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Pseudospectral methods and differential quadrature methods are two kinds of important meshless methods, both of which have
been widely used in scientific and engineering calculation.The Lagrange interpolation polynomials are used as the trial function of
the two methods, and the same distribution of grid points is used. This paper points out that the differential quadrature method is
a special form of the pseudospectral method. On the basis of the above, a coupled pseudospectral-differential quadrature method
(PSDQM) is proposed to solve a class of hyperbolic telegraph equations. Theoretical analysis and numerical tests show that the
new method has spectral precision convergence in spatial domain and has A-stability in time domain. And it is suitable for solving
multidimensional telegraph equations.

1. Introduction

The spectral methods [1] are a class of new numerical
methods proposed by Gottlieb and Orszag for solving partial
differential equations. As a kind of meshless methods, it
can be essentially expressed as using special orthogonal
polynomials (such as Chebyshev and Legendre polynomials)
as test functions to discretize partial differential equations.
Specifically, it is to define a set of orthogonal functions as basis
functions on the calculation domain and use basis functions
to approximate the desired variable as its spectral approxi-
mation form. Its notable feature is that only a few discrete
points are needed to get a higher approximation accuracy
[2]. Spectral methods can be divided into the Galerkin
method and the spectral collocation method (SCM) or the
pseudospectral method (PSM) according to the different
approximation schemes [1]. For the latter, the differentiation
matrix [3] is used to compute derivatives at the collocation
points, which obtains great convenience for the SCM. So the
differentiation matrix plays an important role in the SCM for
numerical calculation [3].

The differential quadrature methods (DQM) [4] also are
a class of meshless methods for solving differential or partial
differential equations, which were proposed by Bellman and

Casti in the early 1970s as an extension of the idea of
conventional integral quadrature.The differential quadrature
method was proved to be essentially equivalent to the general
collocation method [5]. The basic idea of DQM is to use the
weighted linear sum of the function values of all discrete
points in a coordinate direction over the whole domain to
represent the derivative of the function at that discrete point.
The differential quadraturemethod is simple inmathematical
principle and its implementation does not depend on the
variational principle [5]. In addition, it is also considered to
be easy in programming and achieve higher computational
efficiency. In order to solve the weighting coefficients or
the weighting coefficients matrix of differential quadrature
method, the researchers have deduced the implicit matrix
expression and the explicit recursive algebraic formulation,
respectively, using the general polynomial and the Lagrange
interpolation polynomial as the trial function [6–8]. In [7],
it was pointed out that the weighting coefficients of DQM
depend only on the choice of trial function and the distri-
bution of grid points and have nothing to do with the actual
research problems.

In this study, a coupled pseudospectral-differential quad-
rature method is presented for solving a class of hyperbolic
telegraph equations.Thehyperbolic telegraph equation is first
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reduced to a set of ordinary differential equations by spatial
discretization based on the spectral collocation method.
Then the s-stage s-order time domain differential quadrature
method is employed to solve the resulting initial value
problem. Finally, the resulting algebraic equations can be
solved by either direct or iterative methods. As a comparison,
the method in [9] is also used for solving the telegraph
equation.

The rest of the paper is arranged as follows. In Sec-
tion 2, the spectral collocation method or pseudospec-
tral method is briefly introduced. In Section 3, the space
domain differential quadrature method is firstly introduced.
Then, we point out the equivalence relationship of pseu-
dospectral method and differential quadrature method in
the spatial domain. In Section 4, we deduce how to use
the proposed coupled pseudospectral-differential quadrature
methods to solve one-dimensional and two-dimensional
hyperbolic telegraph equations in detail. In Section 5, three
specific numerical examples are computed, which are given
to verify the computational accuracy and numerical stability
of the proposed method. Conclusions are then given in
Section 6.

2. Pseudospectral Method

Pseudospectral method, also known as the collocation points
method [1, 2, 9], is an efficient and meshless numerical
method for solving partial differential equation or equations.
Without loss of generality, consider the differential equation𝑢(𝑥) of a one-dimensional function:

𝐿 (𝑢 (𝑥)) = 𝑓 (𝑥) , 𝑥 ∈ [𝑐, 𝑑] , (1)

where 𝐿 is a linear differential operator and 𝑓(𝑥) is a given
smooth function of space; 𝑢(𝑥) is a variable that is unknown.

𝑥 is one point in the interval [𝑐, 𝑑]. The core idea of the
spectral method and pseudospectral method is consistent;
namely, the variable 𝑢(𝑥) can be interpolated and approxi-
mated by the truncated series of basis function 𝜙𝑛(𝑥); that is,

𝑢 (𝑥) ≅ 𝑢𝑁 (𝑥) = 𝑁∑
𝑛=0

𝛼𝑛𝜙𝑛 (𝑥) , (2)

where𝑁 is the number of divided intervals; 𝛼𝑛 is the spectral
coefficients. 𝑢𝑁(𝑥) is the approximate value of 𝑢(𝑥).

To measure the approximate effect of (2), define the
approximate residual value 𝑟(𝑥, 𝛼) as follows:

𝑟 (𝑥, 𝛼) = 𝐿 (𝑢𝑁) − 𝑓 (𝑥) . (3)

We can see from the above analysis that the essential part of
spectral method is to find spectral coefficients 𝛼𝑛, which
make the approximate residual values 𝑟(𝑥, 𝛼) as small as
possible.

In general, basis functions include discrete Fourier series,
Chebyshev polynomials, Lagrange interpolation basis func-
tion, and so on [3].The collocation points include the follow-
ing four typical types (take standardized interval [−1, 1], for
example), which are defined as follows [4]:

(1) Uniform grid points

𝑥𝑖 = 2 𝑖𝑁 − 1, 𝑖 ∈ (0,𝑁) . (4)

(2) Chebyshev-Gauss-Lobatto grid points

𝑥𝑖 = cos 𝑖𝜋𝑁 , 𝑖 ∈ (0,𝑁) . (5)

(3) Gauss-Legendre grid points

𝑥0 = −1; 𝑥𝑖, 𝑖 ∈ (1,𝑁 − 1) are the zero points of
d𝑁−1 (𝑥2 − 1)𝑁−1

d𝑥𝑁−1 = 0; 𝑥𝑁 = 1. (6)

(4) Gauss-Lobatto grid points

𝑥𝑖 = 12 (1 − cos(𝑖𝜋𝑁)) , 𝑖 ∈ (0,𝑁) , (7)

where 𝑥𝑖 ∈ [0, 1], 𝑖 ∈ (0,𝑁). Therefore, the Gauss-Lobatto
grid points on the interval [−1, 1] can be obtained by a linear
transformation.

Using the collocation points method to obtain the
approximate value of 𝑢(𝑥), each collocation point 𝑥𝑖 (𝑖 ∈(0,𝑁)) satisfies (3); that is,

𝑟 (𝑥𝑖, 𝛼𝑖) = 𝐿 (𝑢𝑁 (𝑥𝑖)) − 𝑓 (𝑥𝑖) = 0. (8)

Solving the algebraic equations about spectral coefficients𝛼𝑖, the approximate solution 𝑢𝑁 of the variable 𝑢(𝑥) is
obtained.

To avoid solving directly (8), consider the PSMor colloca-
tion point 𝑠 method with the collocation points {𝑥0, . . . , 𝑥𝑁}
and the corresponding approximate value {𝑢0, . . . , 𝑢𝑁}.
Denote 𝐿(𝑢(𝑥𝑖)) = 𝑓𝑖, 𝑖 ∈ (0,𝑁); the 𝑝, 𝑝 ≥ 1 order
differential matrix D(𝑝)𝑁 is defined in the corresponding
collocation points under the linear differential operator 𝐿;
that is,

F = D(𝑝)𝑁 V, (9)

where F = [𝑓0, . . . , 𝑓𝑁]T; V = [𝑢0, . . . , 𝑢𝑁]T.
From formula (9), it can be seen that using the differenti-

ationmatrixD(𝑝)𝑁 brings great convenience for numerical cal-
culation.The solution procedure of the differentiation matri-
ces of the pseudospectral method is given in [3] in detail.
It is necessary to point out that the differentiation matrix
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formation of the pseudospectral method is related to the
interpolation basis function and the collocation points, and
it has nothing to do with the specific problem [3]. In other
words, if basis function and collocation points are given, the
unique differentiation matrices can be formed. The 𝑝-order
differential matrix D(𝑝)𝑁 of pseudospectral method with the
Lagrange interpolation basis function and the space discrete
points using the Chebyshev-Gauss-Lobatto grid points is
presented as follows [3, 10]:

D(𝑝)𝑁 = [[[[[

𝑑(𝑝)00 ⋅ ⋅ ⋅ 𝑑(𝑝)0𝑁... d
...

𝑑(𝑝)𝑁0 ⋅ ⋅ ⋅ 𝑑(𝑝)𝑁𝑁
]]]]]
∈ 𝑅(𝑁+1)×(𝑁+1), (10)

where, in the case of 𝑝 = 1, and
𝑑(1)00 = 2𝑁2 + 16 ;
𝑑(1)𝑁𝑁 = −2𝑁2 + 16 ;
𝑑(1)𝑖𝑖 = −𝑥𝑖2 (1 − 𝑥2𝑖 ) , 𝑖 = 1, 2, . . . , 𝑁 − 1;
𝑑(1)𝑖𝑗 = 𝛾𝑖𝛾𝑗 (−1)

𝑖+𝑗

(𝑥𝑖 − 𝑥𝑗) , 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 0, 1, . . . , 𝑁 − 1;
𝛾𝑖 = {{{

2 𝑖 = 0,𝑁
1 𝑖 = 2, . . . , 𝑁 − 1,

(11)

when𝑁 = 1, 2, 3, the first-order differential matrices are
presented as follows:

D(1)1 = [[[
12 −1212 −12

]]]
;

D(1)2 = [[[[[[[

32 −2 1212 0 −12−12 2 −32

]]]]]]]
;

D(1)3 =
[[[[[[[[[[

196 −4 43 −121 −13 −1 13−13 1 13 −112 −43 4 −196

]]]]]]]]]]
.

(12)

The second-order differentiation matrix D(2)𝑁 of the PSM
can be obtained directly by the following formula [3, 10]:

D(2)𝑁 = D(1)𝑁 D
(1)
𝑁 . (13)

When 𝑁 = 1, 2, 3, the second-order differentiation matrices
are given in the formula (13):

D(2)1 = [0 00 0] ;

D(2)2 = [[[
1 −2 11 −2 11 −2 1

]]]
;

D(2)2 =
[[[[[[[[[[[[

163 −283 203 −83103 −163 83 −23
−23 83 −163 103
−83 203 −283 163

]]]]]]]]]]]]

.

(14)

For convenience, the above method is named Chebyshev
pseudospectral method in next sections.

3. Differential Quadrature Method

Differential quadrature method is also a kind of meshless
numerical method [11]. Without loss of generality, suppose
one-dimensional function 𝑔(𝑥) is sufficiently smooth in the
whole interval [𝑎, 𝑏]; and the interval [𝑎, 𝑏] is divided into𝑀
sections; that is,

𝐿 (𝑔 (𝑥)) = 𝑀∑
𝑖=0

𝐴 𝑖 (𝑥) 𝑔 (𝑥𝑖) , (15)

where 𝐿 means linear differential operator; 𝐴 𝑖(𝑥) 𝑖 ∈ (0,𝑀)
is called the interpolation basis function; 𝑎 = 𝑥0 ≤ 𝑥𝑖 ≤ 𝑥𝑀 =𝑏, 𝑥𝑖 is the (𝑖 + 1)th discrete point.

If 𝐿(𝑔(𝑥)) = 𝑔(𝑝)(𝑥), (15) can be rewritten as the following
formula:

d𝑝𝑔 (𝑥)
d𝑥𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥𝑖 =
𝑀∑
𝑗=0

𝑤(𝑝)𝑖𝑗 𝑔 (𝑥𝑗) , 𝑖 ∈ (0,𝑀) , (16)

where𝑤(𝑝)𝑖𝑗 is the 𝑝-order derivative weighting coefficient 𝑠 of
DQM.

In DQM, using general polynomial as test functions, it is
difficult to solve the weighting coefficients when𝑀 increases
to a certain value [8]. Using Lagrange interpolation polyno-
mial as test functions, the explicit expression of the weighting
coefficients is shown as follows (take standardized interval[−1, 1], for example) [6, 8]:

𝑞𝑖𝑗 = 𝐽 (𝑥𝑖)(𝑥𝑖 − 𝑥𝑗) 𝐽 (𝑥𝑗) , 𝑖 ̸= 𝑗, 𝑖, 𝑗 = 0, 1, . . . ,𝑀,
𝑞𝑖𝑖 = − 𝑀∑

𝑖=0,𝑖 ̸=𝑗

𝑞𝑖𝑗, 𝑖 = 𝑗, 𝑖 = 0, 1, . . . ,𝑀,
𝑝 = 1,

(17)
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where 𝑇(𝑥) = ∏𝑀𝑘=0(𝑥 − 𝑥𝑘), 𝐽(𝑥) = 𝑇󸀠(𝑥).

𝑤(𝑝)𝑖𝑗 = 𝑝(𝑞𝑖𝑗𝑤(𝑝−1)𝑖𝑖 − 𝑤(𝑝−1)𝑖𝑗𝑥𝑖 − 𝑥𝑗) ,
𝑖 ̸= 𝑗, 𝑖, 𝑗 ∈ (0,𝑀) ,

𝑤(𝑝)𝑖𝑖 = − 𝑀∑
𝑖=0,𝑖 ̸=𝑗

𝑤(𝑝)𝑖𝑗 , 𝑖 = 𝑗, 𝑖 = (0,𝑀) , 𝑝 ≥ 2.
(18)

Shu has proved that the weighting coefficients are equiv-
alent either using general polynomial or Lagrange interpola-
tion polynomial as test functions.

In general, considering the grid points 𝜎𝑖, 𝑖 ∈ (0,𝑀), in
the regularized interval [−1, 1], obviously, the transformation
between 𝑥𝑖 and 𝜎𝑖 can be achieved by the following linear
transformation:

𝑥𝑖 = 𝑏 − 𝑎2 𝜎𝑖 + 𝑏 + 𝑎2 . (19)

Similarly, the coefficients 𝜉𝑖𝑗, (𝑖, 𝑗 = 0, 1, . . . ,𝑀) on the
general interval [𝑎, 𝑏] can be obtained by using the following
transformation formula [12]:

𝜉𝑖𝑗 = ( 2𝑏 − 𝑎)
𝑝 𝜓𝑖𝑗, (20)

where 𝜓𝑖𝑗, (𝑖, 𝑗 = 0, 1, . . . ,𝑀) is the 𝑝-order derivative
weighting coefficient of the regularized region [−1, 1].

The weighting coefficients matrix W(𝑝)𝑀 of the 𝑝-order
derivative of 𝑔(𝑥) is defined as follows:

W(𝑝)𝑀 = [[[[[

𝑤(𝑝)00 ⋅ ⋅ ⋅ 𝑤(𝑝)0𝑀... d
...

𝑤(𝑝)𝑀0 ⋅ ⋅ ⋅ 𝑤(𝑝)𝑀𝑀
]]]]]
∈ 𝑅(𝑀+1)×(𝑀+1). (21)

Define 𝐿(𝑔(𝑥)) = 𝑔(𝑝)(𝑥) and 𝐿(𝑔(𝑥𝑖)) = ℎ𝑖, 𝑖 ∈ (0,𝑀);
(15) can be rewritten as the following matrix form:

H =W(𝑝)𝑀 G, (22)

where H = [ℎ0, ℎ1, . . . , ℎ𝑀]T; G = [𝑔(𝑥0), 𝑔(𝑥1), . . . ,𝑔(𝑥𝑀)]T.

When 𝑝 = 1, 𝑀 = 1, 2, 3, the first-order weighting
coefficientsmatriceswith the grid points using theChebyshev
points in the regularized region [−1, 1] are shown as follows:

W(1)1 = [[[
12 −1212 −12

]]]
;

W(1)2 = [[[[[[[

32 −2 1212 0 −12−12 2 −32

]]]]]]]
;

W(1)3 =
[[[[[[[[[[[

196 −4 43 −121 −13 −1 13−13 1 13 −1
12 −43 4 −196

]]]]]]]]]]]
.

(23)

Similarly, the second-order derivative weighting coeffi-
cients matrices can expressed as follows:

W(2)1 = [0 00 0] ;

W(2)2 = [[[
1 −2 11 −2 11 −2 1

]]]
;

W(2)3 =
[[[[[[[[[[[[

163 −283 203 −83103 −163 83 −23
−23 83 −163 103
−83 203 −283 163

]]]]]]]]]]]]

.

(24)

Obviously, the above DQM is mainly for the numerical
computation in the spatial domain.The basic content of time
domain differential quadrature method has been analyzed
in detail in [5, 7]. Reference [7] indicates that classical s-
stage s-order time domain DQM can be transformed into
equivalent implicit Runge-Kutta method. From the defini-
tion, test functions, interpolation points, and differentiation
matrix or weighting matrix of the DQM and PSM, in the
spatial domain, and the differential matrices of the PSM are
equivalent to the weighting coefficients matrices of the DQM
as long as the test functions and the interpolation points are
consistent with each other. In other words, the PSM and the
DQM are also equivalent in the spatial domain.

Inspired by this, a new coupled numerical method is pro-
posed, which is called pseudospectral-differential quadrature
methods (PSDQM). In this paper, PSDQM is used to solve
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the hyperbolic telegraph equations. And the effectiveness of
PSDQM is illustrated by comparing with the method used in
[9].

In the following, the four-stage time domain differential
quadrature method using uniform grid points will be given
as an example; that is,

W̃(1)4 =
[[[[[[[[[[

−103 6 −2 13−83 0 83 −132 −6 103 1
−163 12 −16 253

]]]]]]]]]]
;

W0 = −W̃(1)4 e = [−1 13 −13 1]T ,

(25)

where e is a column vector of dimension four, all components
of which are one.

4. Solving Hyperbolic Telegraph
Equations By PSDQM

First, we can consider the following one-dimensional hyper-
bolic telegraph equations:

𝜕2𝜒 (𝑥, 𝑡)𝜕𝑡2 + 𝑘0 𝜕𝜒 (𝑥, 𝑡)𝜕𝑡 = 𝑎20 𝜕2𝜒 (𝑥, 𝑡)𝜕𝑥2 + 𝑏0𝜒 (𝑥, 𝑡) , (26)

where 𝑘0 > 0, 𝑎0 > 0, and 𝑏0 < 0 are constants related to the
transmission line parameters; variable 𝜒(𝑥, 𝑡) denotes voltage
or current on transmission line; its domain of definition is(𝑥, 𝑡) ∈ [0, 𝜏] × [0, 𝑇]; with initial condition

𝜒 (𝑥, 0) = 𝑔1 (𝑥) , 𝑥 ∈ [0, 𝜏] ;
𝜒𝑡 (𝑥, 0) = 𝑔2 (𝑥) , 𝑥 ∈ [0, 𝜏] . (27)

With Dirichlet boundary condition

𝜒 (0, 𝑡) = 𝑚1 (𝑡) , 𝑡 ∈ [0, 𝑇] ;
𝜒 (𝜏, 𝑡) = 𝑚2 (𝑡) , 𝑡 ∈ [0, 𝑇] . (28)

By adopting transformation 𝑢̃(𝑥, 𝑡) = 𝑒𝑘0𝑡/2𝜒(𝑥, 𝑡) in [13],
the new one-dimensional telegraph equation is obtained by
transformation; that is,

𝜕2𝑢̃ (𝑥, 𝑡)𝜕𝑡2 = 𝑎20 𝜕2𝑢̃ (𝑥, 𝑡)𝜕𝑥2 + (𝑏0 + 14𝑘20) 𝑢̃ (𝑥, 𝑡) . (29)

With new initial condition𝑢̃ (𝑥, 0) = 𝑔1 (𝑥) , 𝑥 ∈ [0, 𝜏] ;
𝑢̃𝑡 (𝑥, 0) = 𝑔2 (𝑥) + 12𝑘0𝑔1 (𝑥) , 𝑥 ∈ [0, 𝜏] . (30)

With new Dirichlet boundary condition

𝑢̃ (0, 𝑡) = 𝑒𝑘0𝑡/2𝑚1 (𝑡) , 𝑡 ∈ [0, 𝑇] ;
𝑢̃ (𝜏, 𝑡) = 𝑒𝑘0𝑡/2𝑚2 (𝑡) , 𝑡 ∈ [0, 𝑇] . (31)

Using the PSM with Lagrange interpolation basis func-
tion and Chebyshev grid points (or uniform grid points) on
the interval [−1, 1] used as collocation points 𝑥𝑖, the second-
order partial derivatives 𝑢̃𝑥𝑥 can be expressed as follows:

𝑢̃𝑥𝑥 (𝑥𝑖, 𝑡) = 𝑁∑
𝑗=0

𝑑(2)𝑖𝑗 𝑢̃ (𝑥𝑗, 𝑡) , 𝑖 = 0, 1, . . . , 𝑁, (32)

where 𝑑(2)𝑖𝑗 = (2/𝜏)2𝑑(2)𝑖𝑗 ; 𝑥𝑖 = (𝜏/2)𝑥𝑖 + 𝜏/2, 𝑖 ∈ (0,𝑁).
Formula (32) is substituted into (29), and the following

formula can be obtained:

d2Ũ
d𝑡2 = ((2𝜏)

2 𝑎20D(2)𝑁 + (𝑏0 + 14𝑘20) I𝑁+1) Ũ, (33)

where Ũ = [𝑢̃(𝑥0, 𝑡), 𝑢̃(𝑥1, 𝑡), . . . , 𝑢̃(𝑥𝑁−1, 𝑡), 𝑢̃(𝑥𝑁, 𝑡)]T; I𝑁+1
is the identity matrix of dimension𝑁 + 1.

Let Ṽ = dŨ/d𝑡; formula (33) can be reduced to the first-
order equations:

dṼ
d𝑡 = SŨ,
dŨ
d𝑡 = Ṽ.

(34)

If we define Y as follows:

Y = [Ṽ
Ũ
] , (35)

obviously, formula (34) can be rewritten as the first-order
linear ordinary differential equations:

dY
d𝑡 = [ 0 S

I𝑁+1 0
]Y, (36)

where S = (2/𝜏)2𝑎20D(2)𝑁 + (𝑏0 + (1/4)𝑘20)I𝑁+1.
Using classic time domain DQM based on uniform grid

points to solve first-order ordinary differential equation (36),
the specific calculation process is given in [5] and there is
no repeat here. So far, the basic idea of using PSDQM for
solving one-dimensional telegraph equations is summarized
as follows. First of all, by using the pseudospectral method to
discretize the spatial variables and obtain a linear ordinary
differential equations in time domain, then using the s-stage
s-order time domain DQM based on uniform grid points to
solve the obtained first-order linear equations, and, finally,
using the inverse transform 𝜒(𝑥, 𝑡) = 𝑒−𝑘0𝑡/2𝑢̃(𝑥, 𝑡), the nu-
merical solution of (26) on collocation points can be ob-
tained.
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On the basis of solving the one-dimensional telegraph
equations, PSDQM is extended to solve the two-dimensional
hyperbolic telegraph equations [13]; that is,

𝜕2𝜒𝜕𝑡2 + 𝑘0 𝜕𝜒𝜕𝑡 = 𝑎02 (𝜕
2𝜒𝜕𝑥2 + 𝜕

2𝜒𝜕𝑦2 ) + 𝑏0𝜒,
𝜒 (𝑥, 𝑦, 0) = 𝑔1 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω,
𝜒𝑡 (𝑥, 𝑦, 0) = 𝑔2 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω,
𝜒 (𝑥, 𝑦, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇, (𝑥, 𝑦) ∈ 𝜕Ω,

(37)

where 𝜒 = 𝜒(𝑥, 𝑦, 𝑡); (𝑥, 𝑦) ∈ Ω = [0, 𝜏] × [0, 𝜏]; 𝜕Ω is a
closed curve of a enclosing region named Ω; the meaning of
other similar variables is shown in (26).

The transformation 𝑢̂ = 𝑒𝑘0𝑡/2𝜒 in [13] is introduced;
the new two-dimensional telegraph equations are obtained as
follows:

𝜕2𝑢̂𝜕𝑡2 = 𝑎20 (𝜕
2𝑢̂𝜕𝑥2 + 𝜕

2𝑢̂𝜕𝑦2) + (𝑏0 + 14𝑘20) 𝑢̂,
𝑢̂ (𝑥, 𝑦, 0) = 𝑔1 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω,
𝑢̂𝑡 (𝑥, 𝑦, 0) = 𝑔2 (𝑥, 𝑦) + 12𝑘0𝑔1 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ Ω,
𝑢̂ (𝑥, 𝑦, 𝑡) = 0, 0 ≤ 𝑡 ≤ 𝑇, (𝑥, 𝑦) ∈ 𝜕Ω.

(38)

Using the Chebyshev pseudospectral method again, the
second-order partial derivatives 𝑢̂𝑥𝑥 and 𝑢̂𝑦𝑦 are expressed as
follows:

𝑢̂𝑥𝑥 (𝑥𝑖, 𝑦𝑘, 𝑡) = 𝑁̂∑
𝑗=0

𝑑(2)𝑖𝑗 𝑢̂ (𝑥𝑗, 𝑦𝑘, 𝑡) , 𝑖 = 0, 1, . . . , 𝑁̂, (39)

𝑢̂𝑦𝑦 (𝑥𝑖, 𝑦𝑘, 𝑡) = 𝑀̂∑
𝑗=0

𝑑(2)𝑘𝑗 𝑢̂ (𝑥𝑖, 𝑦𝑗, 𝑡) ,
𝑘 = 0, 1, . . . , 𝑀̂,

(40)

where 𝑑(2)𝑖𝑗 = (2/𝜏)2𝑑(2)𝑖𝑗 ; 𝑑(2)𝑘𝑗 = (2/𝜏)2𝑑(2)
𝑘𝑗
; 𝑥𝑖 = (𝜏/2)𝑥𝑖 +𝜏/2, 𝑖 ∈ (0, 𝑁̂); 𝑦𝑘 = (𝜏/2)𝑦𝑘 + 𝜏/2, 𝑘 ∈ (0, 𝑀̂).

On the basis of formulas (34)∼(36) and (39)∼(40), (38)
can be rewritten as follows:

dz
d𝑡 = (I𝑁̂+1 ⊗ B) z, (41)

where z = [zT0 , zT2 , . . . , zT𝑁̂−1, zT𝑁̂]T; z𝑖 = [V̂𝑖, Û𝑖]; the symbol⊗ denotes the tensor product; I𝑁̂+1 is the identity matrix of
dimension (𝑁̂ + 1); Û𝑖 = [𝑢̂(𝑥𝑖, 𝑦1, 𝑡), 𝑢̂(𝑥𝑖, 𝑦2, 𝑡), . . . , 𝑢̂(𝑥𝑖,𝑦𝑀̂, 𝑡)], 𝑖 ∈ (0, 𝑁̂); V̂𝑖 = ⌊ ̇̂𝑢(𝑥𝑖, 𝑦1, 𝑡), ̇̂𝑢(𝑥𝑖, 𝑦2, 𝑡), . . . , ̇̂𝑢(𝑥𝑖, 𝑦𝑀̂,𝑡)⌋, 𝑖 ∈ (0, 𝑁̂);B ∈ 𝑅2(𝑀̂+1)×2(𝑀̂+1), and its specific expressions
can expressed as follows:

B = [ 0 Ŝ
I𝑀̂+1 0

] , (42)

where Ŝ = (2/𝜏)2𝑎20D(2)𝑀̂ + (𝑏0 + (1/4)𝑘20)I𝑀̂+1; I𝑀̂+1 is the
identity matrix of dimension (𝑀̂ + 1).

Similarly, classic s-stage s-order DQM based on uniform
grid points is used to solve equation (41), and the solu-
tion procedure is exactly the same as the one-dimensional
telegraph equation. Finally, the inverse transformation 𝜒(𝑥,𝑦, 𝑡) = 𝑒−𝑘0𝑡/2𝑢̂(𝑥, 𝑦, 𝑡) is employed to obtain the numerical
solution of telegraph equation (37).

5. Numerical Examples

In this section, Lagrange interpolation polynomial is used
as the test function of PSDQM. Two collocation points,
Chebyshev-Gauss-Lobatto grid points and uniform grid
points, are selected for PSM. In order to illustrate the effec-
tiveness of the PSDQM, the method used in [9] is compared
with the PSDQM in this paper. And the time steps of both
methods are ℎ.Three numerical examples are given to test the
effectiveness of PSDQMand compare the numerical results of
PSDQM with the methods in [9].

Example 1. Solving one-dimensional telegraph equation in
formula (26), let 𝑎0 = 2, 𝑏0 = −3𝜋2, 𝑘0 = 8𝜋, and 𝜏 = 1, and
the initial conditions and boundary conditions are as follows:

𝑔1 (𝑥) = sin (𝜋𝑥) ;
𝑔2 (𝑥) = −𝜋 sin (𝜋𝑥) ;
𝑚1 (𝑡) = 𝑚2 (𝑡) = 0.

(43)

The exact solution of (26) is 𝜒(𝑥, 𝑡) = 𝑒−𝜋𝑡 sin(𝜋𝑥).
In order to facilitate the analysis of the computational

accuracy and convergence of the PSDQM and the method in
[9], the relative errors defined in [14] are employed to evaluate
the numerical results.The formula for relative error 𝜅 for one-
dimensional telegraph equations is given as follows:

𝜅 = (∑𝑁𝑖=0∑𝑙𝑗=0 (𝜒 (𝑥𝑖, 𝑡𝑗) − 𝜒 (𝑥𝑖, 𝑡𝑗))2∑𝑁𝑖=0∑𝑙𝑗=0 𝜒2 (𝑥𝑖, 𝑡𝑗) )
1/2

. (44)

Accordingly, the formula for relative error 𝜅 for two-
dimensional telegraph equations is as follows [14]:

𝜅
= (∑𝑁̂𝑖=0∑𝑀̂𝑘 ∑𝑙𝑗=0 (𝜒 (𝑥𝑖, 𝑦𝑘, 𝑡𝑗) − 𝜒 (𝑥𝑖, 𝑦𝑘, 𝑡𝑗))2∑𝑁̂𝑖=0∑𝑀̂𝑘=0∑𝑙𝑗=0 (𝜒 (𝑥𝑖, 𝑦𝑘, 𝑡𝑗))2 )

1/2

. (45)

The selected computed parameters are𝑁1 = 10, ℎ = 0.01,
and 𝑙 = 𝑇/ℎ.The results are shown in Table 1, which compares
the relative errors of the PSDQM (𝑠 = 4) in this article with
the method in [9].

It can be seen that the calculation accuracy and numerical
stability of PSDQM using Chebyshev-Gauss-Lobatto grid
points are better than those of uniform grid points, and the
relative error of the PSDQM (𝑠 = 4) with Chebyshev points
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Table 1: Relative errors of Example 1.

𝑇 PSDQM Method in [9]
Chebyshev points Uniform points

0.5 4.2546 × 10−8 3.5798 × 10−8 1.0160 × 10−6
1.0 5.1883 × 10−8 5.2462 × 10−8 1.2390 × 10−6
2.0 5.3156 × 10−8 6.2491 × 10−7 1.2694 × 10−6
3.0 5.3165 × 10−8 1.1185 × 10−5 1.2696 × 10−6
Table 2: Relative errors of Example 1 with different𝑁1 and 𝑇.𝑁1 𝑇 Chebyshev points

6 4 1.6729 × 10−5
6 6 1.6729 × 10−5
6 8 1.6729 × 10−5
6 10 1.6729 × 10−5
12 4 3.4613 × 10−12
12 6 3.4613 × 10−12
12 8 3.4613 × 10−12
12 10 3.4613 × 10−12
is nearly two orders of magnitude smaller than themethod in
[9].

To further verify the computational accuracy of PSDQM
and the numerical stability in time direction, the number of
collocation points 𝑁1 in space is varied and the time-stepℎ = 0.001 of DQM in the time domain remains unchanged.
Figure 1 shows that the calculation accuracy of the PSDQM
with Chebyshev grid points is used in spatial domain at
different𝑁1 when 𝑇 = 2, which can be seen that the relative
error is convergent in form of spectral accuracy.

Table 2 shows that, in time direction, PSDQM has
unconditional stability, namely, A-stability [7, 15]. Therefore,
PSDQM is better than UDDQM [16] in time domain.

Example 2. Solving one-dimensional telegraph equation in
formula (26), let 𝑎0 = 1/𝜋, 𝑏0 = −4, 𝑘0 = 4, and 𝜏 = 2, and the
initial conditions and boundary conditions are as follows:

𝑔1 (𝑥) = cosh (𝜋𝑥) ;
𝑔2 (𝑥) = −cosh (𝜋𝑥) ;
𝑚1 (𝑡) = 𝑒−𝑡;
𝑚2 (𝑡) = 𝑒−𝑡 cosh (2𝜋) .

(46)

The analytic solution of (26) is 𝜒(𝑥, 𝑡) = 𝑒−𝑡cosh(𝜋𝑥).
Select calculation parameters: 𝑠 = 4, 𝑁2 = 18, ℎ = 0.1,

and 𝑙 = 𝑇/ℎ. The calculation results at this case are shown in
Tables 3 and 4. Obviously, Tables 3 and 4 further verify the
conclusions given in Example 1.

Example 3. Solving the two-dimensional telegraph equation
in formula (37), let 𝑎0 = 2, 𝑏0 = −3𝜋2, 𝑘0 = 8𝜋, and 𝜏 = 1.
The initial conditions are as follows:

𝑔1 (𝑥, 𝑦) = sin (𝜋𝑥) sin (𝜋𝑦) ;
𝑔2 (𝑥, 𝑦) = −𝜋 sin (𝜋𝑥) sin (𝜋𝑦) . (47)


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Figure 1: Relative errors of Example 1 with different𝑁1 at 𝑇 = 2.
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Figure 2: Relative errors of Example 3 with different 𝑠 at 𝑇 = 3.
In this case, the analytic solution of (37) is 𝜒(𝑥, 𝑦, 𝑡) =𝑒−𝜋𝑡sin(𝜋𝑥) sin(𝜋𝑦).

Select the computational parameters: 𝑁3 = 𝑀3 = 8,ℎ = 0.01, and 𝑙 = 𝑇/ℎ. The corresponding calculation
results are shown in Table 5. As can be seen from Table 5,
in the two-dimensional case, the PSDQM (𝑠 = 4) using
Chebyshev points still has higher computational accuracy
than the methods in [9].

In order to compare the computational accuracy of
PSDQM with different s, 𝑁3 = 𝑀3 = 12, the time-stepℎ = 0.1 of DQM in time domain remains unchanged. At
this situation, the results are shown in Figure 2, which shows
that, with the increase of 𝑠 in DQM, because of the spectral
accuracy in space, the accuracy of PSDQM increases with the
increase of grid points’ number in time domain. And this also
shows the advantage of pseudospectral method.
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Table 3: Relative errors of Example 2.

𝑇 PSDQM Method in [9]
Chebyshev points Uniform points

0.5 8.2086 × 10−9 8.2208 × 10−9 1.9458 × 10−7
1.0 1.3742 × 10−8 1.3872 × 10−8 3.2409 × 10−7
2.0 2.4822 × 10−8 2.8261 × 10−8 4.6166 × 10−7
3.0 1.2167 × 10−8 1.3834 × 10−7 5.4131 × 10−7

Table 4: Relative errors of Example 2 with different𝑁2 and 𝑇.
𝑁2 𝑇 Chebyshev points
16 24 3.6662 × 10−5
16 26 3.6662 × 10−5
16 28 3.6662 × 10−5
16 30 3.6662 × 10−5
18 24 8.5851 × 10−6
18 26 8.5851 × 10−6
18 28 8.5851 × 10−6
18 30 8.5851 × 10−6

Table 5: Relative errors of Example 3.

𝑇 PSDQM Method in [9]
Chebyshev points Uniform points

0.5 8.0566 × 10−8 1.3426 × 10−6 1.0031 × 10−6
1.0 8.2824 × 10−8 1.5568 × 10−6 1.2218 × 10−6
2.0 8.3131 × 10−8 1.5885 × 10−6 1.2516 × 10−6
3.0 8.3133 × 10−8 1.5887 × 10−6 1.2518 × 10−6
Table 6: Relative errors of Example 3 with different𝑁3 and 𝑇.

𝑁3 𝑇 Chebyshev points
12 23 1.3953 × 10−10
12 26 1.3953 × 10−10
12 29 1.3953 × 10−10
12 31 1.3953 × 10−10
18 23 1.4380 × 10−10
18 26 1.4380 × 10−10
18 29 1.4380 × 10−10
18 31 1.4380 × 10−10

Table 6 shows that PSDQM is unconditionally stable in
the time direction and in the two-dimensional case.

6. Conclusion

Based on the comparison and analysis to the basic defini-
tion, interpolation points, and the test function, differentia-
tion matrix or weighting coefficient matrix of pseudospec-
tral method and differential quadrature method, a cou-
pled numerical method, namely, pseudospectral-differential
quadrature method (PSDQM), is proposed for solving
the multidimensional telegraph equations. And this paper
pointed out the equivalence of the two meshfree methods
in the space domain. By analyzing three specific numerical

examples, the numerical results show that PSDQM has
spectral accuracy convergence in space domain and high
accuracy and A-stability in time domain. In general, the cou-
pled method inherits the advantages of the pseudospectral
method and differential quadrature method, and the two
methods can be mutually beneficial. In all, the PSDQM is
suitable for solving multidimensional telegraph equations.
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