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Faculty of Electronic Engineering, University of Niš Department of Telecommunications, Aleksandra Medvedeva 14, 18000 Niš, Serbia
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The approximations for the 𝑄-function reported in the literature so far have mainly been developed to overcome not only the
difficulties, but also the limitations, caused in different research areas, by the nonexistence of the closed form expression for the𝑄-function. Unlike the previous papers, we propose the novel approximation for the 𝑄-function not for solving some particular
problem. Instead, we analyze this problem in one general manner andwe provide one general solution, which has wide applicability.
Specifically, in this paper, we set two goals, which are somewhat contrary to each other. The one is the simplicity of the analytical
form of𝑄-function approximation and the other is the relatively high accuracy of the approximation for a wide range of arguments.
Since we propose a two-parametric approximation for the 𝑄-function, by examining the effect of the parameters choice on the
accuracy of the approximation, we manage to determine the most suitable parameters of approximation and to achieve these
goals simultaneously. The simplicity of the analytical form of our approximation along with its relatively high accuracy, which is
comparable to or even better than that of the previously proposed approximations of similar analytical form complexity, indicates
its wide applicability.

1. Introduction

It is well known that, due to the prevalence of Gaussian ran-
dom variables, the one-dimensional Gaussian 𝑄-function, or
shortly 𝑄-function, represented as the complement of the
cumulative distribution function of the Gaussian random
variable 𝑋 with zero mean and unit variance

𝑄 (𝑥) = 1√2𝜋 ∫∞
𝑥

exp{−𝑡22 } 𝑑𝑡 (1)

is one of the most frequently encountered nonelementary
integrals in the field of applied mathematics and statistics [1–
20].The impossibility of expressing the𝑄-function in a closed
form in terms of elementary functions made many of the
analyses carried out in the field of signal processing and com-
munication theory complex, or even limited. The solution of
the observed problemwas somewhat found in approximating
the 𝑄-function. As shown in [1–20] the approximations for
the 𝑄-function not only facilitate performance analyses of
various communication systems, but also provide further
mathematical analyses limited by the nonexistence of the

closed-form formula for the 𝑄-function. Recall here that a
Gaussian probability density function (PDF) characterizes
speech signals, signals in wireless receivers, and OFDM
modulated signals [15, 16, 21–28], so that the suitable solution
to the problem of the 𝑄-function approximation we observe
in this paper is of significance in many application areas. For
instance, as shown in [2, 3, 10–12], the problem of the 𝑄-
function approximation is of importance in the evaluation of
the symbol error probability (SEP) of digital modulations in
the presence of additive white Gaussian noise and the average
SEP over fading channels. As shown in [9], this problem also
occurs in the field of dynamic spectrum access in cognitive
radio networks. Moreover, this problem is present in the field
of quantization of the Gaussian source [19]. In particular,
with the goal to derive closed form formulas enabling
a straightforward performance analysis of the quantizers
designed for the Gaussian source, some complex forms of
the 𝑄-function approximation have recently been applied in
[21, 22]. Also, in a number of papers, it has been pointed out
that certain difficulties appear due to the nonexisting closed-
form solution for the inverse 𝑄-function and other related
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special functions, for instance, in [29–33].This has motivated
the research presented in [29, 30, 33], where piecewise
linear solutions have been proposed to overcome somewhat
this problem, where, as a consequence, the performance
degradation has been noticed. As indicated in [19, 28], with
the suitable approximation of the 𝑄-function this problem
can be better solved, so that this has directed the research we
presented here. Eventually, one should highlight here that the
solution to the problem of the𝑄-function approximation can
also be helpful in many analyses involving the error function,
gamma function, and incomplete gamma function, which are
directly related to the 𝑄-function.

A notable amount of empirical and analytical approx-
imation methods have been reported in the literature, for
instance, in [1–19], providing different trade-offs between the
accuracy of the 𝑄-function approximation and its analytical
tractability. Specifically, many of the available 𝑄-function
approximations have very complex analytical forms, which
are not tractable [13]. Also, as shown in [19], some of
the available 𝑄-function approximations, in spite of having
suitable analytical tractability, still provide an insufficient
accuracy. Eventually, some of the methods are suitable for
small arguments and not for large arguments and vice versa.
As highlighted in the survey on approximations of the 𝑄-
function reported in [13], due to these drawbacks of the exist-
ing 𝑄-function approximations this problem is still present
and widespread. This has inspired the research presented in
this paper where the goal is to propose one very accurate
novel approximation of the 𝑄-function having relatively
simple analytical form. In other words, in this paper we focus
toward two goals, one is a high accuracy of the 𝑄-function
approximation for any argument of the approximation and
the second is the simplicity of the approximation analytical
form, which provides performing of many analyses involving
the 𝑄-function in a simple manner.

A brief summary of the remainder of the paper is as
follows. Section 2 provides an overview of the previous work
related to the𝑄-function approximations. Section 3 proposes
the novel two-parametric 𝑄-function approximation and
describes the methodology for determining the particular
parameter values. Section 4 discusses the obtained numerical
results, where the focus is on analyzing the effect of the choice
of the particular parameter values on the relative error of
approximation in order to determine the most suitable form
of our approximation in terms of accuracy and to enable
its further application in any 𝑄-function approximation
problems. Section 4 also provides the comparison of the novel
approximation in terms of accuracywith the other existing𝑄-
function approximations from the literature having similar
analytical form complexity. Section 5 summarizes the key
features of the novel 𝑄-function approximation and points
out the contributions achieved in the paper.

2. Previous Work on the Approximation of
the 𝑄-Function

This section provides a brief overview of the previous work
related to the 𝑄-function approximations. In particular, the𝑄-function approximations, having both relatively simple

analytical forms and relatively high accuracies for a specific
range of argument values, are mainly presented here with
the goal to provide a fair comparison with the 𝑄-function
approximation we propose in this paper. Let us denote with𝐹[Karagiannidis and Lioumpas](𝑥) the 𝑄-function approximation
given in [2, Eq. (6)] by Karagiannidis and Lioumpas.

𝐹[Karagiannidis and Lioumpas] (𝑥)
= (1 − exp {−𝐴𝑥/√2}) exp {−𝑥2/2}

√2𝜋𝐵𝑥 ,
𝐴 = 1.98, 𝐵 = 1.135,

(2)

which have proved very accurate for small arguments. The
values of the parameters 𝐴 and 𝐵 have been determined so
that the integral of the absolute error for a wide range of
arguments (𝑥 ∈ [0, 20]) has been minimized [2]. As noted in
[13], the 𝑄-function approximation proposed in [3, Eq. (2)]
by Jang

𝐹[Jang] (𝑥) = (1 − exp {−𝐶𝑥}) exp {−𝑥2/2}
√2𝜋𝑥 ,

𝐶 = √ 𝜋2 ,
(3)

has been built upon the approximation from [2], by setting𝐴 = √𝜋 and 𝐵 = 1. This approximation has two main advan-
tages compared to the one from [2]. The first one refers
to the fact that it is the upper bound approximation of
the 𝑄-function, while the approximation from [2] is nei-
ther an upper bound nor a lower bound approximation
of the 𝑄-function. Another advantage of 𝐹[Jang](𝑥) over𝐹[Karagiannidis and Lioumpas](𝑥) refers to the fact that unlike the
approximation from [2], with the one from [3] the absolute
relative error of approximation approaches zero in the tail,
that is, for 𝑥 → ∞.

Further simplification of the approximations from [2, 3]
has been achieved in [4, Eq. (18)] by Fan, where Mill’s ratio-
based form upper bound expression for the 𝑄-function has
been proposed

𝐹[Fan] (𝑥) = 1√2𝜋
1√𝑥2 + 1exp{−𝑥22 } . (4)

The comparison of the upper bound expressions from [3, 4]
has shown that the one from [4] is a tighter approximation
of the 𝑄-function. Let us also review here the following 𝑄-
function approximation from [5, Eq. (14)]:

𝐹[Chiani et al.] (𝑥) = 112exp{−𝑥22 } + 14exp{−2𝑥23 } , (5)

given by Chiani et al., which has the sum of exponential
function based form. This approximation has been reported
in a number of papers on the subject above [2, 3, 8–
13, 17–19] due to its very simple analytical form. Com-
paring the 𝑄-function approximations 𝐹[Chiani et al.](𝑥) and
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𝐹[Karagiannidis and Lioumpas](𝑥) it has been concluded in [2] that𝐹[Karagiannidis and Lioumpas](𝑥) has a little more complex form
but provides a tighter approximation for a wide range of
arguments, especially in the small arguments region.

In this paper, for the comparison purposes we also review
the latest reported 𝑄-function approximation from [19, Eq.(14)] given by Nikolić et al.

𝐹[Nikolić et al.] (𝑥) = 1√2𝜋
1√𝑥2 + 𝑎exp{−𝑥22 } ,

1 ≤ 𝑎 < 2,
(6)

which has proven an upper bound approximation for 𝑥 >
√(√4𝑎 + 1 + 2𝑎2 − 2𝑎 − 1)/(4 − 2𝑎). The particular forms of
this approximation, that is, the particular values of the
parameter 𝑎, have been determined in [19] in order to most
successively solve the specific problem arising in variance-
matched scalar quantization of Gaussian source of unit
variance, which is caused by the nonexistence of the closed
form formula for the 𝑄-function. In other words, unlike this
paper, where the problem of determining the particular form
of the parametric 𝑄-function approximation is posed and
solved in one general manner, in [19], the forms of the 𝑄-
function approximations have been determined for the given
set of the 𝑄-function arguments, which are of interest for
performance analysis of Gaussian source scalar quantizers. In
order to provide a fair comparison with the results from [19]
in the numerical results section we compare the accuracies of
our novel approximation with the ones of the approximations
from [19, Eq. (38), Eq. (39), Eq. (44)], where the parameter 𝑎
amounts to 𝑎 = 1.579, 𝑎 = 1.784, and 𝑎 = 0.1178𝑥 + 1.3742,
respectively.

As we have already highlighted, there is always a trade-off
between the accuracy and simplicity of the analytical form of
approximation. This trade-off is apparent in the upper and
lower bound approximations of the 𝑄-function proposed in
[8, Eqs. (12) and (13)] by Abreu

𝐹[Abreu]upp (𝑥) = 150exp {−𝑥2}
+ 12 (𝑥 + 1)exp{−𝑥22 } ,

𝐹[Abreu]low (𝑥) = 112exp {−𝑥2}
+ 1√2𝜋

1
(𝑥 + 1)exp{−𝑥22 } .

(7)

Namely, the last two approximations of the 𝑄-function have
more complex forms compared to the approximations given
by (2)–(6), justified by the somewhat improved approxima-
tion accuracy. Recall here that, as it has been highlighted in
the number of papers on the subject above, themore complex
forms of the𝑄-function approximations have been developed
bearing in mind applications that require high estimation
accuracies. Let us conclude here that in spite of their relatively
simple analytical form, all of the reviewed approximations

do not provide high accuracy for any argument value we are
intending to reach by the proposal of this paper.

3. Main Result

Themain result of this paper is the novel 𝑄-function approx-
imation, which is described in detail in what follows. What
we propose is the parametric approximation of the form:

𝐹𝑝 (𝑥) = 1√2𝜋
1

√𝑥2 + 𝑐1𝑥 + 𝑐2
exp{−𝑥22 } , (8)

which is defined by only two parameters denoted by 𝑐1 and𝑐2. The values of the parameter 𝑐2 are determined straight-
forwardly from the following conditions:

lim
𝑥→0

𝐹𝑝 (𝑥) = 1√2𝜋
1

√𝑐2 ,
𝑄 (0) = 0.5,

lim
𝑥→0

𝐹𝑝 (𝑥) = 0.5.
(9)

As a result, we obtain

𝑐2 = 2𝜋 = 0.6366; (10)

that is, our approximation gets the form

𝐹𝑝 (𝑥) = 1√2𝜋
1

√𝑥2 + 𝑐1𝑥 + 0.6366exp{−𝑥22 } . (11)

Observe that the manner for determining the values of the
other parameter, denoted by 𝑐1, will be described as we
proceed. Here it is important to highlight the following
nice properties of our approximation, which can be mathe-
matically formulated as

lim
𝑥→0

(𝐹𝑝 (𝑥) − 𝑄 (𝑥)) = 0, (12)

lim
𝑥→∞

(𝐹𝑝 (𝑥)𝑄 (𝑥) ) = 1,
󵄨󵄨󵄨󵄨𝑐1󵄨󵄨󵄨󵄨 < √ 8𝜋 .

(13)

Among the approximations reviewed in the previous section,
the only one having these nice properties are the ones from
[3], which due to involving the two exp functions in the𝑄-function approximation can be considered a slightly com-
plex approximation compared to the proposed one.

In order to optimize our 𝑄-function approximation in
terms of its parameter 𝑐1 with respect to absolute relative error
(RE) of approximation

RE (𝑥) = |𝐹 (𝑥) − 𝑄 (𝑥)|𝑄 (𝑥) , (14)
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we define the two criterions and, as a result, we obtain the
values of the parameters denoted by 𝑐1I and 𝑐1II, respectively.
With the first criterionwe determine the parameter 𝑐1 = 𝑐1I of
our approximation so that the average RE in approximating

the 𝑄-function is minimized for the given range of argument
values and an arbitrary number 𝑀 of numerical values 𝑥𝑚
employed for the argument 𝑥 [34]. Mathematically, this can
be formulated as follows:

𝑐1I = argmin
𝑐
1

{{{{{
1𝑀 [[

[
𝑀∑
𝑚=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨(1/√2𝜋) (1/√𝑥𝑚2 + 𝑐1𝑥𝑚 + 0.6366) exp {−𝑥𝑚2/2} − 𝑄 (𝑥𝑚)󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑄 (𝑥𝑚) ]]
]

}}}}}
. (15)

The result of this optimization is the particular value of the
parameter 𝑐1I.With the second criterion, formally formulated
as follows

𝑐1II = argmin
𝑐
1

{{{{{
max
𝑚

{{{{{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨(1/√2𝜋) (1/√𝑥𝑚2 + 𝑐1𝑥𝑚 + 0.6366) exp {−𝑥𝑚2/2} − 𝑄 (𝑥𝑚)󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑄 (𝑥𝑚)
}}}}}

}}}}}
, (16)

the values of the parameter 𝑐1II are determined so as to mini-
mize the maximum absolute relative error for the observed
set of numerical values 𝑥𝑚 employed for the argument 𝑥.
Let us highlight here that the first criterion has also been
utilized in [19] with the goal to determine the particular value
of the parameter in [19, Eq. (14)], here in Eq. (6), while the
second one has not been utilized. In particular, in [19] this
criterion has been applied to the finite small set of the 𝑄-
function arguments being of interest for solving the particular
problem arising inGaussian source scalar quantization, while
in this paper, for the novel form of the𝑄-function, we assume
the common region of the 𝑄-function arguments and we
apply these two criteria to exactly this region. Let us also
highlight here that by specifying the abovementioned criteria
in general forms,we have infect provided themanner for their
application to any argument range, whichmakes our proposal
more applicable.

4. Discussion with Numerical Results Analysis

In this section we compare the accuracy of the 𝑄-function
approximation proposed in the previous section with the
ones of the other existing 𝑄-function approximations from
the literature, reviewed in Section 2, having similar analytical
form complexity. In other words, in this section we demon-
strate the validity of the proposed 𝑄-function approximation
by comparing its features with the ones of the subset of the
previously proposed 𝑄-function approximations.This subset
of approximations has been carefully chosen to provide a fair
comparison. Note that the accuracy is here viewed through
the absolute relative error (RE) of approximating the 𝑄-
function, where it holds the higher RE, the smaller accuracy,
and vice versa. First, for the proposed approximation and
for the limited finite small set of the 𝑐1 parameter numerical
values (𝑐1 ∈ 𝐶 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0})

we study the effect of this parameter choice on the approxi-
mation accuracy. Based on this study, for the given set of the𝑐1 parameter values, we derive the conclusion about the most
suitable value of the parameter in question. Since we obtain
the solution of the formulated problem constrained to 𝐶 in
such amanner, we also solve the problem in an unconstrained
manner obtaining the most suitable particular forms of the
novel approximation for the two specified criteria. To the
end of this section we also provide one manner for further
improving the accuracy of the proposed approximation at the
cost of the slight increase of the analytical form complexity.

For the comparison purposes, we have calculated the
absolute relative error of approximating the 𝑄-function by
using (14), where for𝐹(𝑥)we have assumed the approximated
functions from [2–5, 8, 19] given by (2)–(7), and we have
also assumed that 𝐹(𝑥) = 𝐹𝑝(𝑥), whereas 𝐹𝑝(𝑥) is our
proposal given by (11). The corresponding REs are denoted
by RE[Karagiannidis and Lioumpas](𝑥), RE[Jang](𝑥), RE[Fan](𝑥),
RE[Chiani et al.](𝑥), RE[Nikolić et al.](𝑥), REupp[Abreu](𝑥),
RElow[Abreu](𝑥), and RE𝑝(𝑥), respectively. Similarly as in
the number of papers on the described subject for the com-
parison purposes we have chosen the common interval of
argument 𝑥 ranging [0, 6]. For such a specified argument
region and for the approximations given by (2)–(5) and (7)
we have determined the dependences of the absolute relative
errors of approximating the 𝑄-function on the argument𝑥, presented in Figure 1. Along with these dependencies, in
order to provide a more detailed comparison of the proposed
approximation features to those of the approximations used
for comparison purposes from [2–5, 8, 19], for the observed
argument region, we have also determined the average values
of RE and also of the maximum of RE (see Table 1). Figure 1
and Table 1 indicate that the upper bound approximation
from [8] is generally the most accurate one (observe
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Figure 1: The comparison of REs for the subset of previously
proposed approximations [2–5, 8].

REupp[Abreu](𝑥)). However, this approximation has more
complex analytical form compared to the other presented
approximations. In contrast, the approximation proposed
by Chiani et al. [5] is less accurate, but it is an analytically
very tractable and simple approximation. In a number of
papers addressing the presented problem of the 𝑄-function
approximation (e.g., in [2, 10, 11, 19]) it has been highlighted
that the approximation 𝐹[Karagiannidis and Lioumpas](𝑥) performs
well, especially for very small arguments, in terms of how
accurately it resembles the 𝑄-function combined with its
relatively simple analytical form. In accordance with this
observation, as well as from the dependencies presented in
Figure 1, one can conclude that the approximation proposed
by Karagiannidis and Lioumpas is the most accurate one for
very small argument values. However, this approximation is
less accurate as the argument value increases. As highlighted
in [3, 13], the advantage of Jang’s approximation [3] compared
to the Karagiannidis and Lioumpas’s approximation [2] is
that the one from [3] is an upper bound approximation and
that for very large arguments (𝑥 → ∞) Jang’s approximation
approaches zero, while the one proposed by Karagiannidis
and Lioumpas approaches a constant. From the comparison
of RE[Jang](𝑥) and RE[Fan](𝑥) one can conclude that 𝐹[Fan](𝑥)
is a more accurate approximation for a wide range of argu-
ments observed. However, for a very narrow range of small
argument values, Fan’s approximation is inadequate for appli-
cation due to relatively high inaccuracy. On the other side,
for very small arguments, Jang’s approximation has one nice
property that our novel approximation also has (see (12)),
which resolves the problem observed with Fan’s approxi-
mation.

Figures 2 and 3 present the RE dependences on the argu-
ment 𝑥, which we have determined by applying (11) and (14).
These dependences refer to the particular cases of the novel

Table 1: Average REs and maximum REs for the Q-function
approximations from [2–5, 8, 19].

Average RE Maximum RE
Ref. [2] Karagiannidis and
Lioumpas 4.8618 9.5874

Ref. [3] Jang 5.9325 9.5258
Ref. [4] Fan 4.1279 14.1663
Ref. [5] Chiani et al. 15.9433 29.5985
Ref. [8] upp Abreu 4.0705 10.2645
Ref. [8] low Abreu 12.1816 17.2027
Ref. [19] Nikolić et al. 𝑎 = 1.579 3.88473 36.50362
Ref. [19] Nikolić et al. 𝑎 = 1.784 4.68581 40.26311
Ref. [19] Nikolić et al.𝑎 = 0.1178𝑥 + 1.3742 2.81822 31.93637
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Figure 2: REs for our 𝑄-function approximation, cases with 𝑐1 ∈{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}.

parametric 𝑄-function approximation, determined for the
finite discrete set of 𝑐1 parameter values (𝑐1 ∈ 𝐶 = {0.1, 0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}). This finite small set of 𝑐1
parameter values has been taken into the consideration
with the goal to make our analysis simple and the results
illustrative. Figures 2 and 3 and Table 2 demonstrate how
important it is to study the effect of the choice of 𝑐1 parameter
value on theREof the proposed approximation.Obviously, by
increasing the values of 𝑐1 parameter starting from 𝑐1 = 0.1 to𝑐1 = 0.5 the average RE𝑝 decreases and then with the further
increase of 𝑐1 values it began to increase. A similar conclusion
can be derived by observing the maximum values of RE𝑝(𝑥),
where, for the given set of the 𝑐1 parameter values 𝑐1 ∈𝐶 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, the minimum
of RE𝑝(𝑥) maximums can be observed for 𝑐1 = 0.7. Note that
these are the solutions of the formulated problem constrained
to 𝐶. By taking into account these findings, one can easily
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Figure 3: REs for our 𝑄-function approximation, cases with 𝑐1 ∈{0.6, 0.7, 0.8, 0.9, 1.0}.

determine that the true minimum of the average RE𝑝 and the
minimumofRE𝑝(𝑥)maximums are achieved at values of 𝑐1 in
the vicinity of 𝑐1 = 0.5 and 𝑐1 = 0.7, respectively. As a result, we
obtain 𝑐1I = 0.48 and 𝑐1II = 0.66, which are the solution of the
optimization problem specified by (15) and (16), for the region
of the arguments we assumed. Accordingly, putting into
(8) the particular values of the parameter 𝑐1 determined by
applying the two specified criterions, we obtain the following
two proposals of our approximation:

𝐹𝑝I (𝑥) = 1√2𝜋
1√𝑥2 + 0.48𝑥 + 0.6366exp{−𝑥22 } , (17)

𝐹𝑝II (𝑥) = 1√2𝜋
1√𝑥2 + 0.66𝑥 + 0.6366exp{−𝑥22 } . (18)

One can observe from Table 2 that by applying 𝐹𝑝I(𝑥) to the
given range of argument values the average RE𝑝 is indeed
minimal and amounts to 2.4101%. Also, one can observe
from Table 2 that by applying 𝐹𝑝II(𝑥) to the given range of
argument values the maximum RE𝑝 is indeed minimal and
amounts to 3.8057%. One interesting observation is that in
the case with 𝑐1 = 𝑐1II = 0.66 the average RE𝑝 amounts to
3.0128% that is a slightly higher value than 2.4101%, observed
in the case with 𝑐1 = 𝑐1I = 0.48. It is also interesting to
notice from Tables 1 and 2 that, for the observed region of
arguments, the proposed approximation provides a smaller
average RE and also smaller maximum of RE compared to
those of the previously proposed approximations reviewed
here. This can be observed as an advantage of the proposed
approximation compared to the listed ones. Moreover, by
taking into account the convenient property of the proposed
approximation stated by (13), one can conclude that, with the
further extension of the range of values for the argument 𝑥,

Table 2: Average REs and maximum REs for the proposed 𝑄-
function approximation and for a different values of 𝑐1 parameter.

Average RE𝑝 Maximum RE𝑝

𝑐1 = 0.1 6.2332 18.2024
𝑐1 = 0.2 4.5439 14.9828
𝑐1 = 0.3 3.2166 12.0742
𝑐1 = 0.4 2.5583 9.4653
𝑐1 = 0.5 2.4175 7.0567
𝑐1 = 0.6 2.6871 4.9709
𝑐1 = 0.7 3.2873 4.2099
𝑐1 = 0.8 4.1371 5.3724
𝑐1 = 0.9 5.1658 6.6146
𝑐1 = 1.0 6.2837 7.9105
𝑐1 = 𝑐1I = 0.48 2.4101 7.5045
𝑐1 = 𝑐1II = 0.66 3.0128 3.8057
𝑐1 = 0.8, 𝑥 < 1; 𝑐1 = 0.6, 𝑥 ≥ 1 2.2708 3.1525

wewill again obtain𝐹𝑝II(𝑥) as given by (18), whichmakes our
proposal very useful and general.

FromFigure 3 one can notice that, for the observed values
of the parameter 𝑐1, the accuracy of the novel approximation
is noticeably good for very small arguments. Also, one can
notice that starting from about 𝑥 ≈ 1 up to 𝑥 ≈ 2 the accuracy
degrades as the argument value increases; that is, RE𝑝(𝑥)
increases with the argument value. Eventually, it is notable
that the accuracy improves for 𝑥 > 2with the further increase
of the values of 𝑥. Although it cannot be seen from Figures
2 and 3, by observing (13), one can anticipate that, with the
further increase of 𝑥, RE𝑝(𝑥) would gradually approach zero
for all observed values of the parameter 𝑐1. One interesting
observation from Figure 3 is that, for 𝑐1 = 0.8 and 𝑥 < 1,
the proposed approximation is extremely accurate (RE𝑝 <
2%). From these figures one can also notice that, for 𝑐1 = 0.8
and 𝑥 ≥ 1, the relative error of the proposed approximation
increases at first and then gradually decreases. Moreover, one
can derive an opposite conclusion when observing the pro-
posed approximation for 𝑐1 = 0.6 case. In other words, for the
range of arguments 𝑥 < 1, the proposed approximation with
the parameter 𝑐1 equal to 0.6 is less accurate than in the case
with 𝑐1 equal to 0.8, while for 𝑥 ≥ 1, the behaviour is reversed.
For that reason, in what follows we also provide the corollary
result of our analysis, that is, one composite solution to the
observed problem, mathematically formulated as follows:

𝐹𝑝com (𝑥)

=
{{{{{{{{{

1√2𝜋
1√𝑥2 + 0.8𝑥 + 0.6366 exp{−𝑥22 } , 𝑥 < 1

1√2𝜋
1√𝑥2 + 0.6𝑥 + 0.6366 exp{−𝑥22 } , 𝑥 ≥ 1,

(19)

which exploits the advantages of the novel approximations in
the particular regions. The RE dependences on the argument𝑥 determined for the cases where the approximated function
are given by (17)–(19) are presented in Figures 4–10. For
comparison purposes, the curves obtained by applying the
approximation from [2–4, 8, 19] have also been included
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Figure 4: RE of the proposed approximation versus RE of the
Karagiannids’s et al. approximation.
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Figure 5: RE of the proposed approximation versus RE of Jang’s
approximation.

in these figures. Recall here that the results obtained by
applying the approximation from [5] are very poor in terms
of accuracy and, for that reason, have been omitted here.
Obviously, with the approximation specified by (19) a notable
improvement in terms of accuracy has been achieved.
Specifically, as one can see from Table 2, with this composite
solution we have managed to decrease both the average RE
and the maximum of RE (see bolded values in Table 2), at
the cost of the increase of analytical form complexity.
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Figure 6: RE of the proposed approximation versus RE of the Fan’s
approximation.
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Figure 7: RE of the proposed approximation versus RE of the
Chiani’s et al. approximation.

Figures 4–10 provide the accuracy comparison of our
approximation and the previously proposed approximations
from the literature having comparable analytical form of
approximation with respect to the one of the novel 𝑄-
function approximation. It is worth noting from Figures 4–9
that, for𝑥 ≥ 2, the accuracy of the approximation determined
in accordance with the first criterion, 𝐹𝑝I(𝑥), is comparable
to or much better than that of the listed approximations
from [2–5, 8]. In contrast, the approximation obtained in
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Figure 8: RE of the proposed approximation versus RE of the upper
bound Abreu’s approximation.
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Figure 9: RE of the proposed approximation versus RE of the lower
bound Abreu’s approximation.

accordancewith the second criterion,𝐹𝑝II(𝑥), is very accurate
for 𝑥 < 2, that is, for small argument values. By comparing
the complexity of the analytical forms of the approximations
from [2, 3], with the one of the proposed approximation,
we have already noticed that our approximation has lower
analytical form complexity. As one can observe from Figure 4
the approximation proposed in [2] is better in terms of
accuracy only for very small argument values. Another inter-
esting observation that should be highlighted here is that, in
the observed argument region, our approximation provides
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Figure 10: RE of the proposed approximation versus RE of the
approximations from [19].

much better accuracy compared to Jang’s approximation
(see Figure 5). Moreover, by comparing the features of the
proposed approximation and the ones of the approximation
from [4], we can conclude that our approximation provides
accuracy that is comparable to or even better than that of
the approximation from [4] (see Figure 6), which comes
at the cost of slightly increased analytical form complexity
of our approximation compared to Fan’s approximation.
This complexity increase can be observed by comparing the
analytical form of the denominators in (4) and (11). As we
have already highlighted, the main advantage of Chiani’s
et al. approximation compared to the other approximations
observed in this paper is its analytical simplicity. However,
the main drawback of the Chiani’s et al. approximation is a
relatively small accuracy, which rather limits its application.
One can notice from Figure 7 that in the observed argument
region the proposed approximation determined for 𝑐1 = 𝑐1II
= 0.66 completely outperforms Chiani’s et al. approximation
in terms of accuracy. Figure 8 shows that when 𝑥 is greater
than 2 the approximation proposed by Abreu becomes less
accurate. From Figure 9 one can notice that for the specified
argument region our proposal given by (19) is more accurate
than the one from [8].

Eventually, let us compare the accuracy of our novel𝑄-function approximation with the ones from [19]. From
Figure 10 one can notice that the approximation we propose
herein is much better in terms of accuracy compared to the
one from [19], for the smaller values of arguments (𝑥 ≤ 2).
This is due to the nice property of our approximation, already
stated by (12). On the other side, for the higher arguments
(𝑥 > 2), the approximations proposed in [19] are more accu-
rate when compared to the novel one. Obviously, with the
proper choice of the 𝑐1 parameter value the observed differ-
ence in accuracy can be reduced [19].
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Based on the obtained results we can derive as a final
remark in this paper that further improvement of the pre-
sented results is likely to be achieved by combining our
approximation with some of the previously reported ones.
Specifically, by inspecting the curves presented in Figure 10
one can conclude that an additional improvement would also
follow from the combination of our 𝑄-function approxima-
tion and the one from [19], which has been left for the further
studies. However, this improvement, as it is the one we have
achieved with the composite method, will come at the cost
of the increase of analytical form complexity. On the other
side, low complexity of the analytical form of our originally
proposed two-parametric approximation along with its rela-
tively high accuracy makes her suitable for an accurate and
efficient evaluation of many expressions with even intricate
dependence on the 𝑄-function. In brief, with the proposed
approximation the accuracy is mostly better than that of
the previously proposed approximations having similar or
more complex analytical form. Eventually, we can conclude
that, unlike some of the previously proposed approximations
being very accurate for some argument regions and less accu-
rate for the complement region, the approximation we have
proposed in this paper has proved very accurate for all
possible argument values, which stands for its advantage.

5. Summary and Conclusions

In this paper we have proposed the novel two-parametric
approximation for the 𝑄-function having relatively low
analytical form complexity and providing relatively high
accuracy comparable or even better than those of the pre-
viously proposed approximations having similar analytical
form complexities. We have straightforwardly determined
the one of the two parameters of our approximation, while
we have examined the effect of the other parameter choice
on the approximation accuracy. Moreover, we have specified
two criterions for this parameter determining. By carefully
examining the accuracy of the proposed approximation for
a finite discrete small set of parameter values, as a corollary
result, we have proposed one composite solution of the
observed problem.With this solution, a notable improvement
has been observed in terms of accuracy. We have anticipated
that the simplicity of the proposed approximation enables its
application over awide range of theoretical studies.Moreover,
we have highlighted that a relatively high accuracy of the
proposed approximation observed for all argument values
additionally extends its usability area to the applications that
require high estimation accuracies. Eventually, we can con-
clude that the results presented in this paper can be practically
used for many analyses involving the 𝑄-function.
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