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A new Elman Neural Network (ENN) optimized by quantum-behaved adaptive particle swarm optimization (QAPSO) is
introduced in this paper. According to the root mean square error, QAPSO is used to select the best weights and thresholds of
the ENN in training samples. The optimized neural network is applied to aeroengine fault diagnosis and is compared with other
optimized ENN, original ENN, BP, and Support Vector Machine (SVM) methods. The results show that the QAPSO-ENN is more
accurate and reliable in the aeroengine fault diagnosis than the conventional neural network and other ENN methods; QAPSO-
ENN has great diagnostic ability in small samples.

1. Introduction

Theoperational safety, economy, and reliability of aeroengine
are problems of primary concern for airline companies [1].
The fault diagnosis plays a key role in enhancing the working
safety and reliability and reducing the operating cost of
aircraft engine. Therefore, accurate aeroengine fault identifi-
cation in advance provides a sufficient decision-making time
for the airline maintenance plan development and avoids
excess maintenance and inadequate maintenance. At present,
the commonly used aeroengine fault diagnosis methods
include expert system, fuzzy reasoning, pattern recognition,
and intelligent computation.

In recent years, intelligent computingmethods, especially
neural network algorithms, have been rapidly developed
in image processing, control, and other fields. The neural
network is successfully introduced into the fault diagnosis
by Zedda and Singh [2]; the BP neural network belongs to
the static networks which make the dynamic network of the
original aeroengine state monitoring time become a static
model on the space. So it is not suitable for aeroengine fault
diagnosis; Elman Neural Network (ENN) [3], a dynamic
recursive network, has the characteristics of fast training
speed, simple structure, and high prediction precision com-
pared with BP neural network and has been widely studied in
the literature. Elman Neural Network was used by Gao et al.

to identify the dynamical systems [4]. In order to improve the
prediction accuracy of network traffic,Wang et al. proposed a
modified Elman Neural Network for the network system [5].
Lin and Hong present an improved Elman Neural Network-
(IENN-) based algorithm for optimal wind-energy control
with maximum power point tracking [6]. However, it also
have the problems of falling into the local minimum value
and the convergence rate slowing down when dealing with
small samples, high dimension, and deteriorated network
performance. In addition, if the initial weight and threshold
selection are not appropriate, ENN convergence becomes
difficult and cannot get the desired prediction effect.

Particle swarm optimization (PSO) [7, 8], an intelligent
optimization algorithm, has the characteristics of fast conver-
gence and high precision and has been applied in many fields
[9] such as being used for optimal location of flexible AC
transmission system devices considering cost of installation
and system loadability [10] and solving the economic dispatch
(ED) problem of power system [11]. However, PSO also has
the problem that it easily falls into the local minimum, which
leads to the optimized ENN by PSO not as good as the
ordinary ENN in solving the small sample problem.

In order to solve the problem that the PSO extremely
easily falls into the minimum value, the quantum-behaved
adaptive particle swarm optimization (QAPSO) method
based on the ENN combining the adaptive particle swarm
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Figure 1: Elman Neural Network structure diagram.

optimization algorithm [12] and quantum-behaved particle
swarm optimization algorithm proposed by Sun et al. [13,
14] is proposed in this paper and is utilized to diagnose
the aeroengine faults. The diagnosis results are reliable and
suitable [15, 16].

2. Brief of Elman Neural Network

ENN was proposed by Elman in 1990 and its structure was
shown in Figure 1.

As shown in Figure 1, 𝑢(𝑡) is the network input on the
time series, 𝑦𝑐(𝑡) is the output of the feedback layer, 𝑦(𝑡) is
the network output, and 𝑜(𝑡) is the hidden layer output; the
network calculation process is as follows:

𝑥0 (𝑡 + 1) = 𝐻𝑦𝑐 (𝑡) + 𝑊𝑢 (𝑡) + 𝜃
𝑦𝑐 (𝑡) = 𝑜 (𝑡 − 1) = 𝑓1 (𝑥0 (𝑡 − 1))
𝑦 (𝑡) = 𝑓2 (𝐴𝑦𝑐 (𝑡) + 𝜑) ,

(1)

where 𝑥0(𝑡) is the input of the hidden layer, 𝑊,𝐻,𝐴 are the
connection weight matrix of the input layer to the hidden
layer, the feedback layer to the hidden layer, and the hidden
layer to the output layer; 𝑓1(∙) And 𝑓2(∙) are the transfer
function of the hidden layer and the output layer.

Whether the network training has stopped or not, the
judgment error function is

𝐸 = 𝑛∑
𝑡=1

󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑑 (𝑡)󵄩󵄩󵄩󵄩22 , (2)

where 𝑑(𝑡) is the expected output of the neural network; 𝑦(𝑡)
is the actual output of the neural network; ‖∙‖2 represents the
Frobenius norm of the vector.

3. Brief of Particle Swarm Optimization

In the 𝑁-dimensional search space, the particles fly at a
certain speed, X𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑁) is the position of the𝑖th particle, V𝑖 = (V𝑖1, V𝑖2, . . . , V𝑖𝑁) is the ith particle cur-
rent flight speed, and pbesti = (𝑝𝑏𝑒𝑠𝑡𝑖1, 𝑝𝑏𝑒𝑠𝑡𝑖2, ..., 𝑝𝑏𝑒𝑠𝑡𝑖𝑁)
is the optimal position experienced by the 𝑖th particle,
which can be considered the individual optimal position.

Gbestj = (𝑧𝑏𝑒𝑠𝑡𝑗1, 𝑧𝑏𝑒𝑠𝑡𝑗2, . . . , 𝑧𝑏𝑒𝑠𝑡𝑗𝑁) is the optimal posi-
tion searched by the entire particle group, which can be
considered as the global optimal position. The speed and
position updating equation of each particle are

V𝑖𝑗 (𝑡 + 1) = V𝑖𝑗 (𝑡) + 𝑐1𝑟2 (𝑝𝑏𝑒𝑠𝑡𝑖𝑛 (𝑡) − 𝑥in (𝑡))
+ 𝑐1𝑟2 (𝑔𝑏𝑒𝑠𝑡𝑗𝑛 (𝑡) − 𝑥in)

𝑥in (𝑡 + 1) = 𝑥in (𝑡) + Vin (𝑡 + 1) ,
(3)

where 𝑖 = 1, 2, . . . ,𝑀; 𝑛 = 1, 2, . . . , 𝑁; 𝑐1 and 𝑐2 are the
acceleration factor or called the learning factor; 𝑟1 and 𝑟2 are
the random number of [0, 1].

The basic PSO algorithm is simple to use and has fast
searching speed, but it also easily falls into the localminimum
and convergence precision problems [17], so it is necessary to
improve it.

4. Brief of Quantum-Behaved Adaptive
Particle Swarm Optimization

4.1. The Initial Position of the Quantum Particle Group Is
Set. The quantum bits are used to replace the particles in
the standard particle group, where the positional state of the
quantum bits consists of |0⟩ and |1); the quantum bits can be
depicted by the following formula.󵄨󵄨󵄨󵄨𝜙⟩ = 𝛼 |0⟩ + 𝛽 |1) , (4)

where 𝛼 and 𝛽meet the following relationship:

|𝛼|2 + 󵄨󵄨󵄨󵄨𝛽󵄨󵄨󵄨󵄨2 = 1, (5)

Therefore, we consider that the position of 𝑥𝛼 is the
position of |0⟩ state, where 𝑥𝛽 is the position in the |1)
state; the position of the particle at the conventional 𝑥 at the
quantum bit is expressed as

𝑥 = 𝑥𝛼 + 𝑥𝛽, (6)

The initial position of the standard particle group is
transformed into the initial position of the quantum particle
group as follows:

𝑋𝑖 = [𝑥𝛼𝑖1 𝑥𝛼𝑖2 ⋅ ⋅ ⋅ 𝑥𝛼𝑖𝑗 ⋅ ⋅ ⋅ 𝑥𝛼𝑖𝑁𝑥𝛽𝑖1 𝑥𝛽𝑖2 ⋅ ⋅ ⋅ 𝑥𝛽𝑖𝑗 ⋅ ⋅ ⋅ 𝑥𝛽𝑖𝑁] . (7)

where 𝑖 = 1, 2, . . . ,𝑀; 𝑗 = 1, 2, . . . , 𝑁; 𝑁 is the dimension
of the search space; 𝑀 is the population size of the particle
swarm.

4.2. Particle Update Process. For the 𝑖th particle, the average
distance and rate with the other particles [18] are

𝐷𝑖𝑥 = 1𝑀 − 1
𝑀∑
𝑗=1,𝑗 ̸=𝑖

√ 𝑁∑
𝑘=1

(𝑥𝑖𝑘 − 𝑥𝑗𝑘)2

𝐷𝑖V = 1𝑀 − 1
𝑀∑
𝑗=1,𝑗 ̸=𝑖

√ 𝑁∑
𝑘=1

(V𝑖𝑘 − V𝑗𝑘)2.
(8)
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The particle trajectory difference was determined by the
average distance and the average rate and expressed as

𝐷𝑖𝑐 = 𝐷𝑖𝑥 + 𝜌𝑋𝑖𝑉𝑖 ∗ 𝐷𝑖V (9)

𝜌𝑋𝑖𝑉𝑖 = 𝐸 (𝑋𝑖𝑉𝑖) − 𝐸 (𝑋𝑖) 𝐸 (𝑉𝑖)√𝐸 (𝑋2𝑖) − 𝐸2 (𝑋𝑖) ∙ √𝐸 (𝑋2𝑖) − 𝐸2 (𝑋𝑖) = ∑𝑁𝑗=1 𝑥𝑖𝑗V𝑖𝑗 − (1/𝑁)∑𝑁𝑗=1 𝑥𝑖𝑗∑𝑁𝑗=1 V𝑖𝑗
√∑𝑁𝑗=1 𝑥2𝑖𝑗 − (1/𝑁) (∑𝑁𝑗=1 𝑥𝑖𝑗)2 ∙ √∑𝑁𝑗=1 V2𝑖𝑗 − (1/𝑁) (∑𝑁𝑗=1 V𝑖𝑗)2

. (10)

where 𝜌𝑋𝑖𝑉𝑖 is the correlation coefficient between 𝑥 and V
Pearson.

According to the above formula to calculate𝐷𝑖𝑐,𝐷𝑐min is
the largest particle trajectory difference,𝐷𝑐max is the smallest
recorded one, and 𝐷𝑐𝑔 is the optimal particle trajectory dif-
ference; the particle trajectory evolution factor was expressed
as

𝑓𝑐 = 𝐷𝑐𝑔 − 𝐷𝑐min𝐷𝑐max − 𝐷𝑐min
∈ [0, 1] . (11)

4.3. InertialWeight of theAdaptiveDynamic Control. Because
of the uneven distribution of the particle itself and the
global environment, particle’s cognitive ability and cognition
of global environment should be allocated dynamically in
the process of particle iteration update. On this basis, the
following dynamic weight method is proposed to keep the
dynamic balance between global optimization and local
optimization.

𝑤𝑐 (𝑓𝑐) = 11 + 1.5𝑒−2.6𝑓𝑐 ⊂ [0.4, 0.9] . (12)

4.4. Mutation Operation. In order to enable the particles to
jump out of the previous search for the optimal position and
continue to expand the search space of continuous reduction
in the iterative process, while ensuring that the particles have
the population diversity in a larger search space, the idea
of variation in genetic algorithm was applied to make the
position of quantum bits in |0⟩ and |1) status exchanged by
controlled gate. Controlled gate definition [19] is

𝐶 (𝑘) = [[[[
cos(𝑘𝜋2 ) sin(𝑘𝜋2 )
sin(𝑘𝜋2 ) cos(𝑘𝜋2 )

]]]]
. (13)

Controlled doors can be divided into two categories:

(1) 𝑘 = 1, |𝜙⟩ completely flipped

(2) 𝑘 = 0, |𝜙⟩ not flipping.
[𝑥𝛼𝑖𝑝, 𝑥𝛽𝑖𝑝] is defined as the 𝑖th quantum bit 𝑥𝑔𝑖 in the

optimal position of the global optimal particle. The variation
procedure is achieved by the following equation:

𝐶 (𝑘) ∗ 𝑥𝑔𝑖 = 𝐶 (1) ∗ [𝑥𝛼𝑖𝑝𝑥𝛽𝑖𝑝] = [0 11 0][𝑥𝛼𝑖𝑝𝑥𝛽𝑖𝑝]
= [𝑥𝛽𝑖𝑝𝑥𝛼𝑖𝑝] .

(14)

5. Elman Neural Network
Optimized by QAPSO

Because theweights and thresholds in ElmanNeuralNetwork
were calculated by using random weights and thresholds,
there might exist a set of unoptimized even unnecessary
weights and thresholds. As a result, the Elman Neural Net-
work difficultly gets satisfying test results when it is trained
in the small sample.

In this section, the new algorithm named QAPSO-ENN
is proposed to solve the problem. QAPSO-ENN calculation
flow chart is shown in Figure 2 and it is divided into two parts:
the left side of the QAPSO optimization part and the right
side of the Elman Neural Network part; the detailed steps of
the QAPSO-ENN are as follows.

Step 1. Firstly, generating the particle population randomly,
each particle in the population is constituted by a set of
weights and thresholds:

𝑋𝑖 = [𝜔𝛼11 ⋅ ⋅ ⋅ 𝜔𝛼𝐻𝐾, 𝑏𝛼1 ⋅ ⋅ ⋅ 𝑏𝛼𝐾, 𝑤𝛼1 ⋅ ⋅ ⋅ 𝑤𝛼𝐾, 𝑊𝛼11 ⋅ ⋅ ⋅ 𝑊𝛼𝐾𝑃, 𝑐𝛼1 ⋅ ⋅ ⋅ 𝑐𝛼𝑃𝜔𝛽11 ⋅ ⋅ ⋅ 𝜔𝛽𝐻𝐾, 𝑏𝛽1 ⋅ ⋅ ⋅ 𝑏𝛽𝐾, 𝑤𝛽1 ⋅ ⋅ ⋅ 𝑤𝛽𝐾, 𝑊𝛽11 ⋅ ⋅ ⋅ 𝑊𝛽𝐾𝑃, 𝑐𝛽1 ⋅ ⋅ ⋅ 𝑐𝛽𝑃]
V𝑖 = [V𝛼1 ⋅ ⋅ ⋅ V𝛼𝑖 ⋅ ⋅ ⋅ V𝛼𝑀

V𝛽1 ⋅ ⋅ ⋅ V𝛽𝑖 ⋅ ⋅ ⋅ V𝛽𝑀
] ,

(15)
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Figure 2: QAPSO-ENN flow chart.

where Xi (𝑖 = 1, . . . ,𝑀) is the initial position of the particle,𝑀 is the particle size of the population, 𝐻 is the number of
input layer nodes, 𝐾 is the number of hidden layer nodes,𝑀 is the number of output layer codes, 𝜔𝛼 and 𝜔𝛽 are the
connection weights between the input layer and hidden layer
in the position of |0⟩ and |1) state, 𝑏𝛼 and 𝑏𝛽 are the thresholds
of hidden layer in the position of |0⟩ and |1) state, 𝑤𝛼 and𝑤𝛽 are the connection weights between the feedback layer
and hidden layer in the position of |0⟩ and |1) state, 𝑊𝛼 and𝑊𝛽 are the connection weights between the hidden layer and
output layer in the position of |0⟩ and |1) state, 𝑏𝛼 and 𝑏𝛽
are the thresholds of output layer in the position of |0⟩ and|1) state, and V𝛼 and V𝛽 are the speeds of the particle in the
position of |0⟩ and |1) state.
Step 2. The difference between the expected output and
actual output of ENN is used as the fitness function of
QAPSO.The fitness of each particle is calculated according to

the fitness function and selects the individual optimum and
global optimum.

𝐹𝑖 = 𝑃∑
𝑡=1

󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑑 (𝑡)󵄩󵄩󵄩󵄩22 , (16)

where 𝑑(𝑡) is the expected output of the neural network; 𝑦(𝑡)
is the actual output of the neural network; 𝑃 is the number of
nodes in output layer.

Step 3. The average distance and the average velocity of
the particles are calculated according to (9). The maximum
average distance and the minimum average distance are
selected to calculate the evolution factor by formula (12);
then, theweight of the particle group is dynamically regulated
according to the calculated evolution factor and formula (13).

Step 4. Particles’ new position and velocity are updated
according to formula (3). Then the fitness variance is calcu-
lated and compared with the set value to determine whether
mutation operation is needed.
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Table 1: Fault mode and output labels.

Number Fault models Label
(1) 2.5 open air valve 1 0 0 0
(2) 2.9 open air valve 0 1 0 1
(3) 3.5 open air valve 0 0 1 0
(4) 3.0 open air valve 0 0 0 1

Finally, we repeat Steps 2–4 until the minimum number
of the differences from training Elman Neural Network is
reached. Thus the optimized weights and thresholds are
obtained, and then the optimized ENN is applied to the
aeroengine fault diagnosis.

6. Aeroengine Fault Diagnosis Application

6.1. Fault Model Establishment. In this paper, the GE90
engine fault data of the Boeing 777F aircraft was taken as
an example. The four kinds of gas path fault modes are y1-
2.5 valve to open, y2-2.9 open gas valve, y3-3.5 open air
valve, and y4-3.0 open air valve; then the high-pressure
compressor speed (N2), the engine exhaust gas temperature
(EGT), and fuel flow (FF), the three performance parameters,
are measured by the RD condition monitoring system to
diagnose the four kinds of faults [20]. Therefore, the fault
diagnosis model is established as follows:

𝑌 = 𝑓 (EGT, FF,N2) , (17)

where 𝑓(𝑥) represents a method, EGT, FF, and N2 are the
input of the method, the fault mode is the output of the
method, and the output labels are listed in Table 1.

6.2. Normalization. In order to make the equation meet the
physical meaning and adapt to the neural network training,
the data should be normalized when it enters the engine fault
diagnosis model.

𝑥 = 𝑥𝑖 − 𝑥min𝑥max − 𝑥min
, (18)

where 𝑥max and 𝑥min are the maximum and minimum values
of a performance parameter (𝑥𝑖 is the 𝑖th sample of the
one performance parameter); 𝑥 is the value obtained after
normalization.

6.3. The Number of Nodes Selected in Hidden Layer. The
number of nodes in the input layer was 3 and the number
of nodes in the output layer was 4 by formula (19). However,
the number of nodes in hidden layer was not determined by
a standard formula; in this paper, the number of nodes in the
hidden layer was taken as 5, 6, 7, and 8 based on the empirical
formula in [21] for simulation and the results were listed in
Table 2.

From Table 2 we can see that the diagnostic accuracy of
the network is the highest and the diagnostic performance is
the best when the nodes of hidden layer are 7. Therefore, the
Elman Neural Network and BP structure established in this
paper are determined as (3, 7, 4).

Table 2: Accuracy of different hidden layer codes in aeroengine fault
diagnosis.

Code BP ENN
5 85.77% 86.18%
6 85.79% 86.76%
7 85.93% 86.97%
8 85.06% 85.97%

The particle dimension was calculated as follows:

𝑆 = 𝑆in ∗ 𝑆ℎ + 𝑆out ∗ 𝑆ℎ + 𝑆ℎ + 𝑆out + 𝑆𝑐, (19)

where 𝑆in is the number of nodes in the input layer of the
neural network; 𝑆ℎ is the number of nodes in the hidden layer
of the neural network. 𝑆out is the number of nodes in the
output layer of the neural network; 𝑆c is the number of nodes
in feedback layer of the neural network.

6.4. Evaluation of the Results. Themean accuracy was calcu-
lated as follows:

MA = 1𝑇
𝑇∑
𝑡=1

(1 − 󵄨󵄨󵄨󵄨𝑦 (𝑡) − 𝑑 (𝑡)󵄨󵄨󵄨󵄨𝑑 (𝑡) ) , (20)

where MA is the mean accuracy and 𝑇 is the number of test
samples. y(t) is the network prediction value; d(t) is the true
value.

7. QAPSO-Elman Algorithm Validation

7.1. Parameter Setting. Aeroengine faults diagnosis is a pat-
tern classification problem. In this section, we apply the
QAPSO-ENN on faults diagnosis and compare it with
improved PSO optimized ENN(IPSO-ENN), PSO optimized
ENN (PSO-ENN), standard ENN, BP, and SVM [22].

All of the six methods were used in aeroengine faults
diagnosis by programming inMATLABR2012a environment
running on a PCwith 3.2GHz CPUwith 4.0GB RAM. In the
network training, we get 2000 samples where each faultmode
has 500 groups and the first 400 groups of each model were
used as training samples and the remaining 100 groups were
used as test samples.The parameters of eachmethod are set as
shown in Tables 3 and 4.The SVM parameters choose default
value provided in the LIBSVM 3.12 toolbox.

7.2. Simulation Results of Training Time. It is important to
take the time in the actual aeroengine fault diagnosis process.
A quick and accurate method can provide more time for the
maintenance decision and maintenance plan; therefore, in
this section, we train all the methods and count the training
times in the different number of training samples and the
results are listed in Table 5.

We can see from Table 5 that the training time of the 6
methods is decreasing when the number of training samples
decreases. The training time of the three optimized ENN
methods is much more than the others, because much of
training time of optimized ENN is spent on evaluating all the
individuals iteratively.
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Table 3: Parameters in the neural network.

Method Number of nodes in input layer Number of nodes in hidden layer Number of nodes in output layer Error Epoch
ENN 3 7 4 0.01 10000
BP 3 7 4 0.01 10000

Table 4: Parameters in the particle swarm optimization algorithm.

Method 𝑥max/𝑥min Vmax/Vmin 𝑀 Iteration times 𝑤max/𝑤min 𝑐1/𝑐2
PSO 5/−5 0.4/−0.4 67 200 0.9/0.4 2.05/2.05
IPSO 5/−5 0.4/0.4 67 200 0.9/0.4 2.05/2.05
QAPSO 5/−5 0.4/−0.4 67 200 0.9/0.4 2.05/2.05
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Figure 3: Diagnostic accuracy of four fault modes in the 1600
training samples.

7.3. SimulationResults inAccuracy. In Section 6.2we train the
sixmethods and study the training times of all themethods in
the 1600/1200/800/400 training samples. In this section, the
trained methods are used to test the accuracy of each fault
mode in different training samples and the results are shown
in Figures 3–6.

The performances of the QAPSO-ENN and other meth-
ods were compared in 1600/1200/800/400 training samples.
Figures 3–6 show each fault mode accuracy of all methods
in different training samples. It can be seen from Figure 3
that QAPSO-ENN performed the best results on fault 2 and
fault 3, while SVM and QAPSO performed the best on fault 1
and the ENN performed the best on fault 4. From the other
figures, we can see that QAPSO-ENN also performs best
on fault 2 and fault 3; meanwhile, QAPSO-ENN and SVM
also perform the best on fault 1 and QAPSO-ENN and ENN
perform the best on fault 4.
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Figure 4: Diagnostic accuracy of four fault modes in the 1200
training samples.

In general, the optimized ENNobtained better result than
ENN and BP in aeroengine fault diagnosis, which can be
confirmed in the four figures; the accuracy of any optimized
ENNmethods ismore accurate than the other threemethods.
It can be also observed that SVM is better than ENN and
BP and fault 3 is more difficult to diagnose than other faults.
However, the optimized ENN is more accurate than SVM in
fault 3 so we think this result is significantly correlated with
the optimized operation for ENN.

In order to verify the diagnostic capability of the six
methods in aeroengine and the diagnostic capability in
the small samples, the average diagnostic accuracy of each
method was calculated in the different training samples and
the results ar listed in Table 6.

It can be observed from Table 6 that QAPSO-ENN has
much better diagnostic capability than the other 5 methods
and obtains the best mean accuracy in 1600/1200/800/400
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Table 5: Mean training time on different training samples.

Sample Training time/s
QAPSO-ENN BP ENN IPSO-ENN PSO-ENN SVM

1600 222.31 96 60 217.33 218.45 0.160
1200 193.28 87 43 191.37 194.13 0.155
800 153.09 83 34 153.11 148.51 0.151
400 130.20 71 21 129.78 129.53 0.124

Table 6: Average mean accuracy of 6 methods with different numbers of training samples.

Samples Average mean accuracy/%
QAPSO-ENN BP ENN IPSO-ENN PSO-ENN SVM

1600 95.02 84.41 87.61 93.74 93.21 90.00
1200 94.26 85.39 87.35 93.43 92.47 89.75
800 94.63 86.40 87.42 93.44 91.71 90.00
400 92.72 83.93 85.79 92.10 91.03 90.25
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Figure 5: Diagnostic accuracy of four fault modes in the 800
training samples.

samples. IPSO-ENN and QAPSO-ENN are better than PSO-
ENN; that is, the QAPSO and the IPSO have overcome the
problem that standard PSO easily falls into the local optimum
and low convergence accuracy.

8. Conclusions

In this paper, a new Elman Neural Network named QAPSO-
ENN was proposed. The proposed method optimizes both
the Elman Neural Network weights and thresholds by using
QAPSO. In order to validate the performance of the proposed
QAPSO-ENN, it was applied to aeroengine fault diagnosis
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Figure 6: Diagnostic accuracy of four fault modes in the 400
training samples.

and compared with some other methods. Results show that
the QAPSO-ENN is more accurate in most faults than the
other optimized ENN methods, SVM, ENN, and BP and
shows great advantage by obtaining highest accuracy in the
number of 1600 training samples. When the number of
training samples decreased, this advantage is also remarkable,
which suggests that the QAPSO-ENN is a more reliable and
suitable tool for diagnosis of the aeroengine fault.
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