g., 20) to
initialize the swarm population for the PSO. -e PSO is the
main algorithm to search for the optimal solution in hybrid
DE-PSO. On the other hand, for hybrid PSO-DE, the PSO
algorithm is initially run for a finite number of generations, I
(e.g., 20) to initialize the vector population for the DE. DE is
the main algorithm to search for the optimal solution in
hybrid PSO-DE. Route sets consisting of 4, 6, 7, 8, and 12 bus
lines with a maximum of 8 nodes in each route are used. For
each case, 10 independent runs are performed for 200
generations, each with a population size of 30. -e com-
putational results obtained by both hybrid algorithms are
given in Table 3. -e entries for Avg. represents the average
result after the 10 runs. -e transit route network config-
uration constructed by the proposed hybrid DE-PSO and
hybrid PSO-DE is provided in Tables 4 and 5, respectively. In
both Tables 4 and 5, column 3 gives the fleet required per
route of the route set. -e values in the bracket give the
overall fleet size required for the given transit route network
configuration. -eir associated passenger costs are given in
column 4.

As shown in Table 3, hybrid DE-PSO produced better
results in terms of best d0, Co, Cp, Tinv, and Ttr for the five
scenarios considered. However, the best values achieved for
the parameter Twt by hybrid DE-PSO is similar to hybrid
PSO-DE. In addition, hybrid DE-PSO achieves lower av-
erage Twt and Ttr as compared with hybrid PSO-DE. Fur-
thermore, both algorithms produced solutions in which the

Target vector 1 2 3 5 ∗ 5 6 ∗ 4 6 7 Trial vector 1

1 2 3 5 ∗ 5 6 ∗ 2 3 5
Crossover mask 11 0

Noisy random vector 3 7 6 ∗ 1 3 4 ∗ 2 3 5

Trial vector 2

3 7 6 ∗ 1 3 4 ∗ 4 6 7

Figure 4: Uniform route crossover.
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demand is met with a maximum of only one transfer for the
five scenarios considered. It can be observed that hybrid DE-
PSO is more capable of finding better solutions from the 10
independent runs than hybrid PSO-DE. A statistical t-test at
5% significant level is also been carried out for both hybrid
algorithms. From Table 3 (column 9 and column 10), it can
be observed that there is a significant difference in the
parameters (except dun) in all cases between both hybrid
algorithms. Relatively, hybrid DE-PSO produced better
results than hybrid PSO-DE in terms of the point estimates
of the parameters. Consequently, we adopt the hybrid

DE-PSO for comparison with other results reported in the
literature.

5.2. Comparative Experiments of Hybrid DE-PSO

5.2.1. Mandl’s Swiss Network. In this experiment, the pro-
posed hybrid DE-PSO algorithm is performed on the
Mandl’s Swiss network and compared with the studies of
Mandl [42]; Baaj and Mahmassani [3]; Shih and Mah-
massani [43]; Bagloe and Cedar [44]; Nikolić and Teodorović
[20]; Zhao et al. [21]; and Buba and Lee [23]. -ese articles

(1) Initialize the swarm using DE (Algorithm 1)
(2) for i ≔ Np
(3) fitness evaluation using passenger assignment
(4) (f(p1), f(p2), . . . , f(pn))

(5) Set p∗g � argmin(f(p1), f(p2), . . . , f(pn))

(6) end for
(7) for n ≔ 1 toG

(8) for i ≔ 1 toNp
(9) set current particle� 1st particle in swarm
(10) select a particle randomly (except the selected 1st particle) in the swarm
(11) apply particle modification scheme to generate a modified particle (repair if infeasible)
(12) fitness evaluation using passenger assignment on the modified particle
(13) if modified particle is better than personal best
(14) update personal best and its fitness
(15) else if modified particle is better than global best
(16) update global best and its fitness
(17) end if
(18) end for
(19) Np �new_population
(20) end for
(21) return Best

ALGORITHM 2: Hybrid DE-PSO for multiobjective UTNDP.

(1) Generate Np candidate route set using construction heuristic with iSRR repair mechanism
(2) for i ≔ 1 toNp
(3) fitness evaluation using passenger assignment model
(4) end for
(5) for n ≔ 1 toG

(6) for i ≔ 1 toNp
(7) set Target vector� Xi,n

(8) select randomly a vector (except the selected Target vector, Xi,n) in the population
(9) apply identical point mutation to generate a Noisy Random vector, Vi,n (repair if infeasible)
(10) apply uniform route crossover between Xi,n and Vi,n to generate a pair of Trial vectors, Ui,n (repair if infeasible)
(11) fitness evaluation of Ui,n using passenger assignment model
(12) elitism selection
(13) if Trial vector fitness≤Target vector fitness
(14) new_population [i] �Trial vector, Ui,n

(15) else
(16) new_population [i] �Target vector, Xi,n

(17) end for
(18) Np �new_population
(19) end for
(20) return BEST

ALGORITHM 1: DE for multiobjective UTNDP.
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used the same passenger assignment method and the same
transfer penalties to estimate passengers’ costs. -e com-
parative results on Mandl’s Swiss network with route sets
comprising 4, 6, 7, 8, and 12 bus lines are reported in Table 6.

In Table 6, the proposed hybrid DE-PSO (last column)
outperformed the DE in terms of d0 for all cases considered.
In addition, the DE-PSO algorithm achieves the best result

in terms of d0 and d1 compared with previous studies in the
case of route sets containing 4 and 12 bus lines. In the case of
route sets with 8 and 12 bus lines, the hybrid algorithm
outperformed the previous results in terms of Cp.-e hybrid
DE-PSO achieves the minimum transfer time of all pas-
sengers in four out of the five cases as compared with the
previous studies. Furthermore, the proposed hybrid DE-
PSO is able to produce significant improvement in Co, as
reflected by the required fleet evidencing the high quality of
solutions obtained. Zhao et al. [21] have the best value for d0
for cases of 6, 7, and 8 bus lines. However, they have some of
the worse results for Cp in the literature.

As mentioned previously, the UTNDP is a complex
problem, given the two conflicting objectives that influence
each other: higher frequencies would improve the passenger
cost, but this will increase the operator cost. Consequently,
Arbex and da Cunha [12] observed that it is not enough to
report the best solution found in terms of percentage of
direct trips (d0) and the one that minimizes the number of
buses, as these two objectives are related. Hence, there is a set
of solutions known as Pareto optimal solutions for the
UTNDP, which represent the compromise solutions be-
tween the conflicting objectives [45]. -e computational
results of the Pareto front and the node sequence of the best
routes found in the Pareto front by the proposed algorithm
are given in Tables 7 and 8, respectively.

In Table 7, some important performance indicators, in-
cluding average route headways, in-vehicle travel times, and the
maximum route headways are determined. Headways are useful
indications of how frequent public transit service is, and therefore
the waiting time of the passengers. Note that for these indicators,
we do not have existing results to compare with our results. -e
maximum and average route headway lie between (7.71, 12.32)
and (5.724, 8.830) minutes, respectively. -e proposed hybrid
DE-PSO solution producedmore than one route choice formost
OD pairs, as implied by the low values for average waiting times,
which are significantly less than average route headways.
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Figure 5: Mandl’s Swiss road network.

Table 1: Parameter configuration.

Description Value
Transfer penalty for 1-transfer trips 5min
Maximum number of transfers allowable
for demand to be satisfied 1 transfer/passenger

Penalty factor for unmet demand 0.2
Load factor 1.25

Bus capacity 50 passengers (40 seat
bus)

Minimum allowable frequency of buses
operating on any route (fmin)

1 per hour

Maximum allowable frequency of buses
operating on any route (fmax)

Unlimited

Maximum allowable fleet size 99 buses

Table 2: Performance metrics.

Performance
metric Description

d0
Percentage of demand satisfied with zero

transfer

d1
Percentage of demand satisfied with one

transfer

dun
Percentage of demand unsatisfied (more than

one transfer)
Co Fleet size
Cp Total travel time of all passengers
Tinv In-vehicle time of all passengers
Twt Waiting time of all passengers
Ttr Transfer time of all passengers
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Table 3: Comparative results of hybrid DE-PSO and hybrid PSO-DE.

Bus line Performance metric
Hybrid DE− PSO Hybrid PSO− DE

t-test p
Worst Avg. Best Worst Avg. Best

4

d0 91.64 95.44 95.94 93.51 95.35 94.60 4.41 0.001
d1 8.36 4.56 4.06 6.49 4.65 5.40 2.12 0.003
dun 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000
Co 99 96 92 99 97 96 − 1.53 0.013
Cp 206,302 205,051 198,177 209,572 207,859 204,592 − 1.37 0.018
Tinv 174,462 176,321 168,842 177,213 176,105 175,802 − 3.80 <0.001
Twt 23,892 23,251 25,125 27,092 26,421 24,254 − 4.26 <0.001
Ttr 7,9485 5,479 4,210 8,267 5,333 4,536 0.16 0.041

6

d0 92.08 95.05 97.68 90.04 92.75 94.54 2.31 0.004
d1 7.92 4.95 2.32 9.96 7.25 5.46 − 4.23 0.012
dun 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000
Co 98 94 90 98 95 94 − 2.06 0.021
Cp 221,344 191,562 190,068 231,452 194,568 191,720 − 2.35 0.002
Tinv 184,514 160,034 160,835 188,019 156,106 161,012 − 1,42 0.013
Twt 28,268 26,105 25,103 31,085 28,148 25,100 − 2.41 0.023
Ttr 8,562 5,423 4,130 12,348 10,314 5,608 − 1.32 0.032

7

d0 90.98 94.82 97.82 90.48 93.66 96.40 − 1.24 0.011
d1 9.02 5.18 2.18 9.52 6.34 3.60 − 2.16 0.025
dun 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000
Co 98 94 84 98 89 85 − 2.04 0.031
Cp 215,845 191,875 189,697 226,214 194,874 192,003 − 1.43 0.011
Tinv 177,874 158,033 157,800 186,195 158,801 158,557 − 2.12 0.020
Twt 30,145 28,634 27,847 31,087 29,345 27,985 − 1.82 0.015
Ttr 7826 5,208 4,050 8,932 6,728 5,461 − 2.13 0.021

8

d0 91.27 94.61 96.59 91.27 93.92 96.47 − 0.51 0.042
d1 8.73 5.39 3.41 8.73 6.08 3.53 2.31 0.001
dun 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000
Co 99 94 89 99 95 94 − 3.40 0.001
Cp 201,162 192,068 184,841 206,925 205.368 193,557 − 1.09 0.028
Tinv 161,326 160,725 158,503 170,825 168,584 162,162 − 9.52 <0.001
Twt 28,052 22,580 19,618 24,038 24,586 21,625 3.78 0.001
Ttr 11,784 8,763 6,720 12,062 12,198 9,770 − 3.14 0.003

12

d0 92.26 94.65 97.56 90.24 93.16 95.00 − 3.04 0.023
d1 7.74 5,35 2.44 9.76 6.84 5.00 − 2.24 0.042
dun 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000
Co 98 95 86 99 95 92 − 2.13 0.014
Cp 216,080 192,782 184,532 241,658 193,843 191,148 − 2.46 0.020
Tinv 185,223 164,870 158,685 208,639 164,069 162,903 − 2.01 0.022
Twt 25,415 23,842 22,632 26,121 24,418 23,164 − 2.32 0.032
Ttr 5,442 4,070 3,215 6,898 5,356 5,081 − 1.51 0.024

Table 4: Best bus lines constructed by the proposed hybrid DE-PSO.

Bus line Routes Fleet size (Co) Passenger cost (Cp)

4

0− 1− 4− 3− 5− 7− 9− 12 26

198,1770− 1− 2− 5− 7− 14− 6− 9 29
8− 14− 7− 9− 13− 12− 10− 11 14
4− 1− 2− 5− 3− 11− 10− 9 23 (92)

6

0− 1− 3− 11− 10− 12− 13− 9 15

190,068

8− 14− 5− 3− 4− 1− 0 13
13− 12− 9− 10− 11− 3− 4− 1 17
13− 9− 7− 5− 3− 4− 1− 2 12
0− 1− 2− 5− 7− 14− 6− 9 15

8− 14− 6− 9− 10− 11− 3− 5 18 (90)
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Table 4: Continued.

Bus line Routes Fleet size (Co) Passenger cost (Cp)

7

13− 9− 12− 10− 11− 3− 1− 0 14

189,697

9− 6− 14− 5− 2− 1− 0 9
8− 14− 6− 9− 10− 11− 3− 5 18
8− 14− 5− 2− 1− 4− 3 12
2− 1− 3− 5− 7− 9− 12 8

9− 6− 14− 5− 2− 1− 4− 3 10
0− 1− 2− 5− 7− 9− 6 13 (84)

8

6− 14− 7− 5− 3− 4− 1− 0 12

184,841

7− 5− 3− 11 6
0− 1− 2− 5− 7− 9− 13− 12 14
6− 14− 5− 2− 1− 4− 3 7

13− 9− 12− 10− 11− 3− 5 22
12− 9− 7− 5− 3− 4− 1 6
8− 14− 7− 5− 3− 1− 0 5

8− 14− 6− 9− 10− 11− 3− 5 17 (89)

12

6− 14− 7− 5− 3− 4− 1− 0 7

184,532

0− 1− 4− 3− 11− 10− 12− 13 10
12− 13− 9− 10− 11− 3− 5 7
10− 11− 3− 4− 1− 2 5
0− 1− 2− 5− 7− 14− 6 5

0− 1− 4− 3− 11− 10− 12− 9 8
0− 1− 4− 3 2

12− 13− 9− 10− 11− 3− 1− 4 9
12− 10− 11− 3− 4− 1− 0 8
14− 5− 7− 9− 13− 12 6

2− 5− 14− 7− 9− 10− 11 7
8− 14− 6− 9− 13− 12− 10− 11 12 (86)

Table 5: Best bus lines constructed by the proposed hybrid PSO-DE.

Bus line Routes Fleet size (Co) Passenger cost (Cp)

4

9 − 7− 5− 2− 1− 4− 3− 11 27

204,59210− 9− 7− 5− 3− 4− 1− 0 26
8− 14− 7− 9− 13− 12− 10− 11 28
0− 1− 2− 5− 7− 9− 6− 14 15 (96)

6

0− 1− 2− 5− 7− 9− 13− 12 17

191,720

8− 14− 6− 9− 13− 12 15
7− 5− 3− 11− 10− 9− 13− 12 13
2− 1− 4− 3− 5− 7− 9− 13 19
0− 1− 2− 5− 7− 14− 6 12

9− 13− 12− 10− 11− 3− 1− 0 18 (94)

7

0− 1− 3− 5− 7− 9− 10− 11 13

192,003

10− 9− 7− 5− 3− 4− 1 10
0− 1− 4− 3− 5− 2 8

8− 14− 6− 9− 13− 12− 10− 11 16
0− 1− 2− 5− 14− 6− 9− 13 11
13− 9− 10− 11− 3− 5− 14− 8 15

0− 1− 2− 5− 7− 14− 8 12 (85)

8

2− 5− 7− 14− 8 7

193,557

13− 9− 12− 10− 11− 3− 1− 0 14
5− 7− 9− 13− 12 9

6− 9− 7− 5− 2− 1− 4− 3 10
0− 1− 2− 5− 7− 14− 6− 9 12
8− 14− 5− 7− 9− 13− 12 11

13− 12− 9− 6− 14− 7− 5− 3 18
7− 5− 14− 6− 9− 10− 11 13 (94)
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Table 5: Continued.

Bus line Routes Fleet size (Co) Passenger cost (Cp)

12

14− 6− 9− 13− 12− 10− 11− 3 11

191,148

1− 2− 5− 7− 9− 13− 12 8
12− 13− 9− 10 4

12− 10− 9− 6− 14− 8 6
12− 10− 9− 6− 14− 7− 5− 3 10

13− 12− 9− 7− 5− 3 5
8− 14− 7− 5− 3− 11− 10− 12 9

8− 14− 5− 3− 11− 10 6
10− 9− 6− 14− 5− 2− 1− 0 8
12− 13− 9− 10− 11− 3− 4− 1 10
9− 12− 10− 11− 3− 4− 1− 0 8
10− 9− 7− 5− 3− 4− 1 7 (92)

Table 6: Comparative results of hybrid DE-PSO for Mandl’s Swiss network.

Bus line Performance metric 1 2 3 4 5 6 7 8 9

4

d0 69.94 n/a n/a n/a 80.48 95.05 93.77 93.38 95.44
d1 29.93 n/a n/a n/a 12.84 4.95 6.23 6.62 4.56
dun 0.13 n/a n/a n/a 6.68 0.00 0.00 0.00 0.00
Co 99 n/a n/a n/a 70 94 99 95 92
Cp 219,094 n/a n/a n/a 180,453 186,368 206,770 199,880 198,177
Tinv 177,400 n/a n/a n/a 149,904 161,371 n/a 170,632 169,842
Twt 18,194 n/a n/a n/a 20,549 21,147 n/a 24,098 24,125
Ttr 23,500 n/a n/a n/a 10,000 3,850 n/a 5,150 4,210

6

d0 n/a 78.61 82.59 n/a 87.73 94.34 98.52 96.92 97.68
d1 n/a 21.39 17.41 n/a 12.27 5.66 1.48 3.08 2.32
dun n/a 0.00 0.00 n/a 0.00 0.00 0.00 0.00 0.00
Co n/a 89 84 n/a 75 99 89 92 90
Cp n/a 205,656 203,936 n/a 199,908 185,224 201,270 191,035 190,068
Tinv n/a 168,076 170,328 n/a 163,020 159,059 n/a 162,080 162,835
Twt n/a 20,930 20,058 n/a 27,338 21,766 n/a 24,705 23,103
Ttr n/a 16,650 13,550 n/a 9,550 4,400 n/a 4,250 4,130

7

d0 n/a 80.99 n/a n/a 90.62 94.41 99.68 96.34 97.82
d1 n/a 19.01 n/a n/a 9.38 5.59 0.32 3.66 2.18
dun n/a 0.00 n/a n/a 0.00 0.00 0.00 0.00 0.00
Co n/a 82 n/a n/a 78 99 82 90 84
Cp n/a 217,954 n/a n/a 195,476 185,406 209,455 188,337 189,697
Tinv n/a 180,350 n/a n/a 158,100 157,899 n/a 158,650 157,800
Twt n/a 22,804 n/a n/a 30,076 23,157 n/a 25,587 27,847
Ttr n/a 14,800 n/a n/a 7,300 4,350 n/a 4,100 4,050

8

d0 n/a 79.96 87.73 n/a 91.91 96.40 98.39 97.17 97.56
d1 n/a 20.04 12.27 n/a 8.09 3.60 1.61 2.83 2.44
dun n/a 0.00 0.00 n/a 0.00 0.00 0.00 0.00 0.00
Co n/a 78 68 n/a 78 99 77 94 89
Cp n/a 210,632 204,028 n/a 197,516 185,590 206,910 188,519 184,841
Tinv n/a 169,101 168,023 n/a 157,950 158,064 n/a 159,832 158,503
Twt n/a 25,931 26,455 n/a 33,266 24,726 n/a 25,487 23,718
Ttr n/a 15,600 9,550 n/a 6,300 2,800 n/a 3,200 2,620

12

d0 n/a n/a n/a 83.66 95.50 95.38 n/a 97.02 97.56
d1 n/a n/a n/a 15.21 4.50 4.62 n/a 2.98 2.44
dun n/a n/a n/a 1.13 0.00 0.00 n/a 0.00 0.00
Co n/a n/a n/a 87 85 98 n/a 88 86
Cp n/a n/a n/a 202,254 200,624 187,919 n/a 196,774 184,532
Tinv n/a n/a n/a 167,198 156,769 160,452 n/a 167,754 158,685
Twt n/a n/a n/a 24,591 40,355 23,867 n/a 25,670 22,632
Ttr n/a n/a n/a 10,465 3,500 3,600 n/a 3,350 3,215

Note: n/a�not available. 1. Mandl [42]; 2. Baaj and Mahmassani [3]; 3. Shih and Mahmassani [43] [uncoordinated]; 4. Reference [44]; 5. Nikolić and
Teodorović [20] [Greedy]; 6. Nikolić and Teodorović [20] [BCO]; 7. Zhao et al. [21]; 8. Buba and Lee [23]; 9. Proposed DE-PSO.
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Table 7: -e Pareto front obtained by the hybrid DE-PSO.

Solution Bus
lines

Passenger
cost (Cp)

Passenger
cost above
lower bound

Fleet
size
(Co)

d0 d1 dun

Maximum
route

headway
(min)

Average
route

headway
(min)

Average in-
vehicle travel
time (min)

Average
passenger
cost (min)

Average
waiting

time (min)

1 8 184,841 29,051 89 96.59 3.41 0.00 11.34 6.300 10.18 11.87 1.26
2 10 190,003 34,213 82 97.17 2.83 0.00 12.30 8.488 10.24 12.20 1.31
3 6 190,732 34,942 80 95.12 4.88 0.00 8.00 5.915 10.48 12.25 1.35
4 7 192,581 36,791 79 95.18 4.82 0.00 10.99 7.136 10.62 12.37 1.39
5 9 193,115 37,325 78 98.20 1.20 0.00 10.50 6.812 10.79 11.40 1.21
6 6 193,456 37,666 76 94.99 5.01 0.00 7.71 6.003 10.80 12.43 1.43
7 7 194,898 39,108 75 97.75 2.25 0.00 12.00 7.493 10.84 12.52 1.44
8 7 195,359 39,569 73 95.05 4.95 0.00 12.32 8.830 10.88 12.55 1.45
9 6 196,365 40,575 71 93.38 6.62 0.00 8.00 6.177 10.97 12.61 1.47
10 5 198,027 42,237 68 92.94 7.06 0.00 8.00 5.724 11.02 12.72 1.48
11 5 200,940 45,150 67 94.99 5.01 0.00 8.00 6.160 11.05 12.91 1.49

Table 8: Node sequence of routes found in pareto solutions.

Bus line Routes Fleet size (Co) Passenger cost (Cp)

8

6− 14− 7− 5− 3− 4− 1− 0 12

184,841

7− 5− 3− 11 6
0− 1− 2− 5− 7− 9− 13− 12 14

6− 14− 5− 2− 1− 4 7
13− 9− 12− 10− 11− 3− 5 22
12− 9− 7− 5− 3− 4− 1 6
8− 14− 7− 5− 3− 1− 0 5

8− 14− 6− 9− 10− 11− 3− 5 17 (89)

10

0− 1− 4− 3− 11− 10 16

190,003

7− 9− 6− 14− 5− 2− 1− 0 8
4− 3− 1− 2− 5− 7− 14− 8 5

8− 14− 7− 9− 12− 10− 11− 3 10
13− 9− 12− 10− 11− 3 7
4− 1− 3− 11− 10− 9− 12 14
2− 1− 3− 5− 7− 9− 10 4

0− 1− 2− 5− 7− 9− 10− 12 7
12− 9− 6 6

9− 13− 12− 10 5 (82)

6

13− 12− 9− 7− 14− 8 9

190,732

11− 10− 9− 7− 5− 2− 1− 0 21
0− 1− 4− 3− 11− 10− 12− 13 18
10− 11− 3− 1− 2− 5− 14− 6 10
3− 11− 10− 12− 13− 9− 6 15
12− 13− 9− 7− 5− 3− 4 7 (80)

7

0− 1− 2− 5− 7− 9− 12− 13 16

192,581

9− 13− 12− 10− 11− 3− 4 20
8− 14− 5− 2− 1− 0 8

0− 1− 2− 5− 3− 11− 10− 9 13
3− 4− 1− 2− 5− 14− 6− 9 9

4− 3− 5− 7− 9− 13 7
8− 14− 5− 7− 9− 12− 13 6 (79)

9

1− 2− 5− 7− 9− 12− 13 7

193,115

0− 1− 3− 5− 7− 9− 12− 13 9
5− 7− 14− 6− 9− 12− 10− 11 11
0− 1− 4− 3− 11− 10− 9− 6 10
4− 3− 11− 10− 9− 6− 14− 8 12
13− 12− 9− 10− 11− 3− 5− 2 13

0− 1− 4− 3− 5 4
8− 14− 5− 2− 1− 3 6
0− 1− 2− 5− 14− 6 6 (78)
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For the Mandl’s Swiss network, the lower bound on the in-
vehicle travel time is 155,790 minutes [17]. -e lower bound
represents the theoretical minimum possible passenger time if
passengers incurred no waiting time or transfer penalties and
were able to take a vehicle that followed the shortest path from
their origin to their destination. If operator cost is not an issue
and there is no maximum frequency constraint, then it is
possible to achieve a total generalized passenger cost that is
arbitrarily close to this limit. Table 7 (column 4) provides the
additional passenger time above the theoretical minimum for
the hybridDE-PSO. In this table, the hybridDE-PSO produced
solutions that are 18.65% to 28.98% closer to the theoretical
minimum passenger time.

-e Pareto frontier for the various solutions achieved
from Table 8 with passenger cost on the vertical axis and the
number of buses required on the horizontal axis is depicted
in Figure 6. Efficient frontier solutions are highlighted in
dark crosses, whereas past literature results are author-la-
beled. It can be observed that the passenger cost for the best

compromising solutions is lower than the previously pub-
lished results, evidencing the high quality of the solutions
obtained by the proposed hybrid DE-PSO algorithm.

5.2.2. Rivera City Network. To demonstrate the scalability of
the proposed hybrid DE-PSO, we applied the proposed al-
gorithm to solve a real-size public transportation network of
Rivera City (see Figure 7). -is case study belongs to a
medium-size city of 65,000 citizens in Northern Uruguay. It
comprises 84 nodes, 143 arcs, and 378 OD pairs. Because we
do not have the optimal number of transit routes for the
network under study, therefore, we considered the minimum
number of routes is 40 and the maximum number of routes is
60, whereas the minimum and the maximum numbers of
nodes per route are 10 and 30 base on preliminary run. In
addition, all of the parameters in Table 1 are utilized in this
methodology, except the maximum allowable fleet size, which
to the best of our knowledge is not available.

Table 8: Continued.

Bus line Routes Fleet size (Co) Passenger cost (Cp)

6

0− 1− 2− 5− 7− 9− 12 14

193,456

8− 14− 6− 9− 7− 5− 3− 1 15
3− 4− 1− 2− 5− 14− 6− 9 7
0− 1− 3− 11− 10− 12− 9 6

12− 13− 9− 10− 11− 3− 4− 1 19
8− 14− 5− 3− 11− 10− 12− 9 15 (76)

7

12− 13− 9− 10− 11− 3− 5− 2 13

194,898

3− 4− 1− 2− 5 7
5− 7− 9− 12− 10− 11− 3− 4 18
0− 1− 4− 3− 5− 7− 9− 6 10
0− 1− 2− 5− 7− 9− 12− 10 7
0− 1− 2− 5− 14− 6− 9− 10 5

11− 10− 12− 13− 9− 6− 14− 8 15 (75)

7

6− 9− 7− 5− 2− 1− 0 5

195,359

0− 1− 3− 11− 10− 12− 9− 13 23
2− 5− 3− 11 6

0− 1− 2− 5− 14− 6− 9− 12 6
1− 3− 11− 10− 9− 7− 5 7

0− 1− 3− 11− 10− 9− 7− 5 20
8− 14− 6− 9− 7− 5− 3− 4 6 (73)

6

0− 1− 4− 3− 5− 2 8

196,365

3− 11− 10− 12− 9− 6− 14− 8 22
8− 14− 7− 5− 3− 11− 10− 9 14
13− 9− 6− 14− 5− 2− 1− 3 9
12− 9− 7− 5− 2− 1− 3 7

12− 10− 9− 7− 5− 2− 1− 0 11 (71)

5

8− 14− 6− 9− 7− 5− 3− 4 15

198,027
0− 1− 2− 5− 7− 9− 10− 11 10
13− 12− 9− 7− 5− 3− 1− 0 23

8− 14− 5− 3− 1− 0 11
13− 12− 10− 11− 3− 5− 14− 6 9 (68)

5

13− 9− 7− 5− 3− 11 15

200,940
8− 14− 5− 7− 9− 10− 11 9
10− 9− 6− 14− 5− 2− 1− 4 7
0− 1− 2− 5− 7− 9− 13− 12 14
0− 1− 4− 3− 11− 10− 9− 12 22 (67)
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-e hybrid approach produced solutions with maximum
and minimum fleet size (operator cost) of 126 and 86 buses,
respectively (see Table 9). -is implies a variation of 32% in
the cost between the two extreme solutions; however, it leads

to an increase in the passenger cost by 34%. In Figure 8, the
inherent conflict between the network bus fleet size and
passenger cost that makes it difficult to find a unique optimal
solution is depicted. -e different trade-offs between the

Figure 7: Rivera city network.

Table 9: -e Pareto front obtained by the hybrid DE-PSO for the Rivera city network.

Solution Bus
lines

Passenger cost
(Cp)

Fleet size
(Co)

d0 d1 dun
Maximum route
headway (min)

Average route
headway (min)

Average waiting
time (min)

1 46 211.56 86 80.61 19.39 0.00 8.20 6.31 1.94
2 47 199.64 88 79.52 20.48 0.00 7.32 6.26 1.81
3 49 183.73 91 85.24 14.76 0.00 6.45 5.09 1.62
4 50 178.42 93 82.45 17.55 0.00 6.21 4.92 1.46
5 51 165.31 94 82.25 17.75 0.00 5.26 4.02 1.53
6 53 161.43 96 85.35 14.65 0.00 4.12 3.23 1.47
7 54 159.74 98 91.25 8.75 0.00 2.61 1.86 1.50
8 55 148.62 105 93.67 6.33 0.00 3.33 1.60 1.51
9 58 144.25 110 93.73 6.27 0.00 2.18 1.57 1.50
10 60 138.86 126 93.86 6.14 0.00 2.05 1.21 1.50

Proposed DE-PSO
Mandl [42]
Baaj and Mahmassani
[3]
Shih and Mahmassani
[43]

Nikolic’ and Teodorovic’
[20]
Zhao et al [21]
Buba and Lee [22]
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Figure 6: Comparison of solutions from hybrid DE-PSO with solutions from the literature.
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competing objectives are established and it is left for the
decision-maker to attain a biased solution either to the
passenger or the operator. It is important to note that it is
difficult (impossible) to minimize passenger and operator
costs at the same time. Furthermore, the overall passenger
travel demand is satisfied with at most one transfer. -e
maximum and average route headway lie between (2.05,
8.20) and (1.21, 6.31) minutes, respectively. -e proposed
hybrid DE-PSO solution produced more than one route
choice for most OD pairs, as implied by the low values for
average waiting times, which are significantly less than
average routes headways.

6. Conclusions and Future Research

In this article, the UTNDP is tackled through a hybrid DE-
PSO algorithm taking into consideration the interest of both
passenger and operator. -e problem is modeled as a
multiobjective optimization problem with the aim to si-
multaneously optimize the route configuration and the
associated service frequencies that produce a minimum total
passengers’ and operators’ costs while satisfying a given set
of constraints. -e proposed hybrid DE-PSO algorithm is
designed to adapt the strength of both approaches to achieve
better quality solutions. Experimental studies are conducted
to evaluate the relative efficiency of hybrid DE-PSO and
hybrid PSO-DE where both algorithms are capable of de-
termining efficient solutions. -e hybrid DE-PSO algo-
rithms adopted for further comparative studies as it obtained
better quality solutions than the hybrid PSO-DE. In addi-
tion, comparisons are made between the proposed hybrid
DE-PSO algorithm with other approaches from the litera-
ture using the benchmark Mandl’s Swiss network. Fur-
thermore, the proposed hybrid DE-PSO algorithm is applied
to a public transport system of the Rivera City network. -e
computational results of the proposed hybrid DE-PSO al-
gorithm improve over the results obtained from the previous
studies. As a multiobjective optimization problem, we have
shown that the proposed hybrid DE-PSO produces a diverse
set of nondominated solutions. -e results also dominated
solutions from previous studies in the literature. -e ap-
plication of the proposed hybrid DE-PSO to larger and more

realistic problem instances with heterogeneous buses will be
the direction of future research.

Data Availability

-e Mandl’s Swiss network datasets supporting this study
are from previously reported studies and datasets, which
have been cited. -e processed data are publicly available at
https://users.cs.cf.ac.uk/C.L.Mumford/Research%20Topics/
UTRP/Outline.html. -e Rivera City network and the travel
demandmatrices can be can downloaded via this link: http://
www.fing.edu.uy/∼mauttone/tndp.
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