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The quality of dynamic magnetic resonance imaging reconstruction has heavy impact on clinical diagnosis. In this paper, we
propose a new reconstructive algorithm based on the 𝐿 + 𝑆 model. In the algorithm, the 𝑙1 norm is substituted by the 𝑙𝑝 norm to
approximate the 𝑙0 norm; thus the accuracy of the solution is improved.We apply an alternate iterationmethod to solve the resulting
problem of the proposed method. Experiments on nine data sets show that the proposed algorithm can effectively reconstruct
dynamic magnetic resonance images.

1. Introduction

Image reconstruction is widely applied in the medical field,
and most clinical diagnoses depend on computer hardware
equipment; thus the improvement on image reconstruction
algorithm has great significance. At present, among all kinds
of detection methods, magnetic resonance imaging (MRI)
and computed tomography (CT) are the most common and
important ways for clinical diagnosis. When checking organs
by MR, the final image is affected in varying degrees by
artifacts, which results in degrading in quality and affects the
diagnoses. Therefore, reconstruction algorithms with high
quality and fast calculation have become one of the research
focuses in this field.

In recent years, in order to ensure image quality and
to speed up the pace of reconstruction, there emerge many
improved methods, such as multicoil parallel imaging [1],
keyhole imaging technology [2, 3], unfold method [4], and𝑘-𝑡 SENSE [5]. After the theory of compressed sensing (CS)
[6, 7] was proposed, many scholars applied it to the dynamic
MR reconstruction [5, 8, 9]. These methods process the
original data by downsampling method instead of traditional
full-sampling and reduce the computing time.

Since the development of robust principal component
analysis (RPCA) theory [10], breakthroughs have emerged in
the field of MR image reconstruction. This theory suggests
that images with spatiotemporal correlation can be decom-
posed into low-rank (LR)matrices and sparsematrices.Many
researchers introduced this theory to reconstruct dynamic
MR images to achieve better results. In [11], a method was
proposed based on accelerated diffusion weighted sequences
for image reconstruction by the 𝐿 + 𝑆 decomposition. In
[12], 3D cardiac MRI was reconstructed by combining 𝐿 + 𝑆
decomposition with prior knowledge. In [13], a new 𝐿 + 𝑆
model was proposed, which decomposed a series of dynamic
MR images with temporal and spatial correlation into LR
matrices and sparse matrices. As a result, the dynamic MRI
could be divided into the foreground and background to help
diagnosis. In order to reconstruct dynamic MR images with
better quality, based on the traditional 𝐿 + 𝑆model, a rank-1
and sparse model was proposed in [14].

Recently, a lot of researchers focused on the problem
of 𝑙0 norm approximation [15–17]. In particular, in [15],
Candés et al. pointed out that a nonconvex problem can be
transformed into a convex optimization problem using the 𝑙1
norm instead of 𝑙0 norm. However, the 𝑙1 norm and 𝑙0 norm
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Figure 1: Framework of the proposed dynamic MRI reconstruction.

are still different in numerical values. For example, Sun et al.
suggested that if the nuclear norm of the matrix is regarded
as a 𝑙1 norm and the rank of the matrix is regarded as a 𝑙0
norm, the error between them can not be ignored in [18].
The algorithm in [19] achieved good approaching effect by
introducing a nonconvex regularization which was like a 𝑙𝑝
norm. In [20], Quach et al. proposed a nonconvex online
RPCA model which enhanced the sparsity by minimization
of the 𝑙𝑝 norm and achieved good results in many fields, such
as face modeling and online background removal.

Inspired by the above discussion, combining RPCA the-
ory with a nonconvex idea, we propose a new MR image
reconstruction model. The contributions of this paper are
as follows: (1) in order to better approximate 𝑙0 norm, we
introduce a nonconvex regularization using the 𝑙𝑝 norm
instead of the 𝑙1 norm. (2)Thealternating directionmethodof
multipliers (ADMM) is used to solve the nonconvex problem.
In addition, we point out that the solution is convergent. The
framework of this proposed method is shown in Figure 1.

The rest of this paper is organized as follows: in Section 2,
a review of the 𝐿 + 𝑆 model is presented. In Section 3,
we firstly introduce the proposed model and then provide
the detailed implementation of the proposed model. Finally,
we illustrate the convergence of the proposed algorithm. In
Section 4, in order to verify the effectiveness of our algorithm,
comparisons between our method and the state-of-the-art
algorithms are provided. In Section 5, we conclude ourworks.

2. Related Works

According to the theory of RPCA [10], we focus on themodel

min
𝐿,𝑆

{rank (𝐿) + 𝜆 ‖𝑆‖0 s.t. 𝐿 + 𝑆 = 𝑀} , (1)

where 𝑀 is the observed data, 𝐿 and 𝑆 are the LR and the
sparse matrix, respectively, 𝑀,𝐿, and 𝑆 ∈ 𝑅𝑚×𝑛, and 𝜆
denotes the regularization parameter.

Since (1) is a nonconvex optimization problem, the
effective solution of the problem is not easy to obtain [21].

According to the theory of RPCA, Otazo et al. [13] used the
nuclear norm of 𝐿 and the 𝑙1 norm of 𝑆 instead of the rank
of 𝐿 and the 𝑙0 norm of 𝑆 in (1), respectively, and proposed a
convex optimization problem (𝐿 + 𝑆model):

min
𝐿,𝑆

{‖𝐿‖∗ + 𝜆 ‖𝑆‖1 s.t. 𝐿 + 𝑆 = 𝑀} , (2)

where ‖ ⋅ ‖∗ is the nuclear norm. ‖ ⋅ ‖1 denotes 𝑙1 norm, which
is the sum of absolute values of the elements in matrix 𝑆.

Let the data of an image correspond to the data of the 𝑘-𝑡
space by introducing an encoding operator 𝐸. And assume𝑇 to be the sparse transformation of 𝑆; that is, the dynamic
component 𝑆 can be expressed by the known sparse basis 𝑇.
So the minimization problem (2) can be written as

min
𝐿,𝑆

{‖𝐿‖∗ + 𝜆 ‖𝑇𝑆‖1 s.t. 𝐸 (𝐿 + 𝑆) = 𝑑} . (3)

Singular Value Thresholding (SVT) algorithm [15] is
introduced to solve the minimization problem (3).

3. The Proposed Model

3.1. Modeling. Although the above methods have good the-
oretical guarantee and have made major breakthroughs in
dynamic MR image reconstruction, 𝑙1 norm can not well
approximate 𝑙0 norm [15, 16, 20]. In addition, authors of [20,
22] pointed out that, among common nonconvex functions,
such as 𝑞-norm [23], SCAD [24], log [15], MCP [25], ETP
[26], and Geman [27], 𝑞-norm is the best approximation to𝑙0 norm. Inspired by this, we propose a newmodel as follows:

min
𝐿,𝑆

{‖𝐿‖∗ + 𝜆 ‖𝑆‖𝑝𝑝 s.t. 𝐸 (𝐿 + 𝑆) = 𝑑} , (4)

where 𝐿 is a LR matrix, 𝑆 is a sparse matrix, and ‖ ⋅ ‖𝑝 denotes𝑙𝑝 norm. 𝑑 is an undersampled observed data in the 𝑘-𝑡 space
and (𝐿+𝑆) ∈ 𝑅𝑛×𝑛 denotes the ideal reconstructedMR image,
where 𝑛 × 𝑛 denotes the size of the image. 𝐸 is an encoding
operator, whichmakes the data of an image correspond to the
data of the 𝑘-𝑡 space.
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Defining the 𝑝 norm as (⋅) = | ⋅ |𝑝, the minimization
problem (4) can be written as

min
𝐿,𝑆

{{{‖𝐿‖∗ + 𝜆
𝑛×𝑛∑
𝑖,𝑗=1

𝑓 (𝑠𝑖,𝑗) s.t. 𝐸 (𝐿 + 𝑆) = 𝑑}}} , (5)

where 𝑠𝑖,𝑗 denotes the elements of 𝑆 located in 𝑖th row and𝑗th column, 𝑖 = 1, 2, . . . , 𝑛, and 𝑗 = 1, 2, . . . , 𝑛. And assume
that the nonconvex function 𝑓 : 𝑅 → 𝑅+ is continuous and
monotonically increasing on [0,∞).

Combining the properties of supergradient for nons-
mooth points with Taylor expansion [20], the second term
of (5) can be approximated as

𝑛×𝑛∑
𝑖,𝑗=1

𝑓 (𝑠𝑖,𝑗) = 𝑛×𝑛∑
𝑖,𝑗=1

𝑓 (𝑠(𝑘)𝑖,𝑗 ) + ⟨∇𝑓 (𝑠(𝑘)𝑖,𝑗 ) , 𝑠𝑖,𝑗 − 𝑠(𝑘)𝑖,𝑗 ⟩ , (6)

where 𝑘 is the number of iterations.
Therefore, the new model can be further expressed as

min
𝐿,𝑆

{{{‖𝐿‖∗ + 𝜆(
𝑛×𝑛∑
𝑖,𝑗=1

𝑓 (𝑠(𝑘)𝑖,𝑗 ) + ⟨∇𝑓 (𝑠(𝑘)𝑖,𝑗 ) , 𝑠𝑖,𝑗 − 𝑠(𝑘)𝑖,𝑗 ⟩) s.t. 𝐸 (𝐿 + 𝑆) = 𝑑}}} . (7)

3.2. Solving the Model. By introducing a Lagrangian
multiplier, (7) turns to be an unconstrained minimization
problem as

(𝐿, 𝑆, 𝑌, 𝜇) = min
𝐿,𝑆,𝑌,𝜇

{{{𝜆𝐿 ‖𝐿‖∗ + 𝜆𝑆(
𝑛×𝑛∑
𝑖,𝑗=1

𝑓 (𝑠(𝑘)𝑖,𝑗 ) + ⟨∇𝑓 (𝑠(𝑘)𝑖,𝑗 ) , 𝑠𝑖,𝑗 − 𝑠(𝑘)𝑖,𝑗 ⟩) + ⟨𝑌, 𝐸𝐻 (𝐸 (𝐿 + 𝑆) − 𝑑)⟩ + 𝜇2 󵄩󵄩󵄩󵄩󵄩𝐸𝐻 (𝐸 (𝐿 + 𝑆) − 𝑑)󵄩󵄩󵄩󵄩󵄩2𝐹}}} , (8)

where 𝜆𝐿 and 𝜆𝑆 are regularization parameters which balance
the nuclear norm and the 𝑙𝑝 norm. 𝑌 denotes a Lagrangian

multiplier, and 𝜇 is a penalty parameter. In order to solve (8),
we divide it into two subproblems as

𝐿(𝑘+1) = argmin
𝐿

{𝜆𝐿 ‖𝐿‖∗ + 𝜇(𝑘)2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐸H (𝐸 (𝑆(𝑘) + 𝐿) − 𝑑) −

𝑌(𝑘)𝜇(𝑘)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

} , (9)

𝑆(𝑘+1) = argmin
𝑆

{{{𝜆𝑆(
𝑛×𝑛∑
𝑖,𝑗=1

𝑓 (𝑠(𝑘)𝑖,𝑗 ) + ⟨∇𝑓 (𝑠(𝑘)𝑖,𝑗 ) , 𝑠𝑖,𝑗 − 𝑠(𝑘)𝑖,𝑗 ⟩) + 𝜇(𝑘)2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐸𝐻 (𝐸 (𝐿(𝑘+1) + 𝑆) − 𝑑) −

𝑌(𝑘)𝜇(𝑘)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

}}} . (10)

When 𝑆(𝑘) is obtained, we solve (9) by the Singular Value
Thresholding (SVT) algorithm [15], and the solution is

𝐿(𝑘+1) = SVT𝜏 (𝐸𝐻 (𝐸 (𝑆(𝑘)) − 𝑑) − 𝑌(𝑘)𝜇(𝑘) ) , (11)

where SVT𝜏(𝑋) = 𝑈[diag (Σ − 𝜏𝐼)+]𝑉𝑇, (𝑥)+ = max(𝑥, 0),
and 𝜏 is a positive constant.

When 𝐿(𝑘+1) is computed, the minimization problem (10)
is equivalent to

𝑆(𝑘+1) = argmin
𝑆

{{{𝜆𝑆(
𝑛×𝑛∑
𝑖,𝑗=1

V(𝑘)𝑖,𝑗
󵄨󵄨󵄨󵄨󵄨𝑠𝑖,𝑗󵄨󵄨󵄨󵄨󵄨) + 𝜇

(𝑘)

2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐸𝐻 (𝐸 (𝐿(𝑘+1) + 𝑆) − 𝑑) −

𝑌(𝑘)𝜇(𝑘)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

}}} , (12)

where

V(𝑘)𝑖,𝑗 = ∇𝑓 (𝑠(𝑘)𝑖,𝑗 ) = 𝑝 (󵄨󵄨󵄨󵄨󵄨𝑠𝑖,𝑗󵄨󵄨󵄨󵄨󵄨 + 𝜀)𝑝−1 (13)

and 𝜀 is a small positive real number to avoid the case that the
gradient is 0. The minimization problem (12) is solved by the
soft-thresholding algorithm [20, 28] as follows:
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(1) Input: Observed 𝑘-𝑡 data 𝑑, encoding operator 𝐸, regularization parameter 𝜆𝐿, 𝜆𝑆;(2) Initialize: 𝐿(0) = 𝑀(0) = 𝐸𝐻𝑑, 𝑆(0) = 0, 𝑘 = 0, 𝜇(0) > 0, V(0)𝑖𝑗 = 1, 𝑌(0) = 𝐸𝐻𝑑/𝜎(𝐸𝐻𝑑);(3) Solving (4) via an alternate iteration method
While not convergence do
Update 𝐿(𝑘+1) by (11);
Update 𝑆(𝑘+1) and V(𝑘+1)𝑖𝑗 by (13) and (14), respectively;
Update𝑀(𝑘+1) by (15);
Update 𝑌(𝑘+1) and 𝜇(𝑘+1) by (16) and (17), respectively;𝑘 = 𝑘 + 1;

End while(4) Output: 𝐿̂ = 𝐿(𝑘+1), 𝑆 = 𝑆(𝑘+1), 𝑀̂ = 𝐿̂ + 𝑆.
Algorithm 1: Dynamic MRI reconstruction algorithm based on nonconvex low-rank model.

𝑆(𝑘+1) = 𝑆𝜆𝑆/𝜇(𝑘)×V(𝑘) (𝐸𝐻 (𝐸 (𝐿(𝑘+1)) − 𝑑) − 𝑌(𝑘)𝜇(𝑘) ) , (14)

where 𝑆𝜂(𝑧𝑖) is a soft-thresholding operator which is defined
as 𝑆𝜂(𝑧𝑖) = max(|𝑧𝑖| − 𝜂, 0)(𝑧𝑖/|𝑧𝑖|) and 𝜂 = 𝜆𝑆/𝜇(𝑘) × V(𝑘) is a
threshold.

In the iteration process, after 𝐿(𝑘+1) and 𝑆(𝑘+1) are com-
puted, we update𝑀(𝑘+1) by

𝑀(𝑘+1) = 𝐿(𝑘+1) + 𝑆(𝑘+1)
− 𝐸𝐻 (𝐸 (𝐿(𝑘+1) + 𝑆(𝑘+1)) − 𝑑) , (15)

where 𝐸𝐻(𝐸(𝐿(𝑘+1) + 𝑆(𝑘+1)) − 𝑑) represents artifacts, which
is subtracted from the updating 𝐿(𝑘+1) + 𝑆(𝑘+1) as a residual,
resulting in a clearer image [22].

Finally, the parameters 𝑌 and 𝜇 are updated as follows:

𝑌(𝑘+1) = 𝑌(𝑘) + 𝜇(𝑘)𝐸𝐻 (𝐸 (𝐿(𝑘+1) + 𝑆(𝑘+1)) − 𝑑) , (16)

𝜇(𝑘+1) = 𝜌𝜇(𝑘), (17)

where 𝜌 > 1.The complete process of this algorithm is shown
in Algorithm 1.

According to [20], the above solving process is conver-
gent.

Theorem 1 (see [20]). Let {𝐿(𝑘), 𝑆(𝑘)} be the sequences gen-
erated by Algorithm 1, and 𝐹(𝐿(𝑘), 𝑆(𝑘)) is monotonically
decreasing; that is, 𝐹(𝐿(𝑘), 𝑆(𝑘))−𝐹(𝐿(𝑘+1), 𝑆(𝑘+1)) ≥ 0. Then the
sequences {𝐿(𝑘), 𝑆(𝑘)} are bounded and have at least one
gathering point.

4. Numerical Experimental
Comparisons and Analysis

In order to evaluate the performance of the proposed model,
we compare our algorithm with the 𝑘-𝑡 SENSE [5], XD-
GRASP [9], and the LplusS [13]. All experiments are run on a
PCwith Intel Core i5-4690 processor, 8 GB ofmemory,Win 7
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Figure 2: The relationship between the function values and the
parameter 𝑝.

64-bit operating system, and MATLAB 2014a. The quality of
the reconstructed image is evaluated by the root mean square
error (RMSE), which is defined as

RMSE = ‖𝑑 − 𝐸 (𝐿 + 𝑆)‖𝐹‖𝑑‖𝐹 , (18)

where 𝑑 is the observation data and 𝐿 and 𝑆 are the LRmatrix
and sparse matrix for the reconstructed image, respectively.
The smaller the RMSE is, the better the MR image is
reconstructed.

The iteration stop indicator for all algorithms of this paper
is linked to the relative error (Err), which is defined as

Err =
󵄩󵄩󵄩󵄩󵄩𝐿(𝑘+1) + 𝑆(𝑘+1) − (𝐿(𝑘) + 𝑆(𝑘))󵄩󵄩󵄩󵄩󵄩𝐹󵄩󵄩󵄩󵄩𝐿(𝑘) + 𝑆(𝑘)󵄩󵄩󵄩󵄩𝐹 . (19)
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(a) (b) (c) (d) (e) (f)

Figure 3: The 5th frame of each data set. (a)–(f) are named as image 1 to image 6.

(a) (b)

(c) (d)

Figure 4: Reconstruction comparisons on the first frame of dynamic cardiac perfusion. (a) 𝑘-𝑡 SENSE, (b) XD-GRASP, (c) LplusS, and (d)
our algorithm.

The iteration stops when the Err reduction of the consecutive
iterations is less than a predefined threshold.

4.1. Experimental Data and the Selection of Parameters. There
are nine sets of test data in this paper, three of them are open-
data which come from [13], and the others are from a research
institution, which are shown in Figure 3.The gray value of all

the images ranges from 0 to 255. The values of 𝜏, 𝜌, and 𝜀 are
the choices of the best reconstruction after repeated tests. For
all data in this paper, we set 𝜏 = 0.0025, 𝜀 = 0.0001, and𝜌 = 1.2.

One of the three sets of open-data is the dynamic cardiac
perfusion data, which consists of 40 images with size 128 ×128. The second is the dynamic cardiac cine data which is
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(a) (b)

(c) (d)

Figure 5: Reconstruction comparisons on the 3rd frame of dynamic cardiac perfusion. (a) 𝑘-𝑡 SENSE, (b) XD-GRASP, (c) LplusS, and (d)
our algorithm.

made up of 25 images with size 256 × 256. And the third is
dynamic abdominal data which is composed of 28 images
with size 384 × 384. The parameter combinations (𝜆𝐿, 𝜆𝑆)
for data set one to three are (0.01, 0.025), (0.015, 0.017), and(0.025, 0.0125), respectively. When the Err is less than 2.5 ×10−3, we stop the iteration for the dynamic cardiac perfusion
and cardiac cine images. And, for dynamic abdomen images,
the iteration stopping threshold is 3.5 × 10−2. The other six
data sets from the research institution are all composed of 15
images with size 384 × 384 for each set. For image 1, we set𝜆𝐿 = 0.0135 and 𝜆𝑆 = 0.014, for image 2 we set 𝜆𝐿 = 0.0137
and 𝜆𝑆 = 0.018, and, for the remaining four images, we let𝜆𝐿 = 0.013 and 𝜆𝑆 = 0.02, and the Err is set as 3.7 × 10−2.

For𝑝 norm (0 < 𝑝 < 1), the choice of𝑝 heavily influences
the convergence rate. Figure 2 shows the convergence rate
with 𝑝 = 0.1, 0.4, and 0.8. The greater 𝑝 results in the faster
convergence rate. A large number of experiments also prove
that the smaller 𝑝 leads to the smaller Err and the more

precise solution. Through repeated trials, we set 𝑝 = 0.2 in
all experiments for our algorithm.

4.2. Comparisons and Analysis. In this section, we compare
our method with the 𝑘-𝑡 SENSE, XD-GRASP, and LplusS
algorithm in subjective and objective aspects. Figures 4–9
present the visual comparisons, and the differences between
the reconstructions by four algorithms are depicted with
white arrows. The comparisons on RMSE, Err, and time
consumption are listed in Tables 1 and 2, where the boldfaced
numbers are the best results of all.

Figures 4 and 5 are the reconstructed comparisons of the
first frame and the fifth frame of dynamic cardiac perfusion,
respectively. Figure 4(d) is the best reconstructed image of
Figure 4. In Figures 4(a) and 4(b), the edge contours of organs
at the top right corner are blurred, and the details pointed
out by the white arrows are not clear. Only Figure 4(c) is
comparable to Figure 4(d), but, at the places of the bottom
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(a) (b)

(c) (d)

Figure 6: Reconstruction comparisons on the 2nd frame of dynamic abdomen. (a) 𝑘-𝑡 SENSE, (b) XD-GRASP, (c) LplusS, and (d) our
algorithm.

left and upper right arrows, local details contain more noise,
which causes the characteristics of organ unobtrusiveness
and is not conducive to disease diagnosis. Figure 5(d) is
obviously clearer than Figures 5(a) and 5(b) and superior to
Figure 5(c) in the place that the white arrows indicate.

Figures 6 and 7 represent the reconstructions about the
dynamic abdomen image with the second frame and the fifth
frame, respectively. By comparing, the proposed algorithm
is better than the other three algorithms in brightness and
resolution.

Figure 8 shows the reconstructed images of the 20th
frame of the cardiac cine.The reconstruction effects of all four
algorithms have no obvious visual differences, but, through
careful observation on the enlarged regions to which the
white arrows point, the proposed algorithm performs better.

Figure 9 shows the reconstructed effects of images 1, 2, 4,
and 6, respectively. In images 1 and 2, we find that the features
of our algorithm are the most obvious among four compared
methods, especially in the regions where the white arrows
point. In images 4 and 6, the outline and details of the organ

of the proposed algorithm are clearer than those of the other
reference algorithms, and the result is brighter.

Tables 1 and 2 list the numerical results of the four
algorithms. The proposed algorithm ranks the first on the
Err and RMSE among the four comparison methods, which
denotes that the reconstruction quality is the best. Of all
experiments, the time consumption of our algorithm is the
second best except for cardiac cine in Table 1, on which the
proposed algorithm ranks the first.

5. Conclusions

In this paper, we propose a nonconvexmodel for reconstruct-
ing high-quality dynamic MR images. In the new model,
based on the RPCA theory, the 𝑙1 norm is substituted by the𝑙𝑝 norm to approximate the 𝑙0 norm; thus the accuracy of
the solution is improved. An alternate iteration method is
applied to solve the proposed model. Experimental results
show that the proposed algorithm has advantages in terms of
visual effect, RSME, and Err over three reference algorithms.
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(a) (b)

(c) (d)

Figure 7: Reconstruction comparisons on the 5th frame of dynamic abdomen. (a) 𝑘-𝑡 SENSE, (b) XD-GRASP, (c) LplusS, and (d) our
algorithm.

Table 1: Comparison on object indexes.

Image 𝑘-𝑡 SENSE XD-GRASP LplusS Ours

Cardiac perfusion
Err 2.50 × 10−3 2.50 × 10−3 2.42 × 10−3 2.32 × 10−3

RMSE 0.8124 0.8013 0.8009 0.7880
Time (s) 220.4 202.4 83.9 84.2

Abdomen images
Err 3.50 × 10−2 3.23 × 10−2 2.56 × 10−2 2.53 × 10−2

RMSE 12.4521 11.7607 9.2530 9.2465
Time (s) 336.2 310.3 293.1 293.8

Cardiac cine
Err 2.48 × 10−3 2.50 × 10−3 2.47 × 10−3 2.40 × 10−3

RMSE 0.5233 0.5147 0.5063 0.5059
Time (s) 156.0 159.0 141.7 108.1

But, in terms of time consumption, the proposed algorithm
is slightly inferior to LplusS, which requires further improve-
ment.

Conflicts of Interest

The authors declare that they have no conflicts of interest.



Mathematical Problems in Engineering 9

(a) (b)

(c) (d)

Figure 8: Reconstruction comparisons on the 20th frame of dynamic cardiac cine. (a) 𝑘-𝑡 SENSE, (b) XD-GRASP, (c) LplusS, and (d) our
algorithm.

Table 2: Comparison on object indexes.

Image 𝑘-𝑡 SENSE XD-GRASP LplusS Ours

Image 1
Err 3.70 × 10−2 3.25 × 10−2 3.11 × 10−2 2.93 × 10−2

RMSE 9.7235 9.3785 8.2500 7.9798
Time (s) 202.0 185.3 162.3 171.6

Image 2
Err 3.62 × 10−2 3.35 × 10−2 3.23 × 10−2 3.20 × 10−2

RMSE 12.7820 10.2324 9.4725 9.2849
Time (s) 196.1 188.4 153.2 185.2

Image 3
Err 3.43 × 10−2 3.07 × 10−2 2.95 × 10−2 2.73 × 10−2

RMSE 5.2474 3.2596 2.9487 2.6503
Time (s) 153.0 147.8 107.9 110.8

Image 4
Err 3.70 × 10−2 3.54 × 10−2 3.03 × 10−2 2.88 × 10−2

RMSE 12.2844 11.5627 9.0751 8.8329
Time (s) 214.3 193.1 159.4 169.0

Image 5
Err 3.58 × 10−2 3.45 × 10−2 2.97 × 10−2 2.84 × 10−2

RMSE 10.7704 9.8403 8.7709 7.8322
Time (s) 189.7 163.2 125.9 144.3

Image 6
Err 3.50 × 10−2 3.37 × 10−2 3.05 × 10−2 2.94 × 10−2

RMSE 8.5527 8.2764 7.3008 6.8425
Time (s) 157.5 140.6 118.3 135.7
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Figure 9: Reconstruction comparisons on four images. From top to bottom are images 1, 2, 4, and 6, respectively. From left to right are 𝑘-𝑡
SENSE, XD-GRASP, LplusS, and our algorithm, respectively.
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