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A delayed SEIQRS worm propagation model with different infection rates for the exposed computers and the infectious computers
is investigated in this paper. The results are given in terms of the local stability and Hopf bifurcation. Sufficient conditions for
the local stability and the existence of Hopf bifurcation are obtained by using eigenvalue method and choosing the delay as the
bifurcation parameter. In particular, the direction and the stability of the Hopf bifurcation are investigated by means of the normal
form theory and center manifold theorem. Finally, a numerical example is also presented to support the obtained theoretical
results.

1. Introduction

In the wake of developments in computer technology and
communication technology, there is a rapid increase in
computer viruses which has brought about huge financial
losses [1–3]. Therefore, it is extremely urgent to analyze and
protect computers against viruses. In order to understand
the spread law of computer viruses over the Internet and in
view of the high similarity between computer viruses and
biological viruses, many computer virus propagation models
have been developed and analyzed. For example, see [4–13]
and the cited references therein.

All the models above assume that the infected computer
has no infectivity. This is inconsistent with the fact that an
infected computer which is in latency can also infect other
computers through file copying or file downloading. Based
on this, Yang et al. proposed some models [14–17], by taking
into account the fact that a computer immediately possesses
infectivity once it is infected. However, these models make
an assumption that the exposed computers and the infectious
computers have the same infectivity. This is not consistent
with the reality, because the infection rate of the exposed
computers is less than that of the infectious ones. Thus,

Wang et al. [18] proposed the following SEIQRS model with
graded infection rates for Internet worms:𝑑𝑆 (𝑡)𝑑𝑡 = ∏ +𝛾𝑅 (𝑡) + 𝜃𝑄 (𝑡) − 𝛽1𝑆 (𝑡) 𝐸 (𝑡)− 𝛽2𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝑆 (𝑡) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝛽1𝑆 (𝑡) 𝐸 (𝑡) + 𝛽2𝑆 (𝑡) 𝐼 (𝑡)− (𝑑 + 𝛼1 + 𝛿2 + 𝜛)𝐸 (𝑡) ,𝑑𝐼 (𝑡)𝑑𝑡 = 𝜛𝐸 (𝑡) − (𝑑 + 𝛼2 + (1 − 𝑝) 𝛿1 + 𝑝) 𝐼 (𝑡) ,𝑑𝑄 (𝑡)𝑑𝑡 = 𝑝𝐼 (𝑡) − (𝑑 + 𝜂 + 𝜃)𝑄 (𝑡) ,𝑑𝑅 (𝑡)𝑑𝑡 = 𝛿2𝐸 (𝑡) + (1 − 𝑝) 𝛿1𝐼 (𝑡) + 𝜂𝑄 (𝑡)− (𝑑 + 𝛾) 𝑅 (𝑡) ,

(1)

where 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), and 𝑅(𝑡) denote the numbers of
the susceptible, the exposed, the infectious, the quarantined,
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and the recovered computers at time 𝑡 in the Internet, respec-
tively. ∏ is the recruitment of the susceptible computers; 𝛽1
and 𝛽2 are the contact rates of the exposed computers and
the infectious computers, respectively; 𝑑 is the natural death
rate of the computers; 𝛼1 and 𝛼2 are the death rates of the
exposed computers and the infectious computers due to the
attack of worms, respectively; 𝑝 is the quarantined rate of
the infectious computers; 𝛿−11 is the average cured time; 𝛾,𝜃, 𝛿2, 𝜛, and 𝜂 are the state transition rates. Wang et al. [18]
investigated local and global stability of system (1).

It should be pointed out that Wang et al. [18] neglect
the fact that it needs a period to clean the worms in the
exposed, the infectious, and the quarantined computers for
the antivirus software. Time delays cause a stable equilibrium
to become unstable and cause Hopf bifurcation phenomenon
for a dynamical system. The occurrence of Hopf bifurcation
means that the state of worm prevalence changes from an
equilibrium point to a limit cycle, which is not welcomed in
networks. Therefore, it is meaningful to investigate the effect
of time delays on stability of dynamical systems.

As far as we know, there have been some researches
on Hopf bifurcation of delayed computer virus models. For
example, Feng et al. [19] studied the Hopf bifurcation of a
delayed SIRS viral infection model in computer networks
by taking the time delay due to the latent and temporary
immune period as the bifurcation parameter. Dong et al.
[9] proposed a delayed SEIR computer virus model with
multistate antivirus and studied the Hopf bifurcation of the
model by choosing the delay where the infectious nodes
use antivirus software to clean the viruses as the bifurcation
parameter. Zhang and Bi [20] investigated the Hopf bifur-
cation of a delayed computer virus propagation model with
infectivity in latent period. For some other research works on
the Hopf bifurcation of computer virus models one can refer
to [21–24]. Specially, Zhang et al. [24] studied the existence
and properties of the Hopf bifurcation of a computer virus
model with antidote in vulnerable system by regarding the
time delay due to the period that the infected computers
use to reinstall system as a bifurcation parameter. Motivated
by the work above and considering the effect of the time
delay on system (1), we consider the following delayed worm
propagation model:𝑑𝑆 (𝑡)𝑑𝑡 = ∏ +𝛾𝑅 (𝑡) + 𝜃𝑄 (𝑡) − 𝛽1𝑆 (𝑡) 𝐸 (𝑡)− 𝛽2𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝑆 (𝑡) ,𝑑𝐸 (𝑡)𝑑𝑡 = 𝛽1𝑆 (𝑡) 𝐸 (𝑡) + 𝛽2𝑆 (𝑡) 𝐼 (𝑡)− (𝑑 + 𝛼1 + 𝜛)𝐸 (𝑡) − 𝛿2𝐸 (𝑡 − 𝜏) ,𝑑𝐼 (𝑡)𝑑𝑡 = 𝜛𝐸 (𝑡) − (𝑑 + 𝛼2 + 𝑝) 𝐼 (𝑡)− (1 − 𝑝) 𝛿1𝐼 (𝑡 − 𝜏) ,𝑑𝑄 (𝑡)𝑑𝑡 = 𝑝𝐼 (𝑡) − (𝑑 + 𝜃)𝑄 (𝑡) − 𝜂𝑄 (𝑡 − 𝜏) ,𝑑𝑅 (𝑡)𝑑𝑡 = 𝛿2𝐸 (𝑡 − 𝜏) + (1 − 𝑝) 𝛿1𝐼 (𝑡 − 𝜏) + 𝜂𝑄 (𝑡 − 𝜏)− (𝑑 + 𝛾) 𝑅 (𝑡) ,

(2)

where 𝜏 is the time delay due to the period that the anti-
virus software uses to clean the worms in the exposed, the
infectious, and the quarantined computers.

The object of this paper is to study the existence and
properties of the Hopf bifurcation of system (2). The remain-
der of this paper is organized as follows. The existence of a
Hopf bifurcation is discussed by choosing the delay as the
bifurcation parameter in Section 2. Properties of the Hopf
bifurcation are studied by means of the normal form theory
and the center manifold theorem. An example together
with its numerical simulations is also presented in order to
illustrate the effectiveness of our obtained theoretical results.

2. Stability of the Viral Equilibrium and
Existence of Hopf Bifurcation

By a simple computation, we know that if 𝐵3𝛾 + 𝐵2𝜃 >𝐵1(𝑑 + 𝛼1 + 𝜛 + 𝛿2) and 𝑑(𝑑 + 𝛼1 + 𝜛 + 𝛿2)𝐵1 > ∏(𝐵1𝛽1 +𝛽2), then system (2) has a unique endemic equilibrium𝐷∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗), where 𝑆∗ = (𝐴 + 𝐵4𝐼∗)/𝑑, 𝐸∗ = 𝐵1𝐼∗,𝑄∗ = 𝐵2𝐼∗, 𝑅∗ = 𝐵3𝐼∗, and𝐼∗ = 𝑑 (𝑑 + 𝛼1 + 𝜛 + 𝛿2) 𝐵1 −∏(𝐵1𝛽1 + 𝛽2)𝛽4 (𝐵1𝛽1 + 𝛽2) ,
𝐵1 = 𝑑 + 𝛼2 + (1 − 𝑝) 𝛿1 + 𝑝𝜛 ,𝐵2 = 𝑝𝑑 + 𝜂 + 𝜃 ,𝐵3 = 𝛿2 (𝑑 + 𝛼2 + (1 − 𝑝) 𝛿1 + 𝑝)𝜛 (𝑑 + 𝛾) + (1 − 𝑝) 𝛿1𝑑 + 𝛾+ 𝑝𝜂(𝑑 + 𝛾) (𝑑 + 𝜂 + 𝜃) ,𝐵4 = 𝐵3𝛾 + 𝐵2𝜃 − 𝐵1 (𝑑 + 𝛼1 + 𝜛 + 𝛿2) .

(3)

Then, we obtain the characteristic equation of the linearized
system at𝐷∗:𝜆5 + 𝑝4𝜆4 + 𝑝3𝜆3 + 𝑝2𝜆2 + 𝑝1𝜆 + 𝑝0+ (𝑞4𝜆4 + 𝑞3𝜆3 + 𝑞2𝜆2 + 𝑞1𝜆 + 𝑞0) 𝑒−𝜆𝜏+ (𝑟3𝜆3 + 𝑟2𝜆2 + 𝑟1𝜆 + 𝑟0) 𝑒−2𝜆𝜏+ (𝑠2𝜆2 + 𝑠1𝜆 + 𝑠0) 𝑒−3𝜆𝜏 = 0,

(4)

where𝑝0 = 𝑎10𝑎12𝑎13 (𝑎2𝑎6 − 𝑎1𝑎7) + 𝑎9𝑎12𝑎13 (𝑎1𝑎8 − 𝑎3𝑎6)+ 𝑎4𝑎6𝑎9𝑎11𝑎13,𝑝1 = 𝑎1𝑎7𝑎10𝑎12 − 𝑎4𝑎6𝑎9𝑎11− 𝑎8𝑎9 (𝑎1𝑎12 + 𝑎1𝑎13 + 𝑎12𝑎13)+ 𝑎3𝑎6𝑎9 (𝑎12 + 𝑎13)



Mathematical Problems in Engineering 3+ 𝑎13 (𝑎1𝑎7 (𝑎10 + 𝑎12) + 𝑎10𝑎12 (𝑎1 + 𝑎7))− 𝑎2𝑎6 (𝑎10𝑎12 + 𝑎10𝑎13 + 𝑎12𝑎13) ,𝑝2 = 𝑎2𝑎6 (𝑎10 + 𝑎12 + 𝑎13) − 𝑎1𝑎7 (𝑎10 + 𝑎12) − 𝑎3𝑎6𝑎9+ 𝑎8𝑎9 (𝑎1 + 𝑎12 + 𝑎13) − 𝑎10𝑎12 (𝑎1 + 𝑎7)− 𝑎13 (𝑎1𝑎7 + 𝑎10𝑎12 + (𝑎1 + 𝑎7) (𝑎10 + 𝑎12)) ,𝑝3 = 𝑎1𝑎7 + 𝑎10𝑎12 + (𝑎1 + 𝑎7) (𝑎10 + 𝑎12) − 𝑎2𝑎6− 𝑎8𝑎9 + 𝑎13 (𝑎1 + 𝑎7 + 𝑎10 + 𝑎12) ,𝑝4 = − (𝑎1 + 𝑎7 + 𝑎10 + 𝑎12) ,𝑞0 = 𝑎5𝑎6𝑎9 (𝑎12𝑏5 + 𝑎11𝑏6) − 𝑎5𝑎6𝑎10𝑎12𝑏4+ 𝑎9𝑎13𝑏3 (𝑎1𝑎8 − 𝑎3𝑎6)+ 𝑎1𝑎13 (𝑏3 (𝑎7 + 𝑎10) + 𝑎12 (𝑏1 + 𝑏2))− 𝑎1𝑎7𝑎10𝑎13𝑏3 + 𝑎2𝑎6𝑎13 (𝑎10𝑏3 + 𝑎12𝑏2) ,𝑞1 = 𝑎7𝑎10𝑏3 (𝑎1 + 𝑎13) + 𝑎5𝑎6𝑏4 (𝑎10 + 𝑎12) − 𝑎5𝑎6𝑎9𝑏5− 𝑎8𝑎9𝑏3 (𝑎1 + 𝑎13)− 𝑎2𝑎6 (𝑎13 (𝑏2 + 𝑏3) + 𝑎10𝑏3 + 𝑎12𝑏2) ,𝑞2 = 𝑎2𝑎6 (𝑏2 + 𝑏3) + 𝑎8𝑎9𝑏3 − 𝑎7𝑎10𝑏3− 𝑎1𝑎13 (𝑏1 + 𝑏2 + 𝑏3)− (𝑎1 + 𝑎13) (𝑏3 (𝑎7 + 𝑎10) + 𝑎12 (𝑏1 + 𝑏2))− 𝑎5𝑎6𝑏4,𝑞3 = (𝑎1 + 𝑎13) (𝑏1 + 𝑏2 + 𝑏3) + 𝑏3 (𝑎7 + 𝑎10)+ 𝑎12 (𝑏1 + 𝑏2) ,𝑞4 = − (𝑏1 + 𝑏2 + 𝑏3) ,𝑟0 = 𝑎6𝑏3 (𝑎5𝑎9𝑏5 + 𝑎2𝑎13𝑏2) − 𝑎5𝑎6𝑏4 (𝑎10𝑏3 + 𝑎12𝑏2)− 𝑎1𝑎13 (𝑎7𝑏2𝑏3 + 𝑎10𝑏1𝑏3 + 𝑎12𝑏1𝑏2) ,𝑟1 = 𝑎5𝑎6𝑏4 (𝑏2 + 𝑏3) − 𝑎2𝑎6𝑏2𝑏3+ 𝑎1𝑎13 (𝑏1𝑏2 + 𝑏1𝑏3 + 𝑏2𝑏3)+ (𝑎1 + 𝑎13) (𝑎7𝑏2𝑏3 + 𝑎10𝑏1𝑏3 + 𝑎12𝑏1𝑏2) ,𝑟2 = − (𝑎7𝑏2𝑏3 + 𝑎10𝑏1𝑏3 + 𝑎12𝑏1𝑏2)− (𝑎1 + 𝑎13) (𝑏1𝑏2 + 𝑏1𝑏3 + 𝑏2𝑏3) ,𝑟3 = 𝑏1𝑏2 + 𝑏1𝑏3 + 𝑏2𝑏3,𝑠0 = −𝑏2𝑏3 (𝑎5𝑎6𝑏4 + 𝑎1𝑎13𝑏1) ,𝑠1 = 𝑏1𝑏2𝑏3 (𝑎1 + 𝑎13) ,𝑠2 = −𝑏1𝑏2𝑏3,

𝑎1 = − (𝛽1𝐸∗ + 𝛽2𝐼∗ + 𝑑) ,𝑎2 = −𝛽1𝑆∗,𝑎3 = −𝛽2𝑆∗,𝑎4 = 𝜃,𝑎5 = 𝛾,𝑎6 = 𝛽1𝐸∗ + 𝛽2𝐼∗,𝑎7 = 𝛽1𝑆∗ − (𝑑 + 𝛼1 + 𝜛) ,𝑎8 = 𝛽2𝑆∗,𝑎9 = 𝜛,𝑎10 = − (𝑑 + 𝛼2 + 𝑝) ,𝑎11 = 𝑝,𝑎12 = − (𝑑 + 𝜃) ,𝑎13 = − (𝑑 + 𝛾) ,𝑏1 = −𝛿2,𝑏2 = − (1 − 𝑝) 𝛿1,𝑏3 = −𝜂,𝑏4 = 𝛿2,𝑏5 = (1 − 𝑝) 𝛿1,𝑏6 = 𝜂.
(5)

For 𝜏 = 0, (4) becomes𝜆5 + 𝐴4𝜆4 + 𝐴3𝜆3 + 𝐴2𝜆2 + 𝐴1𝜆 + 𝐴0 = 0, (6)

with 𝐴0 = 𝑝0 + 𝑞0 + 𝑟0 + 𝑠0,𝐴1 = 𝑝1 + 𝑞1 + 𝑟1 + 𝑠1,𝐴2 = 𝑝2 + 𝑞2 + 𝑟2 + 𝑠2,𝐴3 = 𝑝3 + 𝑞3 + 𝑟3,𝐴4 = 𝑝4 + 𝑞4.
(7)

According to Routh-Hurwitz criteria when the condi-
tion (𝐻1) is satisfied, that is, when (8)–(12) hold, then𝐷∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗) is locally asymptotically stable when𝜏 = 0.

det1 = 𝐴4 > 0, (8)

det2 = (𝐴4 1𝐴2 𝐴3) > 0, (9)
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det3 = (𝐴4 1 0𝐴2 𝐴3 𝐴40 𝐴1 𝐴2) > 0, (10)

det4 = (𝐴4 1 0 0𝐴2 𝐴3 𝐴4 1𝐴0 𝐴1 𝐴2 𝐴30 0 𝐴0 𝐴1) > 0, (11)

det5 = ((
(

𝐴4 1 0 0 0𝐴2 𝐴3 𝐴4 1 0𝐴0 𝐴1 𝐴2 𝐴3 𝐴40 0 𝐴0 𝐴1 𝐴20 0 0 0 𝐴0
))
)

> 0. (12)

Multiplying 𝑒𝜆𝜏 on both sides of (4), one can get𝑞4𝜆4 + 𝑞3𝜆3 + 𝑞2𝜆2 + 𝑞1𝜆 + 𝑞0+ (𝜆5 + 𝑝4𝜆4 + 𝑝3𝜆3 + 𝑝2𝜆2 + 𝑝1𝜆 + 𝑝0) 𝑒𝜆𝜏+ (𝑟3𝜆3 + 𝑟2𝜆2 + 𝑟1𝜆 + 𝑟0) 𝑒−𝜆𝜏+ (𝑠2𝜆2 + 𝑠1𝜆 + 𝑠0) 𝑒−2𝜆𝜏 = 0.
(13)

For 𝜏 > 0, we assume that 𝜆 = 𝑖𝜔 (𝜔 > 0) is the root of (13);
then 𝑠1𝜔 sin 2𝜏𝜔 + (𝑠0 − 𝑠2𝜔2) cos 2𝜏𝜔 = 𝐺1 (𝜔) ,𝑠1𝜔 cos 2𝜏𝜔 − (𝑠0 − 𝑠2𝜔2) sin 2𝜏𝜔 = 𝐺2 (𝜔) , (14)

where𝐺1 (𝜔) = (𝜔5 − (𝑝3 + 𝑟3) 𝜔3 + (𝑝1 − 𝑟1) 𝜔) sin 𝜏𝜔− (𝑝4𝜔4 − (𝑝2 + 𝑟2) 𝜔2 + 𝑝0 + 𝑟0) cos 𝜏𝜔+ 𝑞2𝜔2 − 𝑞4𝜔4 − 𝑞0,𝐺2 (𝜔) = − (𝜔5 − (𝑝3 + 𝑟3) 𝜔3 + (𝑝1 + 𝑟1) 𝜔) cos 𝜏𝜔− (𝑝4𝜔4 − (𝑝2 − 𝑟2) 𝜔2 + 𝑝0 − 𝑟0) sin 𝜏𝜔+ 𝑞3𝜔3 − 𝑞1𝜔.
(15)

Then, 𝑐0 (𝜔) + 𝑐1 (𝜔) sin 𝜏𝜔 + 𝑐2 (𝜔) sin 𝜏𝜔 cos 𝜏𝜔+ 𝑐3 (𝜔) cos 𝜏𝜔 + 𝑐4 (𝜔) cos2𝜏𝜔 = 0, (16)

with𝑐0 (𝜔) = 𝜔10 + (𝑝24 + 𝑞24 − 2 (𝑝3 + 𝑟3)) 𝜔8+ ((𝑝3 + 𝑟3)2 + 𝑞23 + 2𝑝1 − 2𝑟1 − 2𝑝2𝑝4 − 2𝑝4𝑟2− 2𝑞2𝑞4) 𝜔6 + (𝑝22 + 𝑞22 + 𝑟22 − 𝑠22 + 2𝑝0𝑝4 + 2𝑝2𝑟2+ 2𝑝4𝑟0 + 2𝑞0𝑞4 − 2𝑞1𝑞3 − 2 (𝑝1 + 𝑟1) (𝑝3 + 𝑟3))⋅ 𝜔4 + (𝑝21 + 𝑞21 + 𝑟21 − 𝑠21 − 2𝑝0𝑝2 − 2𝑞0𝑞2 − 2𝑟0𝑟2− 2𝑝1𝑟1) 𝜔2 + 𝑝20 + 𝑞20 + 𝑟20 − 𝑠20 + 2𝑝0𝑟0,𝑐1 (𝜔) = −2𝑞4𝜔9 + 2 (𝑞2 − 𝑝4𝑞3 + 𝑞4 (𝑝3 + 𝑟3)) 𝜔7+ 2 (𝑝4𝑞1 − 𝑞0 + 𝑞3 (𝑝2 − 𝑟2) − 𝑞2 (𝑝3 + 𝑟3)− 𝑛4 (𝑝1 − 𝑟1)) 𝜔5 + 2 (𝑞0 (𝑝3 + 𝑟3) + 𝑞2 (𝑝1 − 𝑟1)− 𝑞1 (𝑝2 − 𝑟2) − 𝑞3 (𝑝0 − 𝑟0)) 𝜔3 + 2 (𝑞1 (𝑝0 − 𝑟0)− 𝑛0 (𝑝1 − 𝑟1)) 𝜔,𝑐2 (𝜔) = −4𝑟2𝜔7 + 4 (𝑟0 − 𝑝4𝑟1 + 𝑟2 (𝑝3 + 𝑟3)) 𝜔5− 4 (𝑟0 (𝑝3 + 𝑟3) + 𝑟1𝑟2 + 𝑝2𝑟1) 𝜔3 + 4 (𝑝1𝑟0− 𝑝0𝑟1) 𝜔,𝑐3 (𝜔) = 2 (𝑝4𝑞4 − 𝑞3) 𝜔8 + 2 (𝑞1 − 𝑝4𝑞2+ 𝑞3 (𝑝3 + 𝑞3) − 𝑞4 (𝑝2 + 𝑟2)) 𝜔6 + 2 (𝑝4𝑞0+ 𝑞2 (𝑝2 + 𝑟2) + 𝑞4 (𝑝0 + 𝑟0) − 𝑞1 (𝑝3 + 𝑟3)− 𝑞3 (𝑝1 + 𝑟1)) 𝜔4 + 2 (𝑞1 (𝑝1 + 𝑟1) − 𝑞2 (𝑝0 + 𝑟0))⋅ 𝜔2 + 2𝑞0 (𝑝0 + 𝑟0) ,𝑐4 (𝜔) = 4 (𝑟1 + 𝑝4𝑟2) 𝜔6 + 4 (𝑝2𝑟2 + 𝑝4𝑟0− 𝑟1 (𝑝3 + 𝑟3)) 𝜔4 + 4𝑝1𝑟1𝜔2 − 4𝑝0𝑟0.

(17)

Since sin 𝜏𝜔 = ±√1 − cos2𝜏𝜔, (16) can be transformed into𝑐0 (𝜔) + 𝑐3 (𝜔) cos 𝜏𝜔 + 𝑐4 (𝜔) cos2𝜏𝜔= ± (𝑐1 (𝜔)√1 − cos2𝜏𝜔+ 𝑐2 (𝜔)√1 − cos2𝜏𝜔 cos 𝜏𝜔) . (18)

It equals𝑒4 (𝜔) cos4𝜏𝜔 + 𝑒3 (𝜔) cos3𝜏𝜔 + 𝑒2 (𝜔) cos2𝜏𝜔+ 𝑒1 (𝜔) cos 𝜏𝜔 + 𝑒0 (𝜔) = 0, (19)

where𝑒0 (𝜔) = 𝑐20 (𝜔) − 𝑐21 (𝜔) ,𝑒1 (𝜔) = 2 (𝑐0 (𝜔) × 𝑐3 (𝜔) − 𝑐1 (𝜔) × 𝑐2 (𝜔)) ,



Mathematical Problems in Engineering 5𝑒2 (𝜔) = 𝑐23 (𝜔) + 2𝑐0 (𝜔) × 𝑐4 (𝜔) + 𝑐21 (𝜔) − 𝑐22 (𝜔) ,𝑒3 (𝜔) = 2 (𝑐3 (𝜔) × 𝑐4 (𝜔) + 𝑐1 (𝜔) × 𝑐2 (𝜔)) ,𝑒4 (𝜔) = 𝑐24 (𝜔) + 𝑐22 (𝜔) .
(20)

Based on the discussion about the distribution of the root
of (19) in [25, 26], we obtain the expression of cos 𝜏𝜔, say

cos 𝜏𝜔 = 𝑓1 (𝜔) . (21)

Substitute (21) into (16), then the expression of sin 𝜏𝜔 can be
obtained, say

sin 𝜏𝜔 = 𝑓2 (𝜔) . (22)

Hence, we have 𝑓21 (𝜔) + 𝑓22 (𝜔) = 1. (23)

In order to obtain the main results in this paper, we
suppose that (𝐻2) ((23)) has at least one positive root 𝜔0. For𝜔0, we have 𝜏0 = 1𝜔0 {arccos𝑓1 (𝜔0)} . (24)

Differentiating (13) with respect to 𝜏, we obtain[𝑑𝜆𝑑𝜏]−1 = 𝑈 (𝜆)𝑉 (𝜆) − 𝜏𝜆 , (25)

where𝑈 (𝜆)= 4𝑞4𝜆3 + 3𝑞3𝜆2 + 2𝑞2𝜆 + 𝑞1+ (5𝜆4 + 4𝑝4𝜆3 + 3𝑝3𝜆2 + 2𝑝2𝜆 + 𝑝1) 𝑒𝜆𝜏+ (3𝑟3𝜆2 + 2𝑟2𝜆 + 𝑟1) 𝑒−𝜆𝜏 + (2𝑠2𝜆 + 𝑠1) 𝑒−2𝜆𝜏,𝑉 (𝜆)= 2 (𝑠2𝜆3 + 𝑠1𝜆2 + 𝑠0𝜆) 𝑒−2𝜆𝜏+ (𝑟3𝜆4 + 𝑟2𝜆3 + 𝑟1𝜆2 + 𝑟0𝜆) 𝑒−𝜆𝜏− (𝜆6 + 𝑝4𝜆5 + 𝑝3𝜆4 + 𝑝2𝜆3 + 𝑝1𝜆2 + 𝑝0𝜆) 𝑒𝜆𝜏.

(26)

Further,

Re [𝑑𝜆𝑑𝜏]−1𝜆=𝑖𝜔0 = 𝑈𝑅 × 𝑉𝑅 + 𝑈𝐼 × 𝑉𝐼𝑉2𝑅 + 𝑉2𝐼 ,𝑈𝑅= (5𝜔40 − 3 (𝑝3 − 𝑟3) 𝜔20 + 𝑝1 + 𝑟1) cos 𝜏0𝜔0− 2 ((𝑝2 − 𝑟2) 𝜔0 − 2𝑝4𝜔30) sin 𝜏0𝜔0+ 2𝑠2𝜔0 sin 2𝜏0𝜔0 + 𝑠1 cos 2𝜏0𝜔0 + 𝑞1 − 3𝑞3𝜔20 ,

𝑈𝐼 = (5𝜔40 − 3 (𝑝3 − 𝑟3) 𝜔20 + 𝑝1 − 𝑟1) sin 𝜏0𝜔0+ 2 ((𝑝2 + 𝑟2) 𝜔0 − 2𝑝4𝜔30) cos 𝜏0𝜔0+ 2𝑠2𝜔0 cos 2𝜏0𝜔0 − 𝑠1 sin 2𝜏0𝜔0 + 2𝑞2𝜔0− 4𝑞4𝜔30 ,𝑉𝑅 = (𝜔40 − (𝑝3 − 𝑟3) 𝜔20 + 𝑝1 − 𝑟1) 𝜔20 cos 𝜏0𝜔0− ((𝑝2 + 𝑟2) 𝜔20 − 𝑝4𝜔40 − 𝑝0 − 𝑟0) sin 𝜏0𝜔0+ (𝑠0𝜔0 − 𝑠2𝜔30) sin 2𝜏0𝜔0 − 2𝑠1𝜔0 cos 2𝜏0𝜔0,𝑉𝐼 = (𝜔40 − (𝑝3 + 𝑟3) 𝜔20 + 𝑝1 + 𝑟1) 𝜔20 sin 𝜏0𝜔0+ ((𝑝2 − 𝑟2) 𝜔20 − 𝑝4𝜔40 − 𝑝0 + 𝑟0) cos 𝜏0𝜔0+ (𝑠0𝜔0 − 𝑠2𝜔30) cos 2𝜏0𝜔0 + 2𝑠1𝜔0 sin 2𝜏0𝜔0.
(27)

Therefore, if condition (𝐻3), 𝐺1𝑅 × 𝐺2𝑅 + 𝐺1𝐼 × 𝐺2𝐼 ̸= 0,
holds, then Re[𝑑𝜆/𝑑𝜏]𝜆=𝑖𝜔0 ̸= 0. Based on the Hopf bifur-
cation theorem in [27], we have the following.

Theorem 1. For system (2), if conditions (𝐻1), (𝐻2), and (𝐻3)
hold, then the endemic equilibrium 𝐷∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗) is
locally asymptotically stable when 𝜏 ∈ [0, 𝜏0); a Hopf bifurca-
tion occurs at the endemic equilibrium 𝐷∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗)
when 𝜏 = 𝜏0 and a family of periodic solutions bifurcate from
the endemic equilibrium𝐷∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗) near 𝜏 = 𝜏0.
3. Direction and Stability of
the Hopf Bifurcation

In this section, we describe the direction, stability, and period
of the Hopf bifurcation of system (2) from the endemic
equilibrium𝐷∗(𝑆∗, 𝐸∗, 𝐼∗, 𝑄∗, 𝑅∗) based on the normal form
theory and center manifold theorem given by Hassard et al.
[27]. Let 𝑢1(𝑡) = 𝑆(𝑡) − 𝑆∗, 𝑢2(𝑡) = 𝐸(𝑡) −𝐸∗, 𝑢3(𝑡) = 𝐼(𝑡) − 𝐼∗,𝑢4(𝑡) = 𝑄(𝑡) − 𝑄∗, and 𝑢5(𝑡) = 𝑅(𝑡) − 𝑅∗, and normalize the
time delay by 𝑡 → (𝑡/𝜏). And let 𝜏 = 𝜏0 + 󰜚, 󰜚 ∈ 𝑅, so that the
value 󰜚 = 0 is the Hopf bifurcation value. Define the space of
continuous real valued functions as𝐶 = 𝐶([−1, 0], 𝑅5). Then,
the delayed system (2) can be transformed into the functional
differential equation in 𝐶:𝑢̇ (𝑡) = 𝐿󰜚𝑢𝑡 + 𝐹 (󰜚, 𝑢𝑡) , (28)

where 𝑢𝑡 = (𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡), 𝑢5(𝑡))𝑇 = (𝑆, 𝐸, 𝐼, 𝑄,𝑅)𝑇 ∈ 𝑅5, 𝑢𝑡(𝜃) = 𝑢(𝑡 + 𝜃) ∈ 𝐶, 𝐿󰜚 : 𝐶 → 𝑅5, and 𝐹(󰜚, 𝑢𝑡) →𝑅5 are given, respectively, by𝐿󰜚𝜙 = (𝜏0 + 󰜚) (𝐴max𝜙 (0) + 𝐵max𝜙 (−1)) , (29)
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with

𝐴max = ((
(

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑎6 𝑎7 𝑎8 0 00 𝑎9 𝑎10 0 00 0 𝑎11 𝑎12 00 0 0 0 𝑎13
))
)

,

𝐵max = ((
(

0 0 0 0 00 𝑏1 0 0 00 0 𝑏2 0 00 0 0 𝑏3 00 𝑏4 𝑏5 𝑏6 0
))
)

,
(30)

𝐹 (󰜚, 𝜙) = (𝜏0 + 󰜚)
⋅((
(

−(𝛽1𝜙1 (0) 𝜙2 (0) + 𝛽2𝜙1 (0) 𝜙3 (0))𝛽1𝜙1 (0) 𝜙2 (0) + 𝛽2𝜙1 (0) 𝜙3 (0)000
))
)

. (31)

By the Riesz representation theorem, there exists a func-
tion 𝜂(𝜃, 󰜚) whose components are of bounded variation for𝜃 ∈ [−1, 0] such that𝐿𝜇𝜙 = ∫0

−1
𝑑𝜂 (𝜃, 󰜚) 𝜙 (𝜃) , (32)

for 𝜙 ∈ 𝐶. In view of (29), we can choose𝜂 (𝜃, 󰜚) = (𝜏0 + 󰜚) (𝐴max𝛿 (𝜃) + 𝐵max𝛿 (𝜃 + 1)) , (33)

with 𝛿(𝜃) being the Dirac delta function.
For 𝜙 ∈ 𝐶([−1, 0], 𝑅5), define
𝐴 (󰜚) 𝜙 = {{{{{{{

𝑑𝜙 (𝜃)𝑑𝜃 , −1 ≤ 𝜃 < 0,∫0
−1
𝑑𝜂 (𝜃, 󰜚) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (󰜚) 𝜙 = {{{0, −1 ≤ 𝜃 < 0,𝐹 (󰜚, 𝜙) , 𝜃 = 0.
(34)

Then, system (28) is then equivalent to𝑢̇ (𝑡) = 𝐴 (󰜚) 𝑢𝑡 + 𝑅 (󰜚) 𝑢𝑡. (35)

For 𝜑 ∈ 𝐶1([0, 1], (𝑅5)∗), define
𝐴∗ (𝜑) = {{{{{{{

−𝑑𝜑 (𝑠)𝑑𝑠 , 0 < 𝑠 ≤ 1,∫0
−1
𝑑𝜂𝑇 (𝑠, 0) 𝜑 (−𝑠) , 𝑠 = 0, (36)

and a bilinear inner product⟨𝜑 (𝑠) , 𝜙 (𝜃)⟩ = 𝜑 (0) 𝜙 (0)− ∫0
𝜃=−1

∫𝜃
𝜉=0

𝜑 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (37)

where 𝜂(𝜃) = 𝜂(𝜃, 0). Then 𝐴(0) (from here onwards we refer𝐴(0) by𝐴) and𝐴∗ are adjoint operators. Since ±𝑖𝜔0𝜏0 are the
eigenvalues of 𝐴, they are also the eigenvalues of 𝐴∗.

Suppose that 𝜌(𝜃) = (1, 𝜌2, 𝜌3, 𝜌4, 𝜌5)𝑇𝑒𝑖𝜏0𝜔0𝜃 and 𝜌∗(𝑠) =(1, 𝜌∗2 , 𝜌∗3 , 𝜌∗4 , 𝜌∗5 )𝑇𝑒𝑖𝜏0𝜔0𝑠 are the eigenvectors for 𝐴 and 𝐴∗
corresponding to +𝑖𝜏0𝜔0 and −𝑖𝜏0𝜔0, respectively. Then, we
have𝜌2= 𝑎6 (𝑖𝜔0 − 𝑎10 − 𝑏2𝑒−𝑖𝜏0𝜔0)(𝑖𝜔0 − 𝑎7 − 𝑏1𝑒−𝑖𝜏0𝜔0) (𝑖𝜔0 − 𝑎10 − 𝑏2𝑒−𝑖𝜏0𝜔0) − 𝑎8𝑎9 ,𝜌3 = 𝑎9𝜌2𝑖𝜔0 − 𝑎10 − 𝑏2𝑒−𝑖𝜏0𝜔0 ,𝜌4 = 𝑎11𝜌3𝑖𝜔0 − 𝑎12 − 𝑏3𝑒−𝑖𝜏0𝜔0 ,𝜌5 = 𝑏4𝜌2 + 𝑏5𝜌3 + 𝑏6𝜌4(𝑖𝜔0 − 𝑎13) 𝑒𝑖𝜏0𝜔0 ,
𝜌∗2 = −𝑖𝜔0 + 𝑎1𝑎6 ,
𝜌∗3 = −𝑎3 + 𝑎8𝜌∗2 + 𝑎11𝜌∗4 + 𝑏5𝑒𝑖𝜏0𝜔0𝜌∗5𝑖𝜔0 + 𝑎10 + 𝑏2𝑒𝑖𝜏0𝜔0 ,
𝜌∗4 = − 𝑎4 + 𝑏6𝑒𝑖𝜏0𝜔0𝜌∗5𝑖𝜔0 + 𝑎12 + 𝑏3𝑒𝑖𝜏0𝜔0 ,𝜌∗5 = − 𝑎5𝑖𝜔0 + 𝑎13 .

(38)

From (37), we get𝑉 = [1 + 𝜌2𝜌∗2 + 𝜌3𝜌∗3 + 𝜌4𝜌∗4 + 𝜌5𝜌∗5+ 𝜏0𝑒−𝑖𝜏0𝜔0 (𝜌2 (𝑏1𝜌∗2 + 𝑏4𝜌∗5 ) + 𝜌3 (𝑏2𝜌∗3 + 𝑏5𝜌∗5 )+ 𝜌4 (𝑏3𝜌∗4 + 𝑏6𝜌∗5 ))]−1 , (39)

such that ⟨𝜌∗, 𝜌⟩ = 1 and ⟨𝜌∗, 𝜌⟩ = 0.
Proceeding in the samemanner as Hassard et al. [27] and

the similar computation process as that in [28–30], we obtain𝑔20 = 2𝜏0𝑉 (𝜌∗2 − 1) (𝛽1𝜌2 + 𝛽2𝜌3) ,𝑔11 = 𝜏0𝑉 (𝜌∗2 − 1) (𝛽1Re {𝜌2} + 𝛽2Re {𝜌3}) ,𝑔02 = 2𝜏0𝑉 (𝜌∗2 − 1) (𝛽1𝜌2 + 𝛽2𝜌3) ,𝑔21 = 2𝜏0𝑉 (𝜌∗2 − 1) (𝛽1 (𝑊(1)11 (0) 𝜌2 + 12𝑊(1)20 (0) 𝜌2
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+𝑊(2)11 (0) + 12𝑊(2)20 (0)) + 𝛽2 (𝑊(1)11 (0) 𝜌3+ 12𝑊(1)20 (0) 𝜌3 +𝑊(3)11 (0) + 12𝑊(3)20 (0))) ,
(40)

with𝑊20 (𝜃) = 𝑖𝑔20𝜌 (0)𝜏0𝜔0 𝑒𝑖𝜏0𝜔0𝜃 + 𝑖𝑔02𝜌 (0)3𝜏0𝜔0 𝑒−𝑖𝜏0𝜔0𝜃+ 𝐸1𝑒2𝑖𝜏0𝜔0𝜃,𝑊11 (𝜃) = −𝑖𝑔11𝜌 (0)𝜏0𝜔0 𝑒𝑖𝜏0𝜔0𝜃 + 𝑖𝑔11𝜌 (0)𝜏0𝜔0 𝑒−𝑖𝜏0𝜔0𝜃 + 𝐸2. (41)

𝐸1 and 𝐸2 can be obtained by the following two equations:𝐸1
= 2(((

(
𝑎󸀠1 −𝑎2 −𝑎3 −𝑎4 −𝑎5−𝑎6 𝑎󸀠7 −𝑎8 0 00 −𝑎9 𝑎󸀠10 0 00 0 −𝑎11 𝑎󸀠12 00 −𝑏4𝑒−2𝑖𝜏0𝜔0 −𝑏5𝑒−2𝑖𝜏0𝜔0 −𝑏6𝑒−2𝑖𝜏0𝜔0 𝑎󸀠13

)))
)

−1

×(((
(

𝐸(1)1𝐸(2)1000
)))
)

,
(42)

𝐸2
= −((

(
𝑎1 𝑎2 𝑎3 𝑎4 𝑎5𝑎6 𝑎7 + 𝑏1 𝑎8 0 00 𝑎9 𝑎10 + 𝑏2 0 00 0 𝑎11 𝑎12 + 𝑏3 00 𝑏4 𝑏5 𝑏6 0

))
)
−1

×(((
(

𝐸(1)2𝐸(2)2000
)))
)

,
(43)

where 𝑎󸀠1 = 2𝑖𝜔0 − 𝑎1,𝑎󸀠7 = 2𝑖𝜔0 − 𝑎7 − 𝑒−2𝑖𝜏0𝜔0 ,𝑎󸀠10 = 2𝑖𝜔0 − 𝑎10 − 𝑏2𝑒−2𝑖𝜏0𝜔0 ,𝑎󸀠12 = 2𝑖𝜔0 − 𝑎12 − 𝑏3𝑒−2𝑖𝜏0𝜔0 ,𝑎󸀠13 = 2𝑖𝜔0 − 𝑎13,

𝐸(1)1 = −𝛽1𝜌2 − 𝛽2𝜌3,𝐸(2)1 = 𝛽1𝜌2 + 𝛽2𝜌3,𝐸(1)2 = −𝛽1Re {𝜌2} − 𝛽2Re {𝜌3} ,𝐸(2)2 = 𝛽1Re {𝜌2} + 𝛽2Re {𝜌3} .
(44)

Then, one can obtain𝐶1 (0) = 𝑖2𝜏0𝜔0 (𝑔11𝑔20 − 2 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨23 ) + 𝑔212
𝜇2 = − Re {𝐶1 (0)}

Re {𝜆󸀠 (𝜏0)} ,𝛽2 = 2Re {𝐶1 (0)} ,
(45)

𝑇2 = − Im {𝐶1 (0)} + 𝜇2Im {𝜆󸀠 (𝜏0)}𝜏0𝜔0 . (46)

Thus, based on the properties of the Hopf bifurcation dis-
cussed in [27], we have the following.

Theorem 2. For system (2), if 𝜇2 > 0 (𝜇2 < 0), then the Hopf
bifurcation is supercritical (subcritical); if 𝛽2 < 0 (𝛽2 > 0),
then the bifurcated periodic solutions are stable (unstable);
if 𝑇2 > 0 (𝑇2 < 0), then the period of the bifurcated periodic
solutions increases (decreases).

4. Numerical Simulation

In this section, we perform some numerical simulations to
support and explain our obtained results. We choose a set of
parameters as follows:∏ = 5, 𝛾 = 0.6, 𝜃 = 0.3, 𝛽1 = 0.0002,𝛽2 = 0.0003, 𝑑 = 0.0001, 𝛼1 = 0.0001, 𝜛 = 0.01, 𝛿1 = 0.8,𝛿2 = 0.2, 𝛼2 = 0.0002, 𝑝 = 0.4, and 𝜂 = 0.35. Then, system (2)
becomes𝑑𝑆 (𝑡)𝑑𝑡 = 5 + 0.6𝑅 (𝑡) + 0.3𝑄 (𝑡) − 0.0002𝑆 (𝑡) 𝐸 (𝑡)− 0.0003𝑆 (𝑡) 𝐼 (𝑡) − 0.0001𝑆 (𝑡) ,𝑑𝐸 (𝑡)𝑑𝑡 = 0.0002𝑆 (𝑡) 𝐸 (𝑡) + 0.0003𝑆 (𝑡) 𝐼 (𝑡)− 0.0102𝐸 (𝑡) − 0.2𝐸 (𝑡 − 𝜏) ,𝑑𝐼 (𝑡)𝑑𝑡 = 0.01𝐸 (𝑡) − 0.40003𝐼 (𝑡) − 0.48𝐼 (𝑡 − 𝜏) ,𝑑𝑄 (𝑡)𝑑𝑡 = 0.4𝐼 (𝑡) − 0.30001𝑄 (𝑡) − 0.35𝑄 (𝑡 − 𝜏) ,𝑑𝑅 (𝑡)𝑑𝑡 = 0.2𝐸 (𝑡 − 𝜏) + 0.48𝐼 (𝑡 − 𝜏) + 0.35𝑄 (𝑡 − 𝜏)− 0.60001𝑅 (𝑡) .

(47)
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Figure 1:𝐷∗ is locally asymptotically stable when 𝜏 = 6.76 < 𝜏0 = 7.5508.
Then, we get 𝐵1 = 88.0300, 𝐵2 = 0.6153, 𝐵3 = 30.4972,𝐵4 = 0.0210, and the unique endemic equilibrium𝐷∗(1033.4,20526.3334, 233.1743, 143.4698, 7111.1633). Further we have

det1 = 𝐴4 = 9.3093 > 0, det2 = 3.6022 > 0, det3 = 0.4090 >0, det4 = 0.2727 > 0, and det5 = 0.0154 > 0. Thus, 𝐷∗ is
asymptotically stable when 𝜏 = 0.

For 𝜏 > 0, we obtain 𝜔0 = 1.2030, 𝜏0 = 7.5508, and𝜆󸀠(𝜏0) = 0.9208−0.2975𝑖 by some complicated computations
usingMatlab software package. Based onTheorem 1, we know
that the endemic equilibrium 𝐷∗ is asymptotically stable
when 𝜏 ∈ [0, 7.5508). In this case, propagation of the worms
can be controlled easily and this is exhibited by numerical
simulation shown in Figure 1. However, once the magnitude
of the time delay 𝜏 passes through the critical value 𝜏0 =7.5508,𝐷∗ will lose its stability and aHopf bifurcation occurs.
In this case, the worm propagation will become unstable and
propagation of the worms will be out of control, which can be
illustrated in Figure 2. The bifurcation phenomenon can be
also exhibited by the bifurcation diagram shown in Figure 3.
It follows from (46) that 𝐶1(0) = −0.9606 − 0.2731𝑖, 𝜇2 =1.0432 > 0,𝛽2 = −1.9212 < 0, and𝑇2 = 0.0642.Thus, accord-
ing to Theorem 2, the bifurcation at 𝜏0 = 7.5508 is super-
critical and stable, and the period of the Hopf bifurcation
increases.

5. Conclusions and Further Developments

A delayed SEIQRS model with graded infection rates for
Internet worms is proposed in this paper based on the
model in the literature [18]. Compared with the models
investigated in the previous literatures, the exposed and the

infectious computers in the model considered in our paper
have different infection rates. Also, we incorporate the time
delay due to the period that the antivirus software uses to
clean the worms in the exposed, the infectious, and the
quarantined computers. Therefore, the model considered in
our paper is more general.

Wemainly investigate the effect of the time delay 𝜏 on the
stability of the model. Based on the numerical simulations
presented in our paper, we found that when the value of the
delay 𝜏 is below the critical value 𝜏0, the model is locally
asymptotically stable, which means that the number of the
five classes computers in system (2) will be in an ideal steady
state and we can control prevalence of the worms in (2) easily.
However, once the value of the delay 𝜏 is above 𝜏0, a Hopf
bifurcation occurs.This phenomenon suggests that the num-
bers of computers of the five classes in system (2)will fluctuate
periodically in a range. This is not helpful to control the
prevalence of the worms. Hence, we should control the phe-
nomenon by combining some bifurcation control strategies
and other relative features of virus prevalence, for example,
topological structures of networks, which is our future work.

Thus, our further research directions include the possibil-
ity of linking the results obtained with the model proposed in
the present paper with the results coming from the networks
theory. Specifically, the interest focuses on the possibility of
gaining a deep understanding of the impact of the network
topology on the viral prevalence.
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Figure 2:𝐷∗ loses its stability when 𝜏 = 8.42 > 𝜏0 = 7.5508.
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