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Structural damage identification (SDI) plays a major role in structural health monitoring (SHM), which has been demanded by
researchers to better face the challenges in the aging civil engineering, such as bridge structure and building structure. Many
methods have been developed for the application to the real structures, but there are still some difficulties which result in
inaccurate, even false damage identification. As a variant of particle swarm optimization (PSO), bare bones particle swarm
optimization (BBPSO) is a simple but very powerful optimization tool. However, it is easy to be trapped in the local optimal state
like other PSO algorithms, especially in SDI problems. In order to improve its performance in SDI problems, this paper aims to
propose a novel optimization algorithm which is named as bare bones particle swarm optimization with double jump (BBPSODJ)
for finding a new solution to the SDI problem in SHM field. To begin with, after the introduction of sparse recovery theory, the
mathematical model for SDI is established where an objective function based on l1 regularization is constructed. Secondly,
according to the basic theory of the BBPSODJ, a double jump strategy based on the BBPSO is designed to enhance the dynamic of
particles, and it is able to make a large change in particle searching scopes, which can improve the search behaviour of BBPSO and
prevent the algorithm from being trapped into local minimum state. 'irdly, three optimization test functions and a numerical
example are utilized to validate the optimization performance of BBPSO, traditional PSO, and genetic algorithm (GA) com-
paratively; it is obvious that the proposed BBPSODJ shows great self-adapting property and good performance in the optimization
process by introducing the novel double jump strategy. Finally, in the laboratory, an experimental example of steel frame with 4
damage cases is implemented to further assess the damage identification capability of the BBPSODJ with l1 regularization. From
the damage identification results, it can be seen that the proposed BBPSODJ algorithm, which is efficient and robust, has great
potential in the field of SHM.

1. Introduction

Structural health monitoring (SHM) has received much
attention in recent years due to its importance in trans-
portation service and building structure safety, which offers
important economic benefits to human society. As a pow-
erful tool, structural damage identification (SDI) plays a
major role in SHM, which is widely used in fields of civil
engineering. Generally, the approach of SDI can be divided
into two types, one is data-based and the other is model-
based. In the group of the data-based method, for instance,

artificial neural networks (ANNs) [1–3], support vector
machines (SVMs) [4–6], deep learning (DL) [7–9], and
related derivative methods are common tricks. However, the
application of the aforementioned method is based on the
need for providing a large amount of experimental data, but
there is a widely recognized obstacle of the data-based
approach—feature extraction has been found unstable under
inaccurate data conditions [10–13].

'e model-based method, such as model updating
technology [14], is a conventional way to solve the problem
of structural damage identification and location [15]. Even
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though this approach is limited by the inaccurate finite
element model of the structure, it can obtain accurate
damage identification results in location and extent, which
have been proved by numerous experiments and research
studies [16–18].

Compared to the data-based method, damage identifi-
cation has been transformed into a mathematical problem
solving constrained optimization; therefore, the structural
damage identification has become an inverse problem which
needs a robust optimization approach to deal with. A key
technology named swarm intelligence (SI) optimization
algorithms is introduced to overcome the drawbacks of the
traditional optimization methods and considered to handle
complex structural damage identification problems. For
instance, artificial bee colony (ABC) algorithm [19], particle
swarm optimization (PSO) [20], firefly algorithm (FA) [21],
and artificial fish swarm algorithm (AFSA) [22].

As for the traditional PSO algorithm, there are some
researchers who are trying to improve and overcome its
drawbacks. Hu [23] designed a mutation operator similar
to PSO iteration to provide individuals a direction in the
evolutionary process, which can produce potential good
individuals. He et al. [24] proposed a neighbourhood-
based mutation operator strategy which is introduced into
PSO to achieve the purpose of enhancing population
diversity.

In this study, a novel SI method named bare bones
particle swarm optimization with double jump (BBPSODJ)
is originally applied to SDI. Bare bones particle swarm
optimization (BBPSO) was proposed by Kennedy and
Eberhart in 2003 [25], which is famous for its merits, such as
parameter-free and easy applying [26]. Compared to the
traditional PSO, BBPSO provides a new approach to solve
multimodal optimization problems. However, its basic
forms are of little value, and it is short of efficiency and
robustness. Hence, some studies concentrate on modifying
basic BBPSO. To enhance the global search ability of BBPSO,
Guo and Sato proposed a dynamic reconstruction strategy
that can select some elite particles to reconstruct the particle
swarm [27]. 'en, fission and fusion can work together for
searching the global optimal value. [28].

On the other hand, there are some researchers who
focused on keeping swarm diversity and proposed some
measures to enhance the diversity of the swarm, such as
separate iteration [26] and dynamic local search strategies
[29]. Liu et al. [30] utilized a novel disruption strategy,
originating from astrophysics, to shift the abilities between
exploration and exploitation during the search process, and
an opposition-based learning (OBL) modified strategy was
further investigated [31].

'ere remains a need for an efficient method that can
solve the problem of premature convergence. Krohling and
Mendel considered to introduce a jump strategy to BBPSO
when no fitness improvement is observed [32], and some
simulations show that large-scale global optimization can be
solved by BBPSOwith Gaussian jump [33]. Qiu attempted to
help the stagnated particles make a large change in their
searching trajectory by designing an adaptive chaotic jump
strategy [34]. Meanwhile, distribution-guided jump

operation [35] and componentwise jumping mechanism
[36] can also make good effect.

In addition, in most SDI problems, the damage of the
structure is always sparse; it means that there are only several
damaged elements. 'e vector of damage is a sparse vector,
and the equation is underdetermined which cannot obtain a
unique solution. Some researchers have recently introduced
a technique named sparse recovery to handle the problems
mentioned above. Zhou et al. [37] used the first few fre-
quency data of a cantilever beam to verify the sparse damage
situation, and the antinoise effect was reflected. 'en, the
mode shape was introduced to enhance the accuracy of
damage location [38]; at the same time, the method of
selecting a regularization parameter was proposed [39]. It
seems that the sparse recovery theory has a good effect on
damage detection. Furthermore, some comparative studies
on damage identification with Tikhonov regularization and
sparse regularization were stated by Zhang and Xu [40], and
the sparse regularization approach was confirmed to be
better than Tikhonov regularization.

To overcome the drawback of basic BBPSO, such as local
optimal, slow convergence, and lower computing efficiency,
a novel optimization algorithm, which is named bare bones
particle swarm optimization with double jump (BBPSODJ),
is first proposed here; a double jump strategy is incorporated
to solve the problem of local optima state in the process of
iteration and keep the diversity of particles. Firstly, an ob-
jective function based on l1 regularization is constructed
with BBPSODJ to detect damage. 'ree optimization test
functions are provided to analyse the optimization perfor-
mance of BBPSODJ, BBPSO, and PSO. Secondly, the
damage identification problem of a numerical example is
solved by BBPSODJ. 'e outcomes illustrate that the pro-
posed algorithm is better at computational accuracy and
convergence efficiency than basic BBPSO, traditional PSO,
and genetic algorithm (GA). BBPSODJ combined with l1
regularization objective function has good noise robustness;
it is more suitable for damage identification problems. Fi-
nally, the method proposed is adopted to identify the
damage of an experimental example of 3-story steel frame
structure, whose performances show that BBPSODJ can not
only determine the location of damage but also quantify the
severity.

2. Sparse Damage Identification Model

2.1. Sparse Recovery #eory. Recently, the sparse recovery
theory is proposed to recover an original signal from a
polluted signal. In sparse recovery theory, a signal is con-
sidered as a linear system of equations:

ym×1 � Am×nxn×1, (1)

where ym×1 is the measurement signal with the length of m;
xn×1 is a sparse vector with the length of n; and Am×n is a
sensing matrix of size m × n.

'ere are infinite solutions since the equation is
underdetermined (m< n), however, the sparsest one is
mostly desired.'e solution of equation (1), which is convex
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and much easier to handle, can be obtained by solving the
optimization as follows:

min ‖x‖1

s.t. y � Ax,
(2)

where ‖x‖1 is the l1-norm of the sparse vector x. In fact, the
signal is always corrupted with environmental noise; in that
situation, equation (2) can be written as

min ‖x‖1

s.t. ‖Ax − y‖2 ≤ ε,
(3)

where ε denotes environmental noise.

2.2. Description of Structural Damage. 'e damage of
structures can be quantified through a scalar variable θ,
whose values are between 0 for the undamaged element of
structure and 1 for a damaged element. 'e damage can be
described by a decrease in the stiffness of the element:

k
d
i � 1 − θi( 􏼁k

u
i , (4)

where kd
i and ku

i are the damaged and undamaged local
stiffness matrices of the i-th element in the finite element
method, respectively, and θi is the i-th element stiffness
reduction factor (SRF).

In the finite element method, the global stiffness matrix
of a structure is acquired by the transformation and as-
semblage of the element stiffness matrices. 'e damaged
local stiffness matrix kd

i is transformed into Kd
i , which is the

damaged element stiffness matrix in the global coordinate
system by the use of the transformation matrix T:

K
d
i � T

T
k

d
i T. (5)

'e damaged element stiffness matrix in the global
coordinate system Kd

i is then expanded into (N×N) matrix
denoted by K

d

i , whereN is the number of degrees of freedom
(DOFs) of the structure.'e damaged global stiffness matrix
Kd is acquired by summation of K

d

i for all elements:

Kd � 􏽘
nele

e�1
K

d

i , (6)

where nele is the total number of elements in the structure.

2.3. l1 RegularizationObjective Function. In structural health
monitoring (SHM), structural dynamic characteristics, such
as natural frequencies and mode shapes, are widely utilized
to detect structural damage. But, the structural dynamic
characteristics obtained by experimental vibration test are
always polluted by environmental noise. Moreover, the
damage vector is a sparse vector, so the sparse recovery
theory can be introduced to damage identification.

According to equation (3), the structural damage vector
can be obtained by solving the equation as follows:

min ‖θ‖1

s.t. ‖Sθ − Δλ‖2 ≤ ε,
(7)

where S is a sensitivity matrix of dynamic characteristics
with respect to element stiffness reduction factor, which can
be calculated by differential or partial differential method
and Δλ � λe − λa in which λe and λa are experimental and
analytical dynamic eigenvalues, respectively.

Equation (7) can be further written as [37]
min ‖θ‖1

s.t. λ(θ) − λe
‖ ‖2 ≤ ε,

(8)

where λ(θ) � Sθ + λa. 'us, the damage identification
problem is transformed to solving a l1-norm minimum θ
problem, and its goal is to find the best solution that narrows
the discrepancy between experimental and analytical dy-
namic characteristics. 'erefore, equation (8) is equivalent
to the following l1 regularization problem [37]:

obj � λ(θ) − λe
����

����
2
2 + β‖θ‖1, (9)

where β> 0 is the regularization coefficient, which can be
obtained by the L-curve approach [41].

As for specific damage identification problem, the nat-
ural frequencies and mode shapes are adopted, and
according to equation (9), the l1 regularization objective
function for damage identification is obtained [38]:

obj �
1
m

􏽘

m

i�1

fa
i (θ) − fe

i

fe
i

􏼢 􏼣

2

+
1

m × np
􏽘

m

i�1
􏽘

np

j�1
ϕa

ij(θ) − ϕe
ij􏽨 􏽩

2
+
β
n

‖θ‖1,

(10)

where fa
i and fe

i are the i-th analytical and experimental
natural frequencies, respectively; ϕa

ij and ϕe
ij are the i-th

analytical and experimental mode shapes at j-th point; m is
the number of modes; and np is the number of measurement
points. Meanwhile, the mode shape is processed by modal
scaling factor as defined as follows [38, 42]:

MSF 􏽥ϕa

i ,ϕe
i􏼐 􏼑 �

􏽥ϕa

i􏼐 􏼑
T
ϕe

i( 􏼁

􏽥ϕa

i􏼐 􏼑
T 􏽥ϕa

i􏼐 􏼑
,

ϕa
i � 􏽥ϕa

i × MSF,

(11)

where 􏽥ϕa

i is the i-th analytical mode shape before
adjustment.

3. Bare Bones Particle Swarm
Optimization with Double Jump

3.1. PSO and BBPSO. Particle swarm optimization (PSO),
which was developed by Eberhart and Kennedy in 1995 [43],
is a group intelligent optimization algorithm. It gives a
simple and efficient route to solve the optimization problem,
especially for structural damage identification.

In the standard PSO algorithm, there are some particles
that are generated randomly in the D-dimensional search
space. Position and velocity, which are properties of the
particle, will change when the particle approaches the global
optimal value. Mathematically, the velocity V of the i-th
particle is updated according to the following formula:
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V
t�t+1
i � ωV

t
i + c1α1 · gbest − P

t�t+1
i􏼐 􏼑 + c2α2 · pbest − P

t�t+1
i􏼐 􏼑,

(12)

where i is the i-th particle; t is the number of current it-
eration; c1 � c2 � 2 are the learning factors [44]; α1 and α2 are
random constants in the range of [0, 1], respectively; and
gbest and pbest are global optimal particle and local best
position, respectively. 'e inertia weight ω can be calculated
as [45]

ω � ωmax −
t · ωmax − ωmin( 􏼁

Niteration
, (13)

where ωmax and ωmin denote the maximum and minimum
inertia weight, respectively, and Niteration is cumulative it-
eration number. And the iteration flowchart of PSO is shown
in Figure 1.

'e position P of the i-th particle is

P
t�t+1
i � P

t
i + V

t�t+1
i . (14)

Compared to the traditional PSO, BBPSO provides a new
approach to solve the optimization problems. In the BBPSO,
the velocity updating formula is replaced. Meanwhile, a
different updating mechanism is raised, which uses a
Gaussian distribution with the information of the best local
and global positions to update the particle’s position. 'e
updated formula for particle’s position in the BBPSO is given
as [25]

P
t�t+1
i � N(μ, σ), (15)

where N(μ, σ) is a Gaussian random number with mean
value, μ � (pbest + gbest/2), and σ � |gbest − pbest|. And
the flowchart of BBPSO and PSO is shown in Figure 1.

3.2. Improved BBPSO Algorithm with Double Jump Strategy.
Despite some endeavours in the improvement of PSO,
unfortunately, BBPSO still converges around local optima
when optimizing functions with many local optima in
high dimensional search space, and there remain nu-
merous challenges that limit its practical application. To
obtain a global optimal solution accurately with fast
convergence speed, a novel strategy named double jump
strategy is implemented to improve basic BBPSO. 'e
main idea of double jump strategy could be summarized
up as follows:

(1) To assess the variation of fitness, if the fitness of the
current iteration has improved compared to the
former iteration, the particle’s position is updated by
equation (15).

(2) By monitoring the fitness, if there is no fitness im-
provement with the number of iterations, it means
stagnation. 'en, a parameter, named as stagnation
number (SN), is defined to record the number of
each particle in a stagnation state. When SN achieves
a prespecified maximum stagnation number, the
related particle is considered to jump to a new point
[32].

(3) 'e current best particle is defined as a reference
point, the Euclidean distance between the reference
point and others is calculated in turn, and the av-
erage value of the distance is obtained.

(4) For a particle of current iteration which is considered
to jump, if the Euclidean distance between it and the
reference point is smaller than the average distance,
the particle’s position is updated as follows:

P
t�t+1
i � pbest · 1 + η1 · N(0, 1)( 􏼁. (16)

On the contrary, if the distance is bigger than the average
distance, the updating equation is

P
t�t+1
i � pbest · 1 + η2 · N(0, 1)( 􏼁, (17)

where η1 and η2 are the jumping scaling factors; generally
speaking, η1 < η2; N(0, 1) is a random number generated
according to a Gaussian distribution.

'e flowchart of BBPSODJ is shown in Figure 2.
Meanwhile, the pseudocode is given to explain the developed
algorithm, which is shown as follows (Algorithm 1):

'e introduction of double jump strategy can not only
enhance the ability of BBPSO to escape local optimum but
also reduce the blindness of jumping operation, so the global
optimum and fast convergence speed can be ensured.

3.3. Performance Evaluation of the Proposed Algorithms.
In this section, to compare the computing performance of
BBPSODJ, three common algorithms, such as BBPSO, PSO,
and genetic algorithm (GA) [17], are introduced. 'ree test
functions, Ackley, Schwefel, and Schaffer (Figure 3), are
utilized to test the algorithms. 'e parameters of the four
algorithms are listed in Table 1. After running the algorithms
with 200 times iterations for 7 loops, the best and average
solutions are shown as in Table 1. And the iterative curves of
the algorithms are shown in Figure 4.

(1) Ackley:

fAckley(x) � − 20 exp − 0.2

�������

1
10

􏽘

10

i�1
x
2
i

􏽶
􏽴

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

− exp
1
10

􏽘

10

i�1
cos 2πxi( 􏼁⎛⎝ ⎞⎠

+ 20 + exp(1), xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 32.768.

(18)

(2) Schwefel:

fSchwefel(x) � 837.9658 − 􏽘

2

i�1
xi sin

���

xi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱

􏼒 􏼓, − 500≤xi ≤ 500.

(19)

(3) Schaffer:
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fSchaffer(x) � 0.5 +
sin

��������
x2i + x2i+1
√

( ) − 0.5

1 + 0.001 x2i + x2i+1( )[ ]2
,

− 10.0≤xi ≤ 10.0.
(20)

From Table 1 and Figure 4, it can be seen obviously that
the performance of BBPSODJ is better than GA, PSO, and
basic BBPSO at convergence speed and computational ef-
 ciency.�e reasonmay be that double jump strategy is used
to solve the converging problem. And BBPSODJ, the im-
proved version of BBPSO, shows great self-adapting prop-
erty in the optimization process and good performance by
introducing the novel strategy.

4. Damage Identification Using
Numerical Example

A 31-bar truss structure shown in Figure 5, which is de-
veloped by MATLAB, is utilized to test the damage

identi cation e�ects of the three algorithms. �e lengths of
the exterior and interior bar are 1m and 1.41m, respec-
tively, and the cross-sectional area is 0.004m2, Young’s
modulus is E � 200GPa, and the mass density is 7800 kg/
m3. �e total numbers of elements and nodes are 31 and 14,
respectively.

�ree damage cases without environmental noise, single-
bar damage, two-bar damage, and multibar damage, are
introduced. Meanwhile, based on the previous three cases, 5%
random noise is considered to simulate the actual mea-
surement and to test the antinoise capability of the algorithms.

�e six damage cases are shown as follows:

(1) Case 1: sti�ness loss by 15% in element #12
(2) Case 2: sti�ness loss by 10% in element #5 and 15% in

element #12
(3) Case 3: sti�ness loss by 10% in element #5, 15% in

element #12, and 20% in element #25
(4) Case 4: sti�ness loss by 10% in element #5 (5%

random noise)
(5) Case 5: sti�ness loss by 10% in element #5 and 15% in

element #12 (5% random noise)

Determine number of particle
population N and max 

iteration number Niteration

Iteration times >
Niteration

Output
pbest and gbest 

Fitness (Pi
t=t+1)

BBPSOPSO

Yes

Yes

NoInitialize particle velocity Vi
t=0

Initialize particle position Pi
t=0

Fitness (Pi
t=0)

gbest = min (fitness (Pi
t=0))

pbest = Pi
t=0

gbest = min (fitness
(Pi

t=t+1))
pbest = Pi

t=t+1

pbest > min
(fitness (Pi

t=t+1))?

gbest = min (fitness (Pi
t=0))

pbest = Pi
t=0

No

Updating the position
Pi

t=t+1 = Pi
t=0 + Vi

t=t+1

Updating the position
Pi

t=t+1 = N (μ, σ)

Updating the velocity 
Vi

t=t+1 =
Vi

t=0 + c1α1 ‧ (gbest – Pi
t=0)

+ c2α2 ‧ (pbest – Pi
t=0)

Figure 1: Flowchart of BBPSO and PSO.
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(6) Case 6: sti�ness loss by 10% in element #5, 15% in
element #12, and 20% in element #25 (5% random
noise)

�e random noise can be simulated by the equations
shown as follows [46]:

ϕkj � ϕj(1 + η rand), (21)

where ϕj and ϕkj are the j-th mode shape without noise and
polluted with noise; η is the noise level; and rand is a random
number in the range of [− 1, 1].

SN > SNmax?

Distance of i-th 
particle 

<MeanDistance?

Fitness (Pi
t=t+1)

Yes

No

No

Yes

Output
pbest and gbest

Iteration times
>Niteration?

Initialize particle position Pi
t=0 

Stagnation number of particle SN

Yes

No

Yes

No

Determine number of particle N
Max iteration number Niteration
Max stagnation number SNmax

Jumping scaling factor η1 and η2

Fitness (Pi
t=0)

gbest = min (fitness (Pi
t=0))

pbest = Pi
t=0

gbest = min (fitness (Pi
t=t+1))

pbest = Pi
t=t+1

SN = 0

gbest = min (fitness (Pi
t=0))

pbest = Pi
t=0

SN = SN + 1

pbest > min
(fitness (Pi

t=t+1))?

Distance = Norm (pbest – gbest)
MeanDistance = average (distance) 

Updating the position
Pi

t=t+1 = N (μ, σ)

Updating the position
Pi

t=t+1 = pbest ‧ (1 + η2 ‧ N (0, 1))

Updating the position
Pi

t=t+1 = pbest ‧ (1 + η1 ‧ N (0, 1))

Figure 2: Flowchart of BBPSODJ.
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Input parameters: number of Particles P, the jumping scaling factors η1 and η2, the maximum stagnation number SNmax, and the
dimension of the objective function d.
// random generation of a population of particles with position xi using uniform probability // distribution, where x and x are the
lower and upper bound respectively,
// And the initial stagnation number for each particle SNi � 0
FOR each particle i

xi � x + (x − x) · U(0, 1)

pbesti � xi

SNi � 0
END FOR
gbest � argminP

i�1 f(xi)􏼈 􏼉 // global best particle
DO
FOR each particle i

Disti � Norm(pbesti − gbest)

MeanDist � average(􏽐
P
i�1Dist)

IF SNi > SNmax
IF Disti <MeanDist THEN

Update the position xi according to (16) // jump with small scaling factor
ELSE

Update the position xi according to (17) // jump with large scaling factor
END IF

ELSE
Update the position xi according to (15)

END IF
IF f(xi)<f(pbesti) THEN // update local best

pbesti � xi

SN � 0 // reset after a jump
ELSE

SN � SN + 1 // no improvement in fitness
END IF
IF f(xi)<f(gbesti) THEN // update the global best

gbest � pbesti

FOR each variable j of particle i // limit position
IF xi,j >x THEN xi,j � pbesti,j

IF xi,j < x THEN xi,j � pbesti,j

END FOR
WHILE termination condition not met
Output: gbest

ALGORITHM 1

15

10

5

0
5

–5

0 0
–5

5

xy

(a)

500

–500

0
0

–500

5

x
y

0

500

1000

1500

2000

(b)

Figure 3: Continued.
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To evaluate the capability of damage identification, the
parameters of three algorithms are the same as Section 3.3.
'e identification results are shown in Figure 6.

As shown in Figures 6(a)∼6(f ), for a series of the particle
swarm algorithms, such as PSO, BBPSO, and BBPSODJ, the
identification results of PSO and BBPSO are not so good in
the three damage cases under no noise conditions and under
noise conditions. As for BBPSODJ, the performance of no
noise conditions is very good, and there are some tiny
identification errors, but the damage location and extent can
be detected accurately. At the same time, however, GA has
the poor capability in quantifying damage. Figure 6

demonstrates the superiority of BBPSODJ in compound
condition than PSO, BBPSO, and GA.

5. Experiment Example

5.1. Vibration Test. To further assess the performance of
BBPSODJ, a 3-story steel frame model, which is shown in
Figure 7, is applied here [47]. 'e frame model was con-
structed using three steel plates of
850mm× 500mm× 25mm and four rectangular columns
with section area of 9.5mm× 75mm. 'e connections be-
tween plates and columns were rigid.'en, the four columns

Table 1: Optimal result of three single-objective functions.

Test function Algorithms Parameters Best optimal value Average optimal value

Ackley

PSO c1 � c2 � 2[44],ωmin � 0.4,ωmax � 0.9[45] 1.479929e − 05 1.453575e − 04Number of particles� 100
BBPSO Number of particles� 100 1.23836e − 09 3.824170e − 06

BBPSODJ SNmax � 5, η1 � 0.01, η2 � 0.05 4.590044e − 10 2.195117e − 09Number of particles� 100

GA
Pcmax � 0.8, Pcmin � 0.6

0.0011292069 0.4989836612Pmmax � 0.05, Pmmin � 0.001
Number of population� 100

Schwefel

PSO c1 � c2 � 2[44],ωmin � 0.4,ωmax � 0.9[45] 2.5455132e − 05 2.5455132e − 05Number of particles� 100
BBPSO Number of particles� 100 2.5455132e − 05 2.5455132e − 05

BBPSODJ SNmax � 5, η1 � 0.01, η2 � 0.05 2.5455132e − 05 2.5455132e − 05Number of particles� 100

GA
Pcmax � 0.8, Pcmin � 0.6

2.5455132e − 05 0.0147555699Pmmax � 0.05, Pmmin � 0.001
Number of population� 100

Schaffer

PSO c1 � c2 � 2[44],ωmin � 0.4,ωmax � 0.9[45] 0 2.899789e − 03Number of particles� 100
BBPSO Number of particles� 100 0 6.939936e − 03

BBPSODJ SNmax � 5, η1 � 0.01, η2 � 0.05 0 8.243193e − 05Number of particles� 100

GA
Pcmax � 0.8, Pcmin � 0.6

0.00245585817 0.00245585817Pmmax � 0.05, Pmmin � 0.001
Number of population� 100

Note. Pc and Pm are the probabilities of crossover and mutation, respectively.
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Figure 3: Single-objective functions: (a) Ackley; (b) Schwefel; (c) Schaffer.
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were welded on a steel base plate of 20mm thickness. 'e
model was anchored into a shaking table by 8 bolts with high
tensile strength. 'e height, length, and width of the frame
model were 1450mm× 850mm× 500mm. In addition,
every floor was placed an additional mass block of 135 kg to
simulate the actual floor weight; after that, the mass of each
floor is 213 kg. More details of the test and model are shown
in the paper [47]. 'e overall, plan, and simplified model of
the steel frame model are shown in Figure 8.

5.2. Model Updating Using BBPSODJ. 'e finite element
model of the steel frame structure is developed based on
MATLAB. However, there are some errors between the

experimental model and the finite element model, and the
finite element model needs to be updated before the process
of SDI.

'e comparison of the experimental and analytical
natural frequencies before and after updating is shown in
Table 2. It is obvious that the errors between the finite el-
ement model and the experimental model are small, and the
capability of model updating of BBPSODJ has been verified.

'e finite element model of the steel frame structure
after updating can be utilized as a benchmark structure for
the subsequent damage identification. 'e structural dam-
age was introduced by the cut of cross section of the column
(Figure 9). Four damage cases were considered, which are
listed in Table 3. For single damage case, case 1 and case 2,
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Figure 4: Iterative curves of test function: (a) Ackley; (b) Schwefel; (c) Schaffer.
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Figure 6: Continued.
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the cutting width of the columns on the first floor was
23.7mm and 37.54mm, respectively; and for multiple
damage case, case 3 based on case 2, the cutting width in the

second floor was 23.7mm. For case 4, the cutting width on
the first floor and the second floor was both 37.54mm. 'e
equivalent damage severity can be calculated as follows [48]:

β �
1

2 cα4 − 4cα3 + 6cα2 − 4cα + c − 1 + α( 􏼁
α 1 + 2cα3 − 4cα2 + 6cα − 4c􏼐􏼐

−

�����������������������������������������������������

1 − 8c − 4cα2 + 12cα + 16c2α4 − 48c2α3 + 64c2α2 − 48c2α + 16c2
􏽱

􏼓􏼓,

(22)

where β is the ratio of inertia moment between the cutting
width and the uncut width, α is the ratio of cutting width,

and c is the ratio of stiffness between the cut column and the
intact column.
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Figure 6: Damage identification results of 31-bar truss structure: (a) case 1; (b) case 2; (c) case 3; (d) case 4; (e) case 5; (f ) case 6.
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Figure 7: 'e 3-story steel frame.
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Figure 8: Continued.
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For 4 damage cases, the experimental and analytical modal
parameters are shown in Table 4, which are obtained by
measurement in laboratory and model updating by BBPSODJ.
'en, the BBPSODJ algorithm is performed to distinguish
damage based on the objective function which is proposed in
Section 2.3. 'e findings are collected as shown in Figure 10.

From Figure 10, it can be seen that the damage iden-
tification results have small errors, but the damage of the
steel frame structure can be precisely located and accurately
quantified. Compared to the true damage as shown in Ta-
ble 3, the minor false identification can be omitted. It is
evident that the BBPSODJ algorithm with l1 regularization

1300mm
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0m
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0m

m
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Figure 8: Steel frame model: (a) overall; (b) simplified model; (c) plan.

Table 2: Experimental and analytical natural frequencies for the undamaged frame structure.

Before updating After updating
Mode Experimental (Hz) Analytical (Hz) Error (%) Analytical (Hz) Error (%)
1 3.369 3.449391 0.285 3.36902 0.0005
2 9.704 9.681222 0.235 9.70401 0.0001
3 14.282 14.018233 1.847 14.2819 0.0007
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Figure 9: Column size.
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Table 3: Damage cases of steel frame structure.

Story
Undamaged Damage case 1 Damage case 2 Damage case 3 Damage case 4

Cutting
width

Damage
(%)

Cutting
width

Damage
(%)

Cutting
width

Damage
(%)

Cutting
width

Damage
(%)

Cutting
width

Damage
(%)

1st 0 0 23.7mm 11.6 37.54mm 21.1 37.54mm 21.1 37.54mm 21.1
2nd 0 0 0 0 0 0 23.7mm 11.6 37.54mm 21.1
3rd 0 0 0 0 0 0 0 0 0 0

Table 4: Experimental and analytical natural frequencies for 4 damage cases.

Mode
Damage case 1 Damage case 2 Damage case 3 Damage case 4

Experimental
(Hz)

Analytical
(Hz)

Experimental
(Hz)

Analytical
(Hz)

Experimental
(Hz)

Analytical
(Hz)

Experimental
(Hz)

Analytical
(Hz)

1 3.259 3.2483 3.113 3.1347 3.076 3.0793 3.003 3.0242
2 9.485 9.5142 9.302 9.3534 9.192 9.2438 9.082 9.1321
3 14.209 14.2049 14.136 14.1456 13.660 13.6995 13.330 13.3393
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Figure 10: Damage identification results of steel frame structure: (a) damage case 1; (b) damage case 2; (c) damage case 3; (d) damage case 4.
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approach can achieve greater effects on structural damage
identification problems.

6. Conclusions

(1) 'e mathematical model of structural damage
identification is established according to structural
dynamics and finite element theories; meanwhile, a l1
regularization objective function is constructed.

(2) An improved novel optimization algorithm,
BBPSODJ, is first applied to solve the problem of
SDI. 'en, after the introduction of basic theory of
BBPSO, a novel double jump strategy is incorporated
into the basic BBPSO. Compared with basic BBPSO,
traditional PSO, and GA, three optimization test
functions are used to evaluate the search ability of the
proposed algorithm, which indicate that BBPSODJ
has faster convergence rate and better global search
ability.

(3) A numerical example of 31-bar truss structure is
utilized to evaluate the SDI performance of
BBPSODJ, and BBPSODJ combined with l1 regula-
rization objective function shows significantly good
performance in detecting multiple damage cases
even under noisy environment. And in the labora-
tory, an experiment example of steel frame with 4
damage cases is considered to verify the feasibility of
the proposed method to SDI problem. 'e test re-
sults show that although there are some small errors
in the identification results, it can still detect the
location and quantify the extent of damage well. 'e
proposed BBPSODJ algorithm with high efficiency
and good robustness has great potential in the field of
SHM.
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