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In general, although some random variables such as wind speed, temperature, and load are known to have multimodal dis-
tributions, input or output random variables are considered to follow unimodal distributions without assessing the unimodality or
multimodality of distributions from samples. In uncertainty analysis, estimating unimodal distribution as multimodal distri-
bution or vice versa can lead to erroneous analysis results. Thus, whether a distribution is unimodal or multimodal must be
assessed before the estimation of distributions. In this paper, the bimodality coefficient (BC) and Hartigan’s dip statistic (HDS),
which are representative methods for assessing multimodality, are introduced and compared. Then, a combined HDS with BC
method is proposed. The proposed method has the advantages of both BC and HDS by using the skewness and kurtosis of samples
as well as the dip statistic through a link function between the BC values in BC and significance level in HDS. To verify the
performance of the proposed method, statistical simulation tests were conducted to evaluate the multimodality for various
unimodal, bimodal, and trimodal models. The implementation of the proposed method to real engineering data is shown through
case studies. The results demonstrate that the proposed method is more accurate, robust, and reliable than the BC and original

HDS alone.

1. Introduction

In the field of engineering, most random variables are
treated as having unimodal distributions with one mode so
that the estimated probability density function (PDF) or
cumulative distribution function (CDF) with unimodality
from samples is applied to probabilistic statistical analysis or
design methods such as reliability analysis, reliability-based
design optimization, and robust design [1, 2]. However, it is
observed that some random variables such as wind speed,
temperature, amplitude of saving tools, shear strength of
seafloor sediment, and vehicle weight have multimodal
distributions [3-7]. Furthermore, output random variables
generated for responses of systems occasionally have mul-
timodal distributions owing to the highly nonlinear per-
formance function or multimodal input variable [8, 9]. To
determine the absolute appropriateness of candidate

unimodal distributions for given data, goodness-of-fit
(GOF) tests such as Kolmogorov-Smirnov, Anderson—
Darling, etc., can be used. Although GOF tests can identify
whether given data are fit to candidate unimodal distribu-
tions, they cannot be used to assess the unimodality or
multimodality of estimated distributions from data [2]. If
users know in advance whether a random variable has a
unimodal or multimodal distribution, they can select the
appropriate parametric or nonparametric modeling method
[1, 2, 10]. However, in many cases, the modality of random
variable distributions is unknown. Of course, if a sufficient
amount of data is available, it might be possible to assess the
modality of data using histograms. The histogram can
represent the distribution of numerical data so that unim-
odality or multimodality can be easily identified. Still, the
histogram can be seen as a unimodal or multimodal dis-
tribution according to the number of bins, bin size, and
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starting points. Thus, a statistical measure is needed to
numerically quantify the modality of data.

Methods of assessing the unimodality or multimodality
of distributions have been developed in the field of statistics,
which have been widely applied to various fields such as
medical and brain sciences as well as statistical field [11-14].
Wolfe introduced a method using the likelihood ratio with a
normal mixture model to assess unimodality [15]. Hartigan
and Hartigan developed Hartigan’s dip statistic (HDS)
method by introducing the dip statistic to assess unimodality
[16]. SAS Institute Inc. proposed the bimodality coefficient
(BC) to assess multimodality by using information of the
third and fourth statistical moments of data [17]. The Akaike
information criterion between one-component and two-
component distribution models (AIC4;g) was introduced to
determine bimodality by comparing the AIC values of a one-
component Gaussian mixture model with that of a two-
component Gaussian mixture model [18]. Freeman and Dale
compared three methods—AICys BC, and HDS—for the
assessment of dual cognitive process in behavioral science
[11]. Although HDS is a more accurate, reliable, and ap-
propriate method for assessing a unimodality or multi-
modality, it slowly converges to the modality of the true
model as sample size increases, and its results are sensitive to
the significance level. On the other hand, BC is less reliable
than HDS but quickly converges to the true model for
multimodal distribution. AIC4g is quite sensitive to the
normality assumption and bimodality; thus, it detects nearly
all distributions as a bimodal distribution [11, 19].

Freeman and Dale revealed that AICg;¢ was worse than
BC and HDS because it is highly sensitive to bimodality
unlike BC and HDS and that HDS was a more suitable
method than BC [11]. Kang and Noh compared BC and HDS
through simulation tests by considering the randomness of
data, sample size, and shape of the distribution function.
They also observed that HDS was more accurate and reliable
than BC [19]. However, HDS also has some limitations in
estimating modality according to significance level; hence,
an advanced HDS method must be developed.

The modality assessment method have been recently
applied into various research fields; the BC has been
employed in the psychiatry science, public opinion, chem-
istry, and physics [11, 13, 20-22], and HDS has been
implemented in the brain science, biological science, mi-
crobiology, and ecology [23-26]. Even though there are
many applications with multimodality in the engineering
fields, the methods of evaluating the multimodality have
been rarely applied, and graphical methods such as histo-
grams have been simply employed [3-9, 27-32].

This study proposed a new modality assessment method
(HDS with BC), which was first applied in the field of en-
gineering, by combining the existing modality estimation
methods HDS and BC. The HDS with BC defines the re-
lationship between BC values and the significance level as a
function in order to select the significance level appropriate
for estimating the modality of the distribution, which results
in HDS determining the accurate modality at the optimized
significance level. HDS with BC has the advantages of both
BC and HDS by double-checking the modality of data,
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preventing errors caused by mistakenly selecting data with
unimodality as a multimodal distribution or vice versa,
which are commonly made with BC and HDS.

It was verified that the proposed method is more ac-
curate, reliable, and quickly converges to the true unim-
odality or multimodality through the assessment of
multimodality of unimodal, bimodal, and trimodal distri-
butions in simulations and case studies of real measurements
and engineering data. Accordingly, the proposed HDS with
BC method can improve the accuracy of quantification and
propagation such as calculations of variation in dynamic
stiffness of rubber mounts [4], reliability-based design op-
timization of helicopters [8], reliability assessment [32], and
fatigue reliability assessment for steel decks [7] through
correct identification of data modality. It can be highly likely
to be used in the engineering field.

2. Method to Assess Multimodality

2.1. Bimodality Coefficient. The BC is an empirical method
which assumes that a bimodal distribution will have high
skewness, low kurtosis, or both [17]. BC is a very simple and
easy method to assess unimodality or multimodality since
BC values are easily calculated from only sample size,
skewness, and excess kurtosis. The BC value is calculated
as [17]

2
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where 7 is the sample size, m1; is the skewness, and m, is the
excess kurtosis estimated from given data. Since both
skewness and kurtosis are sensitive to sample bias, the
corrected skewness and kurtosis for sample bias are used as
[33, 34]
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If BC<0.555 (BC value for uniform distribution), the
data are considered to follow a unimodal distribution.
Otherwise, they follow a bimodal or multimodal distribution
[11, 17]. BC has a normalized value on [01], and it is a
deterministic value; thus, it is easy to utilize and intuitively
evaluate the unimodality or multimodality of distribution.

2.2. Hartigan’s Dip Statistic. HDS is based on the hypothesis
test that the given data have more than one mode in their
distribution using the dip statistic. The “dip” refers to the
maximum difference between the empirical distribution
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function and unimodal distribution function that minimizes
that maximum difference where a uniform distribution is
used as a reference unimodal distribution. The dip for
unimodal samples converges asymptotically to zero; oth-
erwise, it has a positive value [16]. The mathematical defi-
nition and computational algorithm of dip are described in
more detail in the original papers [16, 35]. In this study, the
dip algorithm for testing multimodality is briefly explained.
HDS requires two dip statistic values, i.e., the dip of given
samples (D (Fy)) and M uniform samples (D(Fy)) ran-
domly generated from a uniform distribution, where the
number of uniform samples (bootstrap samples) should be
equal to the number of given data. In other words, D (Fy) is
the dip between eCDF and estimated uniform distribution
from given samples and D (Fy ) is the dip from arbitrary
uniform samples for bootstrap samples. In this paper, the
arbitrary samples are generated from U (0, 1). Both dips are
iteratively compared using equation (3) until » becomes the
total number of bootstrap samples. Finally, the p-value can
be calculated as

1 R
p-value = R ;IQU, (%:)s

(3)
1, D(Fx)<D(Fy),
IQU, =
0, otherwise,

where R is the total number of bootstrap samples and I, is
the indicator function for each uniform sample. If
D(Fy) < D(Fy ), then X is closer to a unimodal distri-
bution than a uniform distribution; IQU is one, and if
D(Fy) ZD(FU,)’ then X is closer to a multimodal
distribution.

The null hypothesis of HDS is that a distribution is
unimodal. Thus, if the p-value is greater than or equal to a
specific significance level («), then HDS assesses a sample as
having a unimodal distribution; otherwise, it has a multi-
modal distribution. Notice that HDS requires more com-
putation time than BC in calculating the p-value because the
bootstrapping process is repeatedly performed to calculate
the p-value.

3. Hartigan’s Dip Statistic with
Bimodality Coefficient

Both BC and HDS have characteristics that contradict each
other. BC can be calculated by a simple mathematical for-
mula using only sample size and statistical moments; thus, it
returns a deterministic result. In addition, it can quickly
converge to the multimodality of the true model, especially
with strong multimodality. However, it is too sensitive to the
third and fourth statistical moments; thus, the results could
inconsistently converge to the true modality as the sample
size increases. Although the true model is a unimodal dis-
tribution, BC frequently assesses it as multimodal, i.e., it
makes a Type I error when the null hypothesis is that a
distribution is a unimodal distribution. This is a critical
disadvantage in the assessment of unimodality for unimodal

distributions. On the other hand, HDS tests the multi-
modality by a dip statistic; thus, it returns the probability
result (p-value) based on a specific significance level, and it
does not depend on the statistical moments of samples
unlike BC. Therefore, it tends to converge to the true mo-
dality as the number of samples increase. It is also reliable
and stable and thus widely used for the assessment of
unimodality or multimodality [11, 12, 14, 26].

Even if HDS is more useful than BC, HDS is empirical,
subjective, or very difficult to use because users are required
to select the appropriate significance level based on their
experience or amount of given data [36, 37]. The higher the
significance level, the higher the probability of identifying
data with unimodality as one with multimodality. On the
other hand, the lower the significance level, the higher the
probability of identifying data with multimodality as one
with unimodality. Accordingly, the appropriate significance
level should be used to avoid Type I or Type II errors, which
decrease the assessment accuracy according to data mo-
dality. Furthermore, the convergence rate of HDS is rela-
tively slower than that of BC for a multimodal model because
of repeated bootstrapping and selecting significance level,
and small sample sizes, low significance levels, or both are
occasionally assessed as unimodal distribution even when the
true model is a multimodal distribution, i.e., Type II error
occurs. As shown in Table 1, BC and HDS have different
advantages and disadvantages in estimating the modality of
data. BC is based on statistical moments, whereas HDS is
based on the shape of the distribution function using the dip
statistic. Both moments and dip statistic are important in-
formation to assess the multimodality. Therefore, it is nec-
essary to develop a method of correctly identifying data
modality by combining them.

In this study, to compensate for the differences between
the two methods, BC is correlated with HDS to determine
the optimal significance level in HDS; thus, the proposed
method is called HDS with BC (or HDSw/BC). The proposed
HDSw/BC method first deterministically calculates BC
values. Then, if the BC values are low, i.e., the data are more
likely to have unimodality, it uses a low significance level to
increase the probability that HDS judges the data as a
unimodal distribution. On the other hand, higher BC values
indicate the higher probability of data having multimodality;
thus, HDS uses a high significance level to increase the
probability that HDS judges the data as a multimodal dis-
tribution. Although HDSw/BC uses the skewness and
kurtosis, it is not sensitive to the skewness and kurtosis of
samples since these are not directly used to assess multi-
modality and are only used to select the optimal significance
level in HDS. Consequently, the proposed method can
achieve more reliable, stable, useful, and accurate perfor-
mance than BC and HDS by double-checking the unim-
odality and multimodality of data, thereby adaptively
reducing either Type I or II errors based on information on
moments and distributions.

For this, it is necessary to define the relationship between
the significance level and BC values to determine the optimal
significance level for HDSw/BC. In HDS, if the significance
level increases, the probability of assessing multimodality
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TaBLE 1: Comparison between BC and HDS.

Bimodality coefficient

Hartigan’s dip statistic

Deterministic result

Third and fourth statistical moments
Sensitive to third and fourth moments
Type I error

Inconsistency

Quick convergence

Probabilistic result according to significance level
Dip statistic
Does not depend on third and fourth moments
Type II error
Consistency
Slow convergence

Hy: X is a unimodal distribution.

increases, i.e., Type II error decreases but Type I error in-
creases; otherwise, the probability of assessing unimodality
increases, i.e., Type I error decreases but Type II error in-
creases (see Appendix A). If the BC value is large, it means
that multimodality is clearly observed in data; hence, Type II
error needs to be reduced using a high significance level.
Otherwise, unimodality is observed in data; hence, Type I
error needs to be reduced using a low significance level. The
relationship between the significance level and BC values can
be defined such that the optimal significance level is selected
according to BC values. The significance level is subjectively
determined by users in most cases and can vary from 5% to
32%. A significance level of 5% is often used as the default
value [36-38] and was used in the original HDS paper
[11, 16, 35, 39]. The significance level of 32% is the corre-
sponding value to the 1-sigma of 68-95-99.7 rule [40]. Four
types of functions, ie., linear, quadratic, exponential, and
irrational functions, were used to define the relationship
between the BC values and significance level as shown in
Table 2, where «; is the lower significance level with
ap = 0.05, ayy is the upper significance level with ay; = 0.32,
and BC is the BC values. Figure 1 shows the graphs of the four
types of functions according to BC values.

Consequently, HDSw/BC can automatically select the
optimal significance level using the information on sample
size, skewness, and kurtosis by BC and then assess multi-
modality using a dip statistic with the optimal significance
level. Even though the HDSw/BC uses BC in an empirical
manner, it finally and reasonably assesses the modality
through the hypothesis test using the dip statistic. It was
proved by the original paper for HDS where the dip as-
ymptotically converges to a positive value when samples are
multimodal distribution as sample size increases; otherwise, it
converges to zero [16, 35]. It assesses a multimodal distribution
if the p-value is less than the significance level, which varies by
BC value in equation (1) according to the four types of
functions; otherwise, it assesses a unimodal distribution. Since
the estimation of modality changes depending on function
type, it needs to be tested for the four function types. The
simulation tests and their results for different function types
are explained in Appendix B. Assuming that the population
distribution is unimodal, bimodal, and trimodal, HDS was
tested at the optimum significance level obtained from the four
types of functions. Quadratic and exponential functions
showed similar performance owing to their similar function
shapes, while the results of the linear function lies between that
of the quadratic and irrational functions. Thus, only the
quadratic and irrational functions were used in this study.

TaBLE 2: Function types and equations.

Function types Equations

Linear a= (ay—ay) xBC+ag
Quadratic a=(ay—a) X BC? + oy
Exponential a = (ay /oy )BCT(nte)/Inay/ey)
Irrational a=1(ay —a)* xBC +ay

Unimodal Multimodal
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FiGgure 1: Functions of significance level according to BC values.

4. Simulation to Assess Multimodality

To compare the performance of BC, HDS, and HDSw/BC,
statistical simulation tests were conducted to assess the
multimodality of samples when the true models are unimodal,
bimodal, and trimodal distributions. The samples were ran-
domly generated from the true model n =15, 7, 10, 20, 30, 50,
100, 200, and 300 with 1,000 repetitions; thus 1,000 sample
sets were generated for each sample size (n). Subsequently, the
assessment of multimodality was conducted for each sample
set as n increased, and the simulation results were compared
using different types of multimodality measures.

4.1. Unimodal Distribution. Modality simulation tests were
conducted for two unimodal distributions: Birnbaum-
Saunders (BS) distribution and lognormal (LN) distributions,
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where BS(50,0.4) is a skewed distribution with extremely
heavy tails and LN (3, 0.8) is an extremely skewed distribution
with heavy tails. Figure 2 shows PDFs of two true unimodal
distributions, and Figure 3 shows the percentages of identi-
fying unimodality (accuracy) and multimodality (error)
according to the number of samples (1) with 1,000 repetitions.
In Figure 3, the light gray bar and dark gray bar indicate the
accuracy and error, respectively. The first, second, third, and
fourth bars indicate the results using BC and HDS with
a =0.05, HDSw/BC with the quadratic model (HDSw/
BC(Quad)), and HDSw/BC with irrational model (HDSw/
BC(Irr)), respectively.

When the BS distribution is the true model, HDS and
HDSw/BC(Quad) correctly identified the unimodality of
the true model for most sample sizes except n = 5; thus, it
has the highest accuracy among all measures. On the other
hand, HDSw/BC(Irr) has the lowest accuracy for n<10,
while BC has the lowest accuracy for n>20. The error of
HDSw/BC(Irr) consistently decreased as n increased, while
that of BC increased for n<30 and then decreased for
n>50. This is because sample skewness and kurtosis are
often incorrectly estimated with large variations since BC is
sensitive to the sample size and the distribution of sampled
data. BC values increased for high skewness or low kurtosis
of samples or both; especially, skewness significantly affects
the increase of BC values (see Appendix C). HDSw/BC(Irr)
uses a higher significance level than HDSw/BC(Quad),
which often leads to Type I error because it identifies a
unimodal distribution as a multimodal one. However, as
the number of samples increased, the accuracy of BC in-
creased or decreased without a consistent tendency owing
to inaccurate estimation of skewness and kurtosis, while
HDSw/BC(Irr) consistently decreased Type I error. HDSw/
BC(Quad) has a slightly larger significance level than HDS;
hence, its accuracy is slightly lower than that of HDS with
a = 0.05. However, their performances are similar, are
more accurate than HDSw/BC(Irr), and are more reliable
than BC regardless of sample size.

When the true model is a lognormal distribution with
LN(3,0,8), similar to BS(50,0.4), HDS and HDSw/
BC(Quad) show similar performance and their errors are
the lowest for most sample sizes except n = 5 in Figure 3.
However, the error of BC increased as # increased and thus
that of BC is the highest for n> 10. For LN distribution with
high skewness, the disadvantage of BC is more clearly
observed because of the large estimation error of sample
skewness, especially for small-sized samples. For skewed
unimodal distributions, the HDS performance that does
not rely on skewness and kurtosis becomes more powerful
than BC. Since HDSw/BC method indirectly uses the
sample skewness and excess kurtosis to determine the
optimal significance level, the results of the proposed
method are rarely affected by sample skewness and kur-
tosis, unlike the BC method. In particular, the performance
of HDSw/BC(Quad) is almost similar to the original HDS
since the estimated optimal significance levels are close to
the significance level of the original HDS. Accordingly,
HDS and HDSw/BC(Quad) methods are the most accurate,
robust, and reliable.

5
0.04 F ' ' ]
0.03
§ 0.02
0.01

0 150

—— BS(50,0.4)
------ LN(3,0.8)

FiGURE 2: True unimodal distributions.

4.2. Multimodal Distribution. In this section, tests are
implemented for bimodal and trimodal distributions. Fig-
ure 4 illustrates two bimodal distributions, a mixture of two
normal distributions with 0.5 N(150,10)&0.5 N(200,10), and
a mixture of two lognormal distributions with 0.5LN(3,0.4)
&LN(4,0.2).

Figure 5 depicts the results of the multimodality as-
sessment. In Figure 5(a), when a normal mixture model is a
true model, the accuracy of identifying the multimodality
increases as n increases. Then, finally all the methods cor-
rectly identify the multimodality of the true model for
n>200. HDSw/BC(Irr) has the highest accuracy for all the
sample sizes, followed by HDSw/BC(Quad); BC and HDS
have the lowest one for n < 50. Especially, the accuracy using
HDSw/BC(Irr) remarkably increases as n increases, whereas
the accuracy using HDS gradually increases and BC does not
tend to identify the modality.

For the two lognormal mixture models depicted in
Figure 5(b), although the overall tendency is similar to that
of the normal mixture model, the convergent rate to the true
modality is lower than that of the normal mixture model
because of the weak bimodality of the lognormal mixture
model. The true skewness of the two lognormal mixture
models is 0.26; however, the original HDS does not use the
skewness, whereas the proposed methods use it to determine
the optimal significance level for HDS. In addition, although
the number of sample sizes increases, BC cannot converge to
the true modality and its convergence rate is extremely low
because of the low skewness and high kurtosis.

Subsequently, the multimodality test is conducted for the
trimodal distributions, mixture of normal distributions with
0.4 N(100,20), 0.3 N(200,20), and 0.3 N(300,20), and mixture
of Weibull distributions with 0.4 W(100,4), 0.3 W(200,10),
and 0.3 W(300,12). Figure 6 depicts the PDFs of two tri-
modal distributions, and Figure 7 depicts the accuracy and
errors obtained using BC, HDS, HDSw/BC(Quad), and
HDSw/BC(Irr) over 1,000 repetitions. In Figure 7, a ten-
dency for the two trimodal distributions is similarly
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FiGURE 3: Assessment for unimodal distributions. (a) BS(50,0.4). (b) LN(3,0.8).
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FIGURE 5: Modality assessment for bimodal distributions.

5 7 10 20 30 50 100 200 300
Number of samples

[ Accuracy (multimodal)
mmm Error (unimodal)

()

(a) 0.5N(150,10)&0.5 N(200,10). (b) 0.5LN(3,0.4)&LN(4,0.2).
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FIGURE 6: True trimodal distributions.
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FIGURE 7: Modality assessment for trimodal distributions. (a) Normal mixture model. (b) Weibull mixture model.

observed in the one for the bimodal distributions; HDSw/
BC(Irr) converges to the true multimodality most rapidly,
followed by HDSw/BC(Quad); however, their convergence
rates are quite different from each other. For the normal
mixture model, the convergent rate of BC is the lowest for
n <10 and that of HDS is the lowest for n>20. Because the
BC value of the true model is 0.630, which is high for a
multimodal distribution, BC quickly converges to the true
modality as n increases. However, for the trimodal distri-
bution with Weibull distributions, BC does not converge to
the true modality because its true BC value is 0.585, which is
similar to that of a uniform distribution. The multimodality
of the Weibull mixture model is not as severe as that of the
normal mixture model; hence, the modality assessment
results of the normal mixture model are better than those of
the Weibull mixture model.

4.3. Summary of Simulation Tests. In summary, the uni-
modal and multimodal distributions are tested when the null
hypothesis distribution is a unimodal distribution. Table 3
presents the accuracy (%), which is calculated as the ratio of
the number of correct modality identifications to the total
repletion number for unimodal distributions, where the
values in bold indicate the highest accuracy for each sample
size and the values in italics indicate the lowest accuracy. In
Table 3, the accuracy of BC is the lowest for unimodal
models, except when n< 10 and n <7 for BS and LN models,
respectively. BC is extremely inaccurate for the LN distri-
bution because the skewness and kurtosis of the population
are quite high; thus, the sample skewness and kurtosis are
incorrectly estimated. In addition, as mentioned before, BC
is inconsistent for both the unimodal models as # increases.
HDS is the most accurate, followed by HDSw/BC(Quad) and
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TaBLE 3: Accuracy for unimodal distributions.
n

Type Method
5 7 10 20 30 50 100 200 300
BC 100 97.8 94.1 88.4 83.8 86.7 93 98.1 99.2
BS(50,0.4) HDS 97.6 98.6 98.5 99.1 99.5 99.8 99.9 100 100
o HDSw/BC(Quad) 96.9 96.7 97.4 97.5 98.6 98.8 99.9 99.7 99.9
HDSw/BC(Irr) 89.7 87.2 89.2 94 94.3 96.1 98.3 99.1 99.6
BC 100 91.4 71.4 34.1 24.1 13.6 8.5 8.8 14.8
LN(3,0.8) HDS 97.2 97.2 98.5 99.3 99.5 99.6 100 100 100
> HDSw/BC(Quad) 95.9 95.1 95.9 97.9 971 98.2 99.8 99.6 100
HDSw/BC(Irr) 87.6 87.4 88.6 92.9 93.2 96.6 98 99.2 99.8

HDSw/BC(Irr). Although the conventional HDS is more
accurate than both HDSw/BC methods, the accuracy of
HDSw/BC(Quad) is almost equal to that of HDS and the
accuracies of both the methods are higher than 90% for
n>20.

Table 4 presents the accuracy for the multimodal dis-
tributions. In Table 4, the accuracy of assessing multi-
modality using HDSw/BC(Irr) is always the highest;
however, that using BC or HDS is the lowest according to the
number of samples (7). The results reveal the limitations of
the BC and conventional HDS methods in assessing the
multimodality for the multimodal distributions, whereas
HDSw/BC(Quad) and HDSw/BC(Irr) are considerably ac-
curate, convergent, and consistent methods in comparison
with the BC and HDS methods.

Therefore, using BC is extremely risky in assessing the
multimodality for highly skewed or heavy-tailed unimodal
distributions and multimodal distributions, whereas HDS
and HDSw/BC methods are more reliable and useful. Al-
though HDSw/BC(Quad) and HDSw/BC(Irr) yield high
accuracies of multimodality assessment for multimodal
distributions, the accuracies of both the methods are lesser
than that of HDS. Figures 8 and 9 depict the difference in
accuracies between the original HDS and HDSw/BC
methods. If HDSw/BC identifies the true modality with a
higher accuracy than HDE, then it is positive; otherwise, it is
negative. In Figure 8, the accuracies of HDSw/BC(Quad) for
the BS and LN distributions are lower than those of the
original HDS by approximately 1-3% for n < 50; however,
the accuracies of both the methods are almost the same for
n>100. On the other hand, the accuracy of HDSw/
BC(Quad) for the multimodal distributions is higher than
that of HDS by approximately 1-23%. In Figure 9, the ac-
curacy of HDSw/BC(Irr) for unimodal distributions for
n <100 is lower than that of HDS by approximately 1-11%;
otherwise, the accuracies of both the methods are almost the
same. On the other hand, the accuracy of HDSw/BC(Irr) for
multimodal distributions is considerably higher than that of
HDS by approximately 1-39%.

In summary, for the unimodal distributions, HDS with
a = 0.05 is slightly more accurate than HDSw/BC; however,
for multimodal distributions, it results in a considerably
lower accuracy than HDSw/BC and even BC. Because
HDSw/BC(Quad) has a high accuracy, which is similar to
that of HDS for a unimodal distribution, and HDSw/BC(Irr)
is the most accurate for a multimodal distribution, they can

be said to be superior to BC and HDS with « = 0.05. HDS
may reduce Type I errors by selecting a lower significance
level with a = 0.01; it may also reduce Type II errors by
selecting a higher significance level with & = 0.1. However, it
is difficult to select an appropriate significance level without
knowing the unimodality or multimodality.

In contrast, HDSw/BC method does not allow users to
select the significance level but calculates an optimum sig-
nificance level so that the modality of data can be easily
identified. It should be noted that the performance of
HDSw/BC may vary according to the types of functions that
define the relationship between BC values and significance
levels. Similar to the way HDS method reduces Type I or
Type II errors by changing the significance levels, HDSw/BC
can reduce them by using either a quadratic function or an
irrational function. If the number of data points is in-
sufficient to determine the modality of data (1 <50), either
HDSw/BC(Quad) or HDSw/BC(Irr) can be used according
to the type of errors that needs to be reduced, resulting in
higher accuracies being achieved than those using HDS with
fixed significance levels. If sufficient data are available, then
the performances of HDSw/BC(Quad) and HDSw/BC(Irr)
are similar for unimodal distributions and the performance
of HDSw/BC(Irr) is better than that of HDSw/BC(Quad) for
multimodal distributions. Thus, users are recommended to
employ either HDSw/BC(Quad) or HDSw/BC(Irr) for in-
sufficient data according to the type of errors that need to be
reduced and employ HDSw/BC(Irr) for sufficient data.

5. Case Study

To demonstrate the performance of the proposed method,
HDSw/BC methods are implemented to actual engineering
data by comparing the results of the BC, original HDS,
HDSw/BC(Quad), and HDSw/BC(Irr) methods similar to
the simulation tests described in Section 4. In this study, a
simulation was performed for data on temperature, wind
speed, and shift factor of rubber material.

5.1. Temperature Data. Temperature can significantly affect
the performance of temperature-dependent mechanical
systems, components, or materials such as viscoelastic
materials, as well as the health status of battery systems
[4, 41]. Temperature can follow a unimodal or multimodal
distribution according to different operating environments,
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TaBLE 4: Accuracy for multimodal models.
n
Type Method

7 10 20 30 50 100 200 300

BC 0 1.7 8.5 52.6 74.6 91.3 98.6 99.9 100

Two normal mixture HDS 6.3 14.8 20 41.9 62.3 85 99.2 100 100
HDSw/BC(Quad) 9.6 21.5 30.4 60.7 78.7 94.1 100 100 100

HDSw/BC(Irr) 26.5 37.3 47.1 74.7 86.8 97 100 100 100

BC 0 1.5 3 16.1 23.2 27.5 29.3 28.4 23.3

Two lognormal mixture HDS 6.4 6.9 8.9 15.7 17.9 30.2 55 79.2 92.5
HDSw/BC(Quad) 8.5 10.8 15.1 26.5 30.8 45.3 71.3 90.3 96.6

HDSw/BC(Irr) 22.2 23 30.4 44 47.8 61 82.8 94.7 97.8

BC 0 1.6 4.3 26.9 46.3 68.9 89.4 98.2 99.6

Three normal mixture HDS 8.4 10.3 13.2 26.6 39.1 63.1 92.1 100 100
HDSw/BC(Quad) 11.1 14.2 23.5 47 61.8 83.6 98.7 100 100

HDSw/BC(Irr) 26.6 29.4 43.7 65.9 79.1 92.6 99.6 100 100

BC 0 0.7 2.1 14 26.1 42.5 56.3 74.6 82

Three Weibull mixture HDS 4.8 8.8 8.5 13.7 17.3 28.3 54.9 88 98.5
HDSw/BC(Quad) 6.4 13.3 16.6 26.1 34 49.4 78 96.7 99.8

HDSw/BC(Irr) 19.3 26.7 33.2 42.6 52.1 67.8 88.4 929 100
300 | The first dataset contained hourly data collected at
200 L Daegwallyeong in South Korea from 2014 to 2018. The total
£ 100} number of data points is 42,864 which is assumed as a
5 sof population dataset [42]. Test samples were randomly sam-
T 30 pled from the population dataset for n = 10~8,000 with 1,000
£ 20F repetitions for each sample size. Figure 10 shows the his-
Z 0 togram of population data of temperature where the tem-
Z perature data distribution is slightly skewed to right and has
; ; ; ; a weak bimodal shape. Figure 11 shows the accuracy and
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Ficure 8: Difference in accuracy between HDS and HDSw/
BC(Quad).
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FiGure 9: Difference in accuracy between HDS and HDSw/BC(Irr).

and thus, it requires an appropriate statistical model. In this
section, an assessment of multimodality is conducted for two
temperature datasets collected from two sites in South
Korea.

error for assessing modality using the BC, HDS, and HDSw/
BC methods. All methods except BC converge to the true
model’s modality as n increases. The estimated accuracies
using HDSw/BC(Irr) increase most rapidly as » increases
followed by HDSw/BC(Quad) and HDS; however, BC does
not correctly assess the modality as the true skewness is as
small as —0.282; thus, the BC value of population is 0.4843.

Another dataset was collected hourly at Seoul, South
Korea, in 2007, and the number of data points was 8,760
[42]. Samples were randomly generated for n=10-2,000.
Figure 12 shows the histogram of the temperature data at
Seoul, and it has stronger bimodality than Daegwallyeong.
Figure 13 summarizes the results of test for BC, HDS, and
two HDSw/BC methods. The similar tendency was observed
in the Seoul data, similar to the Daegwallyeong data;
therefore, the original HDS and HDSw/BC methods tend to
correctly identify the true modality except the increase in BC
increase as n increases. However, the convergence rates for
the Seoul data are considerably faster than those for
Daegwallyeong data because Seoul data have stronger bi-
modality. Accordingly, the proposed methods are shown to
be accurate, consistent, and rapidly converging to true
modality than the BC and original HDS for two temperature
datasets, a weak and strong bimodal distribution.

5.2. Wind Speed Data. Wind speed significantly affects the
power, efficiency, and reliability of the wind turbine system.
Although wind speed has been generally fitted to a uni-
modal distribution such as normal, Weibull, and Rayleigh



10

Density

Accuray/error (%)

0.04
0.035 - M
0.03 L n
0.025 + e [
0.02 -
0.015
0.01 +

0.005

F1GURE 10: Histogram of temperature at Daegwallyeong.

100

80

60

40

20

F1GURE
Daegwallyeong.

Density

0.04

0.03

0.02

0.01

-20 -10 0 10 20
Temperature (°C)

[1 Temperature (2014~2018)

BC/HDS/HDSw/BC(Quad)/HDSw/BC(Irr)

30

10 50 100 500 1000 2000 5000 8000

Number of samples

[ Accuracy (multimodal)
mmm Error (unimodal)

11: Modality assessment of temperature data at

-10 0 10 20
Temperature (°C)
[ Temperature (2007)

FI1GURE 12: Histogram of temperature at Seoul.

30

Mathematical Problems in Engineering

100 BC/HDS/HDSw/BC(Quad)/HDSw/BC(Irr)

80 |

60 |

40 +

Accuray/error (%)

20

10 50 100 200 300 500 1000 2000

Number of samples

[ Accuracy (multimodal)
mmm Error (unimodal)

F1GURE 13: Modality assessment for temperature data at Seoul.

distributions, it was observed that wind speed sometimes has
a multimodal distribution in some areas, and wind speed was
modeled by a nonparametric modeling method using the
kernel density estimation (KDE) as a multimodal distribution.
Hu et al. also claimed that KDE using a multimodal model for
some wind speed data is more accurate than a unimodal
model such as normal, Weibull, and Rayleigh models [32].

Therefore, in this study, the wind speed data at Daeg-
wallyeong in South Korea from 2014 to 2018 were used, and
the number of data points was 43,072, which was used as the
population [42]. Samples were randomly generated from the
population such as the temperature simulation for
n=10-8,000 with 1,000 repetitions. Figure 14 shows the
histogram of wind speed data. It can be seen as a unimodal
distribution as the Weibull or Rayleigh by smoothing a
fluctuated frequency or as a multimodal distribution because
there seem to exist explicitly different modes. Although data
are sufficient to evaluate the multimodality from the his-
togram of the data, it is difficult for the users to quantitatively
determine the unimodality or multimodality for the wind
speed distribution from the histogram of the data. For this,
BC, HDS, and HDSw/BC methods are used. As shown in
Figure 15, HDS and two HDSw/BC methods tend to con-
verge to the true modality (multimodality) with the increase
in the number of samples. In contrast, BC converges to the
unimodality unlike the temperature data because it assesses
the population for wind speed data as a unimodal distri-
bution with BC=0.5028 because of the excess kurtosis
(1.315), regardless of the large skewness (1.082). This as-
sessment result shows that BC, which only uses the skewness
and kurtosis without considering the distribution shape, has
a limitation in assessing the multimodality for multimodal
distribution with considerably high kurtosis.

5.3. Shift Factor of Rubber Material. Using the temperature
data in Section 5.1, shift factor data related to the dynamic
stiffness of rubber material can be obtained as [4]

(T-Ty)

log[a(T)] = —d, x m>

(4)

where d, and d, are the Mooney-Rivlin coefficients, T'; is the
reference temperature, and T is the ambient temperature. In
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FIGURE 15: Modality assessment for wind speed at Daegwallyeong.

this study, EPDM40, which is widely used in antivibration
rubber, was used, with d; and d, as 1.19 x 10° [N/m?] and
1.74 x 10°[N/m?], respectively [43]. Moreover, the afore-
mentioned hourly temperature data measured at Seoul in
2007 were used [4, 42]. Since the shift factor is directly
related to the ambient temperature using equation (4), the
statistical model of the shift factor needs to be modeled using
the ambient temperature data. Once the modality of the
shaft factor is assessed and modeled using the appropriate
statistical modeling methods depending on its modality, the
statistical model of the shift factor can used to analyze the
dynamic stiffness of the rubber material.

The total number of temperature data is 8,760; thus, the
shift factor data are calculated by using these datasets.
Figure 16 shows the histogram of the shift factor of EPDM40
with 8,760 data, which is assumed as a population dataset.
The shift factor has a strong bimodality like the temperature
at Seoul but with different shapes. Samples are randomly
sampled from the population for n=10-2,000 with 1,000
repetitions. Figure 17 shows the test results using the BC,

11
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FIGURE 16: Histogram of shift factor of EPDM40.
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FIGURE 17: Modality assessment for shift factor.

HDS, and both the HDSw/BC methods. A similar tendency
is observed like the temperature and wind speed cases, but
the convergent rate is overall quicker than the temperature
and wind speed data because the shift factor has a strong
bimodal distribution. As expected, the HDSw/BC(Irr) has
the best accuracy for correctly identifying the bimodality of
the true model, and the BC has the worst accuracy due to the
low skewness of the population.

5.4. A Real Example of the Wind Turbine Power. To show the
necessity of assessing multimodality, a simple reliability
analysis was conducted to predict power of a wind turbine.
Since the available power of the wind turbine varies according
to the wind speed and air density and the air density can be
calculated from the temperature, the real measured data for
the temperature and wind speed at Daegwallyeong described
in Sections 5.1 and 5.2 can be used to calculate the reliability of
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TaBLE 5: Specifications of the wind turbine.

Swept area (A) (m?) Power coefficient (cp)

Absolute pressure (AP) (Pa)

Specific gas constant for dry air (Rypec)_(J/Kg.K)

8,495 0.4

101.325

287.058

the wind turbine power. The specifications of the wind turbine
are presented in Table 5 [44].
P

avail —

SPAVC,

AP )

x (273 +T)

p =
Rspec

where the absolute pressure (AP), specific gas constant for
dry air (Rgpec), and power coefﬁcient(cp) are deterministic
variables and the air density (p), temperature (T), and wind
speed (v) are random variables.

The reliability analysis for the wind turbine power was
performed for three cases where the distribution is assumed
to have unimodality (Unimodality), known to have multi-
modality (Multimodality), or the modality is unknown and
assessed using HDSw/BC (Estimated modality using HDSw/
BC). For the temperature and wind speed, Gaussian and
Weibull distributions are often used as unimodal distribu-
tions, respectively, so that they were fitted to the data of the
temperature and wind speed, respectively [32]. If the mul-
timodality is known, the PDFs are estimated using the KDE
with cross-validation bandwidth methods to represent the
multimodality. In HDSw/BC, the distributions are estimated
as unimodal or multimodal by obtained results of HDSw/
BC. Figure 18 shows the probabilities that the available
power is greater than a reference value, 50,000, which is the
power at an average wind speed with 3 m/s in the site. In the
multimodality case, since the true modality is used, the
obtained probabilities are the most accurate as expected, and
those using the unimodal distributions are the most in-
accurate because of incorrect estimation of the PDFs.
However, when the modality is assessed using HDSw/
BC(Irr), the results are more accurate and quickly converge
to the true models rather than the unimodal case as sample
sizes increase. Thus, if the modality is unknown, it is indeed
necessary to assess the modality of the distribution.

5.5. Summary of Case Studies. For comparison of the per-
formance of each method, Figure 19 shows the plots of
accuracy to assess the multimodality for temperature, wind
speed, and shift factor of the rubber material. HDSw/
BC(Quad) and HDSw/BC(Irr) are more accurate, consistent,
and rapidly converge to true modality than the original HDS
and BC for all of the case studies. This is because the
proposed methods not only use a sample skewness and
kurtosis like the BC but also a dip statistic like the original
HDS. Since BC directly uses the skewness and kurtosis of the
samples, it is too sensitive to the skewness and kurtosis; thus
it could not be converged to the true modality for the bi-
modal distribution. However, since HDSw/BC methods
indirectly use the skewness and kurtosis, they can be less
dependent of the skewness and kurtosis. The proposed
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FIGURE 18: Probabilities of the available wind power.

methods only use the sample skewness and kurtosis to
determine the optimal significance level by modeling the
relationship between the significance level and BC value for
the skewness and kurtosis. Consequently, both the proposed
methods well integrate the merits of the original HDS and
BG; thus, these are more powerful than the existing methods,
in particular, HDSw/BC(Irr) is the most powerful method
for assessing multimodality of multimodal distribution.

In summary, regarding the accuracy of the HDSw/
BC(Irr), to achieve over 90% accuracy, the number of
temperature data at Seoul and shift factor should be at least
n>500, and the number of wind speed data should be
n>1,000, and the number of temperature data at Daeg-
wallyeong needs to be n>4,000. It means that the accuracy
of assessing the multimodality relies on the degree of
multimodality and the quality of data. In particular, the
required number of data can be considerably varied
according to the degree of multimodality. Although HDSw/
BC(Irr) assesses the multimodality more accurately than the
BC and HDS, it still requires significantly large data.
However, as a result of the simulation tests described in
Section 4 and case studies described in Section 5, it is ob-
served that the Type II error occurs more often than the Type
I error in HDSw/BC methods due to the insufficient data,
regardless of the unimodality or multimodality when the
null distribution is a unimodal distribution. For example, if
there is a lack of data whose true model is a unimodal
distribution, HDSw/BC methods invariably assess them with
unimodality despite the unsatisfactory data to evaluate the
unimodality. If there are insufficient data whose true model
is a multimodal distribution, HDSw/BC methods frequently
assess them with the unimodality. However, if there is lack of
data whose true model is multimodality but the data are
sufficient to represent a multimodality characteristic,
HDSw/BC methods assess them with multimodality. In
addition, reliability analysis of the wind turbine power was
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FIGURE 19: Accuracy of assessment of multimodality. (a) Temperature at Daegwallyeong. (b) Temperature at Seoul. (¢) Wind speed at

Daegwallyeong. (d) Shift factor.

performed to observe how the modality assessment using
HDSw/BC affects the reliability analysis. It was found that
HDSw/BC vyielded accurate reliability analysis results than
those obtained using the unimodality assumption when the
true modality is unknown.

6. Conclusion

In this paper, bimodality coefficient (BC) and Hartigan’s dip
statistic (HDS), which are the existing methods for assessing
unimodality or multimodality of distributions, were studied
and their limitations were discussed. To overcome the
contrast limitations of the BC and HDS, HDSw/BC was
proposed. The proposed HDSw/BC uses the BC values
calculated from sample skewness and kurtosis to determine

the optimum significance level through quadratic or irra-
tional functions and finally identifies the modality of the data
using a dip statistic of the original HDS determined by the
distribution shapes. Thus, HDSw/BC methods are more
reliable and stable than the BC and more useful and accurate
than the original HDS. The quadratic function affects the
significance level to produce the smallest significance level;
thus, HDSw/BC(Quad) has the highest probability to judge
the data as unimodality. However, the irrational function
yields the largest significance level; thus, HDSw/BC(Irr) has
the highest probability to judge the data as a multimodality.

To verify the performance of the proposed methods, the
statistical simulation tests to evaluate unimodality or mul-
timodality were carried out for assumed true unimodal,
bimodal, and trimodal distributions. To verify the
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applicability of the proposed method to real applications,
real engineering data such as temperature, wind speed, and
shift factor of a rubber material were used to identify their
modality. Through the simulation tests and case studies, it

was shown that HDSw/BC(Quad) is more accurate, robust,
reliable, and quickly converges to true modality than the BC
and original HDS for both unimodal and multimodal dis-
tributions; HDSw/BC(Irr) is the most accurate method and
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has a high convergence rate to true modality, especially for
multimodal distributions. HDSw/BC has, however, slightly
lower accuracy than HDS for the unimodal distributions, but
the error is very small. Accordingly, if users strongly need to
avoid Type I error, i.e., incorrect identification of unim-
odality as multimodality, HDSw/BC(Quad) is recom-
mended; otherwise, to avoid Type II error, i.e., incorrect
identification of multimodality as unimodality, HDSw/
BC(Irr) is recommended.

In this paper, the proposed methods are implemented to
assess the unimodality or multimodality; however, the re-
sults of assessing the modality will affect the statistical
modeling and reliability analysis. Accordingly, in future
work, the effect of modality of data on statistical modeling
and reliability analysis will be investigated. Furthermore, the
BC, HDS, and HDSw/BC can only assess either unimodality
or multimodality and they cannot evaluate whether samples
have bimodal or trimodal or highly modal distributions.
Therefore, a method of determining the number of modes
will be developed in the future.

Appendix

A. Assessment Results of HDS according to
Significance Level

In this section, results obtained using HDS are varied
according to a significance level to assess a multimodality.
Figure 20 shows the accuracy and error of the assessment
results using HDS methods with different significance levels
(). The accuracy of HDS is varied according to the sig-
nificance level; in particular, it is considerably sensitive to the
significance level for multimodal distribution.

B. Comparison between Four
HDSw/BC Methods

In this section, the four models (HDSw/BC with quadratic
(Quad), exponential (Exp), linear (Lin), and irrational (Irr))
are compared. Figure 21 shows the results using HDSw/BC
methods for a unimodal distribution with BS(50,0.4), a
bimodal distribution with 0.5 N(150,10)&0.5 N(200, 10), and
a trimodal distribution with 0.4 N(100, 20), 0.3 N(200, 20), &
0.3N(300, 20). The performance of HDSw/BC(EXP) is
similar to that of HDSw/BC(Quad) and that of HDSw/
BC(Lin) is between those of HDSw/BC(Quad) and HDSw/
BC(Irr).

C. Skewness, Kurtosis, and BC for
BS Distribution

Figures 22-24 show the sample skewness, excess kurtosis,
and bimodality coefficient values to clarify the varying BC
values according to skewness and kurtosis as 7 increases for
BS(50,0.4) distribution. In Figures 22 and 23, the squares of
skewness and excess kurtosis are 1.392 (dash-dotted line in
Figure 22) and 2.33 (dash-dotted line in Figure 23), re-
spectively, and the square of the sample skewness and
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kurtosis converge to the true values of population as # in-
creases. In Figures 23 and 24, the convergent rate of kurtosis
of the samples increases for n>30; therefore, BC values
decrease and converge to the population’s BC, 0.449.
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Data Availability

A registry of research data for case studies such as tem-
perature and wind speed can be found at https://data.kma.
go.kr.
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