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Accuracy evaluation of the default Federal Highway Administration (FHWA) simplified equation for prediction of maximum soil
nail loads under working conditions is presented in this study using the maximum likelihood method and a large amount of
measured lower and upper bound nail load data reported in the literature. Accuracy was quantitatively expressed as model bias
where model bias is defined as the ratio of measured to predicted nail load. The maximum likelihood estimation was carried out
assuming normal and lognormal distributions of bias. Analysis outcomes showed that, based on the collected data, the default
FHWA simplified nail load equation is satisfactorily accurate on average and the spread in prediction accuracy expressed as the
coefficient of variation of bias is about 30%, regardless of the distribution type. Empirical calibrations were proposed to the default
FHWA simplified nail load equation for accuracy improvement. The Bayesian Information Criterion was adopted to perform a
comparison of suitability between the competing normal and lognormal statistical models that were intended for description of
model bias. Example of reliability-based design of soil nail walls against internal pullout limit state of nails is provided in the end
to demonstrate the benefit of performing model calibration and using calibrated model for design of soil nails.

1. Introduction

Soil nails used to support ground excavations or reinforce
existing slopes are most commonly installed using the drill
and grout nail installation technique [1, 2]. A hole is first
drilled into the ground or slope, then a steel bar is placed, and
the hole is grouted. As such, a drilled and grouted soil nail is
a composite cylindrical structure consisting of a nail tendon
(steel bar) and a grout column.

An installed composite cylindrical soil nail has two
interfaces: the grout-soil interface and the grout-steel bar
interface. When the nailed soil mass deforms, tensile loads
develop along the nail initially at the grout-soil interface
due to grout-soil interactions and then transfer (partially or
fully) to the steel bar through grout-steel bar interactions.
Hence, for a soil nail underworking conditions both the grout
column and steel bar components carry tensile loads. The

tensile loads of the steel bar can be easily estimated based on
strain gaugesmounted along the bar whereas the tensile loads
of the grout column are difficult to measure directly.

When the diameter of the grout column is very small or
the grout column undergoes cracking, the total nail load can
be roughly approximated as the steel bar load. However, it
has been noted that in many cases the steel load itself cannot
adequately account for the total nail load, especially when
the grout column is intact and with large diameter [3–8].
Wentworth [6] and Banerjee et al. [7, 8] then developed a
method to estimate the total nail load taking into account the
portion that is carried by the grout column. In their study,
the measured steel load of a soil nail was reported as the
lower bound of total nail load while the sum of measured
steel load plus theoretical maximum tensile load capacity of
the grout column was reported as the upper bound of total
nail load. The total nail load estimated using their proposed

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 7901918, 14 pages
https://doi.org/10.1155/2017/7901918

https://doi.org/10.1155/2017/7901918


2 Mathematical Problems in Engineering

method lies between the lower and upper bounds. Lin et al.
[9] adopted the total nail load data interpreted byWentworth
[6] and Banerjee et al. [7, 8] as part of their nail load database
and evaluated the accuracy of the default Federal Highway
Administration (FHWA) simplified equation for prediction
of maximum nail load under working conditions. The accu-
racy evaluation outcomes are unavoidably influenced by the
method developed byWentworth [6] and Banerjee et al. [7, 8]
for estimation of total nail loads.

Evaluation and consideration of model uncertainties are
of great importance to reliability-based geotechnical designs,
which have been discussed in [10]. Mainly included in the
discussion are (1) methods for model uncertainty evaluation
andmodel calibration which have been recently summarized
by Dithinde et al. [11] and (2) an overview of existing work
of model uncertainty characterization for different geotech-
nical models in the literature (e.g., shallow and deep founda-
tions [12–17] and retaining structures [18–21]). The objective
of this study is to evaluate themodel uncertainty of the default
FHWA simplified nail load equation using the lower and
upper bound nail load data reported by Wentworth [6] and
Banerjee et al. [7, 8]. The model uncertainty is quantified
using a model bias defined as the ratio of measured to pre-
dicted maximum soil nail load. The maximum likelihood
method is adopted in this paper, which has been widely
demonstrated to be a powerful tool for estimation of statis-
tical model parameters [i.e., mean and standard deviation or
coefficient of variation (COV)] that is intended to describe a
given data set [22–35]. The model bias of the default FHWA
simplified nail load model is characterized as a normal or
a lognormal random variable and the suitability of the two
statistical models is compared using the Bayesian Informa-
tion Criterion (BIC). This study also shows the calibration of
the default FHWA simplified model for accuracy improve-
ment using a regression approach summarized in [11]. A
reliability-based design example of internal pullout limit state
is provided in the end to show the benefit of using calibrated
nail load model for design of soil nails. The present work is
valuable to reliability-based analysis and design of soil nail
internal limit states such as nail pullout failure and nail-in-
tension failure.

2. Performance Function of
Soil Nail Pullout Limit State

Figure 1 shows the geometry of a typical soil nail wall with a
vertical facing and a horizontal back slope. The potential slip

surface is assumed to extend from the toe to the top of the
wall at an angle of (45+𝜙/2) degrees, dividing the whole soil
nailing system into an active zone and a passive zone. Nail
pullout failure takes place when the maximum nail tensile
load exceeds its ultimate pullout capacity. The performance
function of the soil nail pullout limit state, 𝑔, can be written
as

𝑔 = 𝑃𝑚 − 𝑇𝑚 = 𝜆𝑝𝑃𝑢 − 𝜆𝑇𝑇𝑝, (1)

where 𝑃𝑚 and 𝑇𝑚 are measured uncensored ultimate nail
pullout capacity andmaximum nail tensile load, respectively;𝑃𝑢 and 𝑇𝑝 are predicted ultimate nail pullout capacity and
predictedmaximum nail tensile load, respectively; 𝜆𝑝 and 𝜆𝑇
are model biases accounting for prediction errors in 𝑃𝑢 and𝑇𝑝, respectively. Accordingly, 𝜆𝑝 and 𝜆𝑇 are defined as 𝜆𝑝 =𝑃𝑚/𝑃𝑢 and 𝜆𝑇 = 𝑇𝑚/𝑇𝑝, which are the ratios of measured to
predicted values.

In the FHWA soil nail wall design manuals [1, 2], 𝑃𝑢 can
be calculated as

𝑃𝑢 = 𝜋𝐷𝐿𝑒𝑞𝑢, (2)

whereD is drill hole diameter, 𝑞𝑢 is ultimate bond strength of
soil nails, and 𝐿𝑒 is effective nail length as defined in Figure 1
and computed as

𝐿𝑒 = 𝐿 −
cos(45∘ + 𝜙

2)
sin(45∘ + 𝜙

2 + 𝜃)
(𝐻 − 𝑧) , (3)

where 𝜃 is nail inclination angle; 𝜙 is soil friction angle;𝐻 is
wall height; and 𝑧 is depth of nail head. The FHWA soil nail
design manuals [1, 2] also provide a default simplified model
for computation of 𝑇𝑝, which is expressed as

𝑇𝑝 = 𝜂𝐾𝑎 (𝛾𝐻 + 𝑞𝑠) 𝑆ℎ𝑆V, (4)

where 𝜂 is empirical depth factor expressed as 𝜂 = 1.25𝑧/𝐻 +
0.5 for 0 < 𝑧/H ≤ 0.2, 𝜂 = 0.75 for 0.2 < 𝑧/𝐻 ≤ 0.7, and 𝜂 =
2.03–1.83𝑧/𝐻 for 0.7 < 𝑧/𝐻 ≤ 1; 𝑧 is depth of nail head; 𝐻
is wall height; 𝛾 is soil unit weight; 𝑞𝑠 is surcharge; 𝑆ℎ and 𝑆V
are horizontal and vertical nail spacing, respectively; and 𝐾𝑎
is Coulomb active earth pressure coefficient expressed as

𝐾𝑎 = cos2 (𝛽 + 𝜙)
cos2𝛽 cos (𝛽 − 𝛿) [1 + √sin (𝜙 + 𝛿) sin (𝜙 − 𝜔) / cos (𝛽 − 𝛿) cos (𝜔 + 𝛽)]2

, (5)

where 𝛽 is face batter angle; 𝜙 is effective soil friction angle; 𝜔
is back slope angle; and 𝛿 is interface friction angle between
the wall face and soil.

To perform reliability-based design of soil nail pullout
limit state using (1), the statistics (i.e., means and COVs) and
distributions of the model biases 𝜆𝑝 and 𝜆𝑇 must be known.
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Figure 1: Geometry of a typical soil nail wall.
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Figure 2: Measurement of nail loads under working conditions.

Lazarte [36] reports that 𝜆𝑝 for 𝑃𝑢 follows a lognormal
distribution with a mean of 1.05 and a COV of 0.24. Hence,
one of the focuses of the present study is on characterization
of 𝜆𝑇, which requires a broad database ofmeasured nail loads
(𝑇𝑚) as 𝜆𝑇 is defined as 𝑇𝑚/𝑇𝑝. The database of 𝑇𝑚 used in
this study for characterization of 𝜆𝑇 is presented in the next
section.

3. Database of Lower and Upper Bound Nail
Loads under Working Conditions

3.1. Lower and Upper Bound Nail Load Data. Tensile loads
along the steel rebar of a soil nail can be directly calculated
using readings from strain gauges mounted on the steel,
as shown in Figure 2. Usually, a pair of strain gauges is
symmetrically mounted on the top and bottom of the steel
bar. The steel load is then taken as the average of the two
loads calculated based on the strain gauges. Tensile loads in
the grout column are difficult to measure directly; however,
the maximum loads that the grout column can carry would

be equal to the product of tensile strength of the grout and its
cross-sectional area. Theoretically, the actual total nail load
is larger than the steel load alone but smaller than the sum of
steel load plusmaximumgrout column load capacity. In other
words, the measured steel load is the lower bound of the total
nail load while the sum of steel load plus grout column load
is the upper bound.

Wentworth [6] and Banerjee et al. [7, 8] reported a large
amount of measured lower bound and upper bound nail load
data for nails from ten soil nail wall sections that were well-
instrumented under working conditions. Detailed descrip-
tions of the wall geometry, soil properties, and nail arrange-
ment of the ten soil nail wall sections can be referred to the
source documents [6–9] and thus only a brief summary is
provided in Table 1 for brevity.

Each nail in the walls has several measurement points
and each point has a measured lower bound nail load and a
measured upper bound nail load. These measured nail loads
are summarized in Table 2. Predicted nail loads 𝑇𝑝 using the
default FHWA simplified nail load model (see (4)) are also
provided in Table 2 for comparison. Since it is the maximum
nail load that could result in nail pullout failure, only the point
givingmaximum lower and upper bound nail load values was
used for further analyses. In total, there are 112 maximum
lower and upper bound nail load data points and thus each
dataset has 𝑛 = 56 data points.

As shown in Table 1, there were two walls (W6 and W7)
built in soft to very soft claywhich is rare case in practice since
such soft soils cause additional stability and settlement con-
cerns [1, 2, 36]. Hence, load data for these two walls (𝑛 = 11)
were removed from further analyses.There are also question-
able data for walls W9 (𝑛 = 3) and W10 (𝑛 = 6). Detail of
explanations regarding these questionable data points can be
found in [6–9]. The 𝑛 = 9 questionable data points were also
excluded from further analyses. After filtering, the amount of
data used in this study to carry maximum likelihood analyses
is 𝑛 = 72 (italic in Table 2); each dataset has 𝑛 = 36 data
points. These load data were collected from nails installed in
frictional soils or cohesive-frictional soils with soil friction
angles typically ranging from 30 to 40∘ and soil cohesion
typically less than 10 kPa. The data are considered as long-
termnail loads since they correspond to nail tensile loads that
were recorded several months to several years after the end of
construction of the soil nail walls.

3.2. Preliminary Analysis. Typical values of 𝛿 in (5) for com-
putation of 𝐾𝑎 range from 1/2 𝜙 to 2/3 𝜙. In this study, 𝛿 is
taken to be 1/2 𝜙. The influence of 𝛿 on accuracy evaluation
outcomes of the default FHWA nail load equation is also
examined later in this paper.

Figure 3 shows plots of measured depth factors (𝜂) versus
normalized nail depths (𝑧/𝐻). Measured depth factors are
computed as 𝜂 = 𝑇𝑚/𝐾𝑎(𝛾𝐻 + 𝑞s)𝑆ℎ𝑆V where 𝑇𝑚 are meas-
ured nail loads (i.e., lower and upper bounds). Depth factors
computed using the FHWA simplified method are also
plotted in Figure 3 for comparison. On average, themeasured𝜂 values using lower bound nail load data increase from about
0.3 at 𝑧/𝐻 = 0 to 0.5 at 𝑧/𝐻 = 0.2, then keep constant until𝑧/𝐻 = 0.7, and decrease to about 0 at the bottom of the
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Table 2: Summary of measured lower and upper bounds of nail load reported in the source documents [6–8] at each measurement point
and the corresponding 𝑇𝑝 using the default FHWA simplified nail load model.

Wall Nail Censored 𝑇𝑚 [lower bound, upper bound] (kN) Predicted 𝑇𝑝 (kN)Point 1 Point 2 Point 3 Point 4 Point 5

W1

1 [25.0, 52.3] [30.9, 61.9] [38.7, 70.8] [31.3, 62.3] [24.7, 50.6] 38.4
2 [18.9, 40.5] [25.8, 51.7] [24.7, 51.3] [41.2, 71.8] [23.5, 50.9] 42.3
3 [29.8, 61.6] [30.3, 62.5] [34.4, 65.9] [34.6, 66.8] [24.8, 51.6] 42.3
4 [28.5, 58.2] [33.9, 64.0] [40.0, 70.9] [39.6, 70.8] [35.1, 67.4] 42.3
5 [9.9, 23.3] [20.4, 37.7] [25.8, 48.9] [27.9, 51.1] [20.7, 39.8] 28.8

W2

1 [0.5, 1.4] [5.7, 12.4] [12.1, 24.6] [13.9, 27.3] — 34.8
2 [12.1, 26.2] [31.7, 62.6] [8.8, 16.3] [20.1, 38.6] — 41.2
3 [27.7, 57.7] [21.4, 43.5] [19.9, 41.5] [25.1, 51.9] — 41.2
4 [40.2, 71.2] [37.7, 68.6] [36.3, 67.5] [31.3, 63.1] — 41.2
5 [13.8, 28.7] [21.8, 40.0] [23.6, 44.6] [16.2, 29.6] — 34.3

W3

1 [24.1, 81.4] [40.4, 123.1] [49.0, 144.9] [44.3, 133.7] [34.2, 100.4] 140
2 [61.3, 172.9] [141.4, 249.6] [60.6, 164.5] [67.4, 172.4] [54.4, 159.5] 171
3 [54.4, 159.4] [111.9, 209.3] [140.7, 234.8] [48.1, 131.2] [27.6, 85.6] 171
4 [42.2, 119.2] [33.1, 90.6] [31.8, 87.1] [24.0, 69.6] — 153.8
5 [3.6, 6.9] [7.4, 30.8] [7.1, 28.0] [10.9, 28.5] — 72.4

W4
1 [19.1, 43.5] [27.5, 62.0] [30.7, 65.2] [35.9, 70.0] [19.6, 47.5] 75.7
2 [12.9, 29.3] [31.2, 64.7] [40.5, 74.4] [34.3, 68.5] [31.0, 65.5] 78
3 [27.2, 59.0] [32.9, 66.7] [33.3, 66.5] [43.9, 77.7] [31.7, 68.5] 72.7

W5

1 [11.7, 27.8] [27.0, 56.2] [34.8, 61.9] [26.9, 54.5] [14.2, 32.7] 78
2 [12.1, 27.5] [39.7, 66.4] [58.3, 85.4] [63.6, 91.9] [15.4, 37.7] 68.4
3 [16.0, 34.4] [36.3, 62.8] [55.7, 83.9] [39.2, 68.2] [13.4, 30.5] 56.5
4 [13.0, 26.8] [39.9, 65.0] [62.3, 89.1] [28.5, 55.6] [9.2, 19.7] 44.6
5 [16.4, 36.3] [34.3, 60.2] [10.9, 21.0] [4.1, 6.6] [4.2, 8.7] 32.7

W6

1 [3.1, 13.9] [10.8, 45.5] [11.1, 48.5] [10.7, 46.4] — 40.9
2 [13.4, 55.5] [9.1, 35.1] [7.1, 35.1] [4.3, 21.9] — 41.5
3 [43.1, 93.2] [29.1, 76.8] [16.2, 63.8] — — 41.5
4 [13.2, 53.0] [15.0, 59.3] [37.4, 84.1] — — 41.5
5 [6.4, 31.5] [17.7, 64.0] — — — 34.2
6 [0.1, 1.5] [6.7, 26.0] — — — 20.6

W7

1 [16.6, 64.5] [11.6, 53.3] [11.7, 53.4] [4.6, 21.7] 59.5
2 [8.2, 45.7] [17.1, 64.9] [11.4, 45.7] [3.7, 14.3] 65.9
3 [21.7, 68.4] [22.3, 69.1] [27.1, 74.6] — 65.9
4 [15.9, 65.3] [17.8, 64.7] [25.3, 72.2] — 65.9
5 [13.6, 54.3] [15.2, 57.8] — — 39.7

W8

1 [17.1, 86.0] [30.9, 115.6] [15.1, 66.6] [42.0, 127.9] 41.7
2 [12.3, 48.4] [13.6, 53.0] [23.7, 104.6] [16.3, 72.5] 51.8
3 [17.5, 80.2] [28.5, 112.8] [23.9, 99.5] [11.7, 61.9] 51.8
4 [27.9, 110.9] [18.9, 78.6] [20.8, 65.3] [17.8, 75.7] 28.6
5 [11.3, 65.9] [18.9, 82.7] [32.4, 118.3] [28.1, 114.0] 51.8
6 [30.7, 115.9] [28.9, 112.4] [13.4, 68.2] — 51.8
7 [24.8, 106.1] [13.4, 61.7] [11.3, 49.7] [17.4, 70.7] 51.8
8 [4.1, 17.8] [5.5, 30.6] [3.7, 14.0] [16.5, 79.2] 28.8

W9

1 [59.9, 84.3] [44.0, 68.0] [21.9, 39.1] [30.4, 55.1] 45.3
2 [50.6, 76.3] [43.5, 68.1] [47.9, 72.9] [41.5, 66.1] 51.6
3 [25.4, 45.6] [43.3, 69.8] [49.1, 75.9] [5.6, 13.0] 51.6
4 [22.1, 39.4] [60.1, 85.4] [41.0, 64.9] [5.7, 10.7] 51.6
5 [59.7, 83.4] [14.1, 24.9] [1.7, 4.2] [0.4, 1.5] 43.2
6 [7.0, 12.0] [1.8, 3.2] [1.9, 2.9] [1.7, 2.5] 23.8
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Table 2: Continued.

Wall Nail Censored 𝑇𝑚 [lower bound, upper bound] (kN) Predicted 𝑇𝑝 (kN)Point 1 Point 2 Point 3 Point 4 Point 5

W10

1 [32.7, 48.2] [48.7, 66.0] [59.1, 72.7] — 67.7
2 [52.1, 70.4] [43.7, 62.0] [51.6, 74.5] — 85.7
3 [134.5, 152.4] [62.5, 78.6] [56.8, 74.7] — 85.7
4 [117.0, 131.3] [37.8, 52.1] [13.1, 17.6] — 60.6
5 [4.3, 7.9] [34.2, 49.5] [53.1, 69.4] — 67.0
6 [220.9, 235.2] [20.5, 35.8] [25.6, 41.9] — 85.7
7 [399.1, 417.3] [14.9, 28.0] [7.4, 20.6] — 85.7
8 [151.7, 167.9] [14.8, 27.0] [9.4, 18.5] — 39.0

Note. Data in italic are used in this study for analyses.
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Figure 3: Measured depth factor versus normalized nail depth
(lower and upper bounds).

wall (i.e., 𝑧/𝐻 = 1.0). The FHWA 𝜂 curve appears to be the
envelope of themeasured lower bound 𝜂 values. However, the
measured upper bound 𝜂 values scatter widely from about
0.1 to about 1.8. The majority of the upper bound 𝜂 values
are larger than predicted 𝜂 values using the default FHWA
simplified method.

Figure 4 shows plots of measured nail loads (𝑇𝑚) versus
predicted nail loads (𝑇𝑝) using the FHWA simplifiedmethod.
Bias values using measured lower bound 𝑇𝑚 fall within 0.5
and 1 for most cases whereas upper bound values of bias are
typically within 1 and 2. Here, bias is defined as the ratio
of measured to predicted nail load, that is, 𝑇𝑚/𝑇𝑝. These
observations are consistent with those based Figure 3. This
also suggests qualitatively that the default FHWA simplified
equation (see (4)) is generally accurate on average.

The cumulative distribution functions of the lower and
upper bound bias data (𝑇𝑚/𝑇𝑝) are shown in Figure 5. Bias
data are examined in two forms, including raw bias values
and logarithm of bias values. Visually, for both cases the
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Figure 4:Measured versus predicted nail loads using default FHWA
simplified nail load equation (see (4)).

trends in the bias data can be adequately captured using first
order polynomials, regardless of lower or upper bound bias
data.This suggests that both raw and logarithm of bias values
follow normal distributions. This is confirmed by the quan-
titative outcomes of the Kolmogorov–Smirnov tests applied
to the four datasets shown in Figure 5. Hence, both lower
and upper bound bias values can be taken as normally and
lognormally distributed. Based on these findings, the bias of
the default FHWA simplified equation is assumed to be nor-
mally and lognormally distributed. Quantitative outcomes of
accuracy evaluation on the default FHWA nail load equation
using maximum likelihood method are presented in the
following.

4. Maximum Likelihood Estimation of
Model Bias

4.1. Principle of Maximum Likelihood Estimation. Theprinci-
ple of maximum likelihood states that, for a specific statistical
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model (e.g., normal or lognormal distribution) used to fit
observed data for a random variable𝑋, themodel parameters
(e.g., mean and standard deviation or COV) would be the
pair thatmaximizes the likelihood of all observed data. In this
paper, the randomvariable𝑋 is the bias of the FHWAmethod
and the observed data are the measured lower and upper
bound bias data. The log-likelihood of the measured lower
and upper bound bias data can be written as (e.g., [23, 30, 37])

ln 𝐿 (𝜇, 𝜎 | 𝑎𝑖, 𝑏𝑖)
= 𝑛∑
𝑖=1

ln{12 [erf (
𝑏𝑖 − 𝜇√2𝜎 ) − erf (𝑎𝑖 − 𝜇√2𝜎 )]} (6)

if𝑋 is a Gaussian random variable, and

ln 𝐿 (𝜇ln, 𝜎ln | 𝑎𝑖, 𝑏𝑖)
= 𝑛∑
𝑖=1

ln{12 [erf (
ln 𝑏𝑖 − 𝜇ln√2𝜎ln ) − erf ( ln 𝑎𝑖 − 𝜇ln√2𝜎ln )]} (7)

if𝑋 is a lognormal random variable. Here, 𝑎𝑖 and 𝑏𝑖 are lower
and upper bound bias data, respectively; 𝜇 and 𝜎 are mean
and standard deviation of bias, respectively. 𝜇ln and 𝜎ln are
log-mean and log-standard deviation of bias, respectively;
erf() is the error function; 𝑛 is the number of data points.

Equations (6) and (7) can be understood as that the
measured lower and upper bound bias data (𝑎𝑖 and 𝑏𝑖, 𝑖 =1, 2, . . . , 𝑛) are known input parameters whereas 𝜇 and 𝜎 and𝜇ln and 𝜎ln are variables to be determined. The maximum
likelihood method states that the best estimates for 𝜇 and𝜎 and 𝜇ln and 𝜎ln are the pairs that maximize the log-
likelihood function equations (6) and (7), respectively. These
pairs are called the maximum likelihood estimators or the
best estimates in this study. For the lognormal case, once the

best estimates for 𝜇ln and 𝜎ln are determined, they can be
easily transformed to 𝜇 and COV using (e.g., [38]):

𝜇 = exp (𝜇ln + 0.5𝜎2ln) (8a)

COV = √exp (𝜎2ln) − 1 (8b)

The confidence interval of the log-likelihood functions can be
determined using the likelihood ratio test as [39, 40]

ln 𝐿𝛼 = ln 𝐿max − 1
2𝜒2𝛼;1, (9)

where ln 𝐿𝛼 is log-likelihood value corresponding to 𝛼; 𝛼
is specified level of significance for the confidence interval;𝜒2𝛼;1 = 100(1−𝛼) percentile point of a Chi-Square distribution
with one degree of freedom. For example, if a confidence level
of 95% is desired (𝛼 = 0.95), then 𝜒20.95;1 is equal to 3.84 and
ln 𝐿𝛼 = ln 𝐿max − 1.92.

Closed-form solutions of best estimates for (𝜇, 𝜎) in (6)
and (𝜇ln, 𝜎ln) in (7) are not available in this study.Nonetheless,
(6) and (7) can be solved numerically following four steps:
(1) set the objective function 𝐺 = 1/ln𝐿 which is the recip-
rocal of the log-likelihood function; (2) set constraints for
optimization as 𝜇 > 0 and 𝜎 > 0 for the normal case and 𝜎ln >0 for the lognormal case; (3) find the pair of (𝜇, 𝜎) or (𝜇ln, 𝜎ln)
thatminimizes the𝐺 value for each case and calculate ln 𝐿max
as 1/𝐺; and (4) for the lognormal case, calculate the mean and
COV values using ((8a) and (8b)).

It was shown earlier through the Kolmogorov–Smirnov
tests that the bias of the default FHWA simplified equation
(see (4)) can be treated as a normal random variable or a log-
normal one. The Bayesian Information Criterion (BIC) [41]
can be adopted to further perform a comparison of suitability
between these two statistical models. The BIC for a statistical
model is calculated as

BIC = −2 ln 𝐿max + 𝑘 ln (𝑛) , (10)

where 𝑛 is number of data points; 𝑘 is number of model
parameters. In this paper, 𝑘 = 2 since both the normal and
lognormal distribution models have two model parameters,
that is, mean and COV (or standard deviation).The criterion
states that a smaller BIC value indicates a better fitting to the
observed data. The BIC value of a statistical model can be
further used to compute the probability of that model being
the best among all competing models. This probability of
being the best model is calculated as (e.g., [35, 42])

𝑃best = exp [−Δ 𝑖 (BIC) /2]
∑𝑟𝑗=1 exp [−Δ 𝑗 (BIC) /2] , (11)

whereΔ 𝑖(BIC) = BIC𝑖−min{BIC𝑗}, 𝑗 = 1, 2, . . .,𝑟; 𝑟 is number
of candidate models; min{BIC𝑗} is minimum value among all
the BIC values.

4.2. Results of Model Bias Analysis. Measured lower and
upper bound bias data (𝑛 = 36 for each) are input parameters𝑎𝑖 and 𝑏𝑖(𝑖 = 1, 2, . . . , 𝑛) in both (6) and (7). For the normal
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Figure 6: Contour plots of likelihood function and 95% confidence interval: (a) normal and (b) lognormal.

distribution case as shown in Figure 6(a), the ln 𝐿max was
found to be −28.69 and the corresponding best estimates for
mean andCOVof bias of (4) were 1.03 and 0.281, respectively.
ln 𝐿max, best estimates ofmean andCOVof bias, were−30.98,
1.03, and 0.330, respectively, for the lognormal distribution
case, as shown in Figure 6(b). In both cases the best estimated
mean of bias is close to 1, suggesting that the default FHWA
simplified equation for predictingmaximumnail loads under
working conditions is satisfactorily accurate on average. The
spreads in prediction accuracy expressed as bias COV are
fairly small, that is, about 30% for both cases.

The 95% confidence intervals computed using (9) are also
shown in Figures 6(a) and 6(b). For the normal case, the log-
likelihood value corresponding to the 95% confidence level
was −30.61. This is interpreted as that any pairs of estimated
mean and COV of bias resulting in a log-likelihood value
falling between −28.69 and −30.61 cannot be rejected as a
reasonable pair of maximum likelihood estimates. All such
pairs consist of the 95% confidence domain.The bias mean in
the domain ranges from about 0.91 to 1.16 and the bias COV
ranges from about 22% to 39%. From a practical point of view,
these 95% confidence intervals are not significantly wide,
suggesting that the analysis using the maximum likelihood
estimation method is efficient. Similar observations can be
made for the lognormal case based on Figure 6(b).

Equation (10) was used to compute the BIC value for each
statistical model and then the probability of being the best
model was computed using (11).The BIC values are 64.54 and
69.12 for the normal and lognormal cases, respectively. The𝑃best value is about 91% for the normal assumption whereas
it is only 9% for the lognormal assumption. This means
that the model bias of (4) is better described as a normal
random variable. However, it should be cautious to take bias
as a normal random variable for reliability analysis using
Monte Carlo simulation technique as negative values could
be generated. Negative values of bias are not possible based
on the definition of bias, that is, measured to predicted nail
loads.

The above analysis outcomes are based on the assumption
that 𝛿/𝜙 = 1/2. The influence of 𝛿/𝜙 was found insignificant
on computed outcomes of the best estimates for mean and
COV of bias, ln 𝐿max, and 𝑃best regardless of the normal or
lognormal case, as shown in Figures 7 and 8. The influence
is even smaller for 𝛿/𝜙 within the typical range of 1/2 to 2/3.
Hence, the adoption of 𝛿/𝜙 = 1/2 in the previous analyses is
justified.This value will be also used in the analyses to follow.

5. Calibration of FHWA Simplified Method for
Accuracy Improvement

The regression approach introduced in [11] can be adopted to
calibrate the default FHWA nail load equation (see (4)) for
accuracy improvement. The approach is to regress the model
bias against each input parameter in the default FHWA nail
load equation, through which empirical functions describing
the relationships between the model bias and each input
parameter are developed. These empirical functions are then
introduced to the default FHWA equation as multiplicative
components, which results in a modified FHWA simplified
nail load equation.The calibration outcomes in this study are
shown below.

The measured lower and upper bound bias data are
plotted against predicted nail loads and shown in Figure 9.
In general, both lower and upper bound bias data decrease
with increasingmagnitudes of predicted nail loads.This trend
is quantitatively confirmed by applying the Spearman’s rank
correlation test to the datasets in Figure 9. Spearman’s 𝜌
values are negative and the𝑃 values are less than 0.05 for both
cases, implying the presence of negative correlations of the
datasets at a level of significance of 5%. The measured bias
data were further plotted against each input parameter in (4);
the plots are shown in Figure 10. Based on Figure 10 and Lin
et al. [9], it is judged that the primary source of correlation
between bias and predicted nail load is due to correlation
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Figure 7: Influence of 𝛿/𝜙 on maximum likelihood evaluation outcomes of: (a) bias mean and (b) bias COV.
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Figure 8: Influence of 𝛿/𝜙 on maximum likelihood evaluation outcomes of (a) maximum value of log-likelihood function, ln 𝐿max; (b)
probability of being the best model, 𝑃best.

between bias and tributary area (Figure 10(d)). As a result, (4)
can be modified as

𝑇𝑝 = 𝜂𝑀𝐾𝑎 (𝛾𝐻 + 𝑞𝑠) 𝑆ℎ𝑆V, (12)

where𝑀 is empirical modification factor relating to tributary
area (𝑆ℎ𝑆V). Other input parameters are as defined earlier in
this paper. Different simple expressions for𝑀were examined
and the one that yields minimal bias COV is

𝑀 = 𝑎 exp(𝑏𝑆ℎ𝑆V𝐴 𝑡 ) , (13)

where 𝑎 and 𝑏 are two empirical constants to be determined;𝐴 𝑡 = 1.5×1.5m2 = 2.25m2 is defined as typical tributary area
which is intended to make𝑀 dimensionless.

The values of 𝑎 and 𝑏 were determined by adjusting their
values until the best estimate for bias mean is equal to 1 while
the best estimate for bias COV is as small as possible for
each case. Figure 11 shows that the estimated bias COV is
dependent on the empirical constant 𝑏 (Figure 11(a)) but is
not influenced by the empirical constant 𝑎 (Figure 11(b)).The
lowest values of bias COV are achieved at 𝑏 = −0.60 for both.
Knowing the 𝑏 value, the 𝑎 values were computed as 1.7595
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plified method (see (4)).

and 1.7608 for the normal and lognormal cases, respectively.
The 𝑎 values were rounded up to two decimal places, giving𝑎= 1.76 for both cases.The estimatedminimalCOVof bias for
(12) are 0.248 and 0.283 for the normal and lognormal cases,
respectively. Both bias COV values are smaller than those for
the default FHWA nail load equation (see (4)). The results of
accuracy evaluation are summarized in Table 3.

6. Reliability-Based Design Example of
Pullout Limit State of Soil Nails

This section presents a reliability-based design example
of pullout limit state for soil nails using the default and
calibrated FHWA simplified nail load equations. The bias of
each equation is taken as normal and lognormal random
variables.Through the design example, the practical influence
of selection of bias statistical models on design outcomes is
shown. The benefit of using the calibrated nail load equation
is also demonstrated.

The problem geometry of the example wall has been
shown in Figure 1. The example wall is taken from the
FHWA soil nail wall design manual [1]. Deterministic input
parameters for this design example include wall height 𝐻 =
10m, facing batter = 0∘, back slope angle = 0∘, nail spacing𝑆ℎ = 𝑆V = 1.5m, nail inclination angle 𝜃 = 15∘, and drill hole
diameter 𝐷 = 150mm. A total of 7 rows of nails were used
with the first row installed at a depth of 0.5m from the top of
the wall which is typical [1, 2]. The normalized nail depth at
each row is 𝑧/H = 0.05, 0.2, 0.35, 0.5, 0.65, 0.8, and 0.95. The
potential sliding surface is assumed to be linear and extends
from the toe of the wall to the top. The soil is medium dense
silty sand with clay seams.

According to [1], the design values of soil unit weight,
soil friction angle, soil cohesion, and ultimate nail bond are

𝛾= 18 kN/m3,𝜙= 33∘, 𝑐=0 kPa, and 𝑞𝑢 = 100 kPa, respectively.
The biasmean is assumed to be 1 for both𝜙 and 𝛾 in this study.
The corresponding bias COV values are taken as 0.10 and
0.05, which are typical [43, 44]. Lazarte [36] reports that the
bias of 𝑞𝑢 has a mean of 1.05 and a COV of 0.24. These values
are adopted in this example design. All the random variables
are assumed to be lognormally distributed except for the bias
for 𝑇𝑝. The main design parameter in this example is the nail
length at each depth which is required to satisfy a targeted
reliability index, 𝛽𝑇. For reliability-based design of internal
limit states of reinforced soil walls, the target reliability index
is often selected as 𝛽𝑇 = 2.33 (probability of failure equal to
1/100), for example, [39, 45]. Hence, 𝛽𝑇 = 2.33 is chosen here.
In addition, a minimal value of 0.5H is imposed to the nail
length as per the requirement of the FHWA soil nail wall
design manuals [1, 2]. That is to say, for nails with length
shorter than 0.5H but satisfying 𝛽𝑇 = 2.33, these nails will still
be lengthened to be 0.5H.

The Hasofer-Lind method was used to compute the
reliability index of the design using (1).The nail length at each
depth was adjusted until the computed reliability index is
equal to the target one, that is, 2.33.TheHasofer-Lindmethod
can be easily implemented using Excel spreadsheet [46, 47].
Thedesign outcomes are plotted in Figure 12 and summarized
in Table 4.The required nail lengths for the bottom two layers
of nails were found to be less than 0.5H (values in the brackets
in Table 4); as a result, a value of 0.5H was used.

The differences in required total nail length are small
given normal or lognormal distribution of the bias of 𝑇𝑝
regardless of the fact that the default or modified FHWA
simplified nail load equation is used, that is, 4.78 versus 4.88
and 4.59 versus 4.65. However, the required total nail lengths
using the modified equation for 𝑇𝑝 (see (12)) are always less
(about 5%) than those using the default equation for 𝑇𝑝
(see (1)), that is, 4.59 versus 4.78 and 4.65 versus 4.88. This
highlights the benefit of performing model calibration and
using the calibrated nail load equation for design.

7. Summary and Conclusions

This study presents a maximum likelihood-based evaluation
of the accuracy of the default FHWA simplified equation
for prediction of maximum soil nail loads under working
conditions. Accuracy was quantitatively expressed as the
statistics of the model bias where bias is defined as the ratio
of measured to predicted nail load. The measured lower and
upper bound data of nail loads were taken from Wentworth
[6] and Banerjee et al. [7, 8]. Accordingly, the computed
bias values are divided into lower and upper bound datasets.
Kolmogorov–Smirnov tests were applied to the lower and
upper bound bias datasets and the outcomes showed that
both datasets can be considered following normal or lognor-
mal distribution. Hence, the maximum likelihood estimation
was carried out for two cases: (1) bias is a normal random
variable and (2) bias is a lognormal random variable.

The maximum likelihood estimation outcomes showed
that, based on the collected data, the default FHWAsimplified
nail load equation was found to be satisfactorily accurate on
average and the spread in prediction accuracy expressed as
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Figure 10: Bias versus input parameters of the default FHWA simplified nail load equation (see (4)): (a) empirical depth factor, 𝜂; (b) active
earth pressure coefficient, 𝐾𝑎; (c) overburden pressure at base of the wall, 𝛾ℎ + 𝑞𝑠; (d) tributary area, 𝑆ℎ𝑆V.

Table 3: Maximum likelihood analysis outcomes for both default and modified FHWA simplified nail load equations expressed as 𝑇𝑝 =𝜂𝑀𝐾𝑎(𝛾𝐻 + 𝑞𝑠)𝑆ℎ𝑆V.
Method

Correction factor, 𝑀 = 𝑎 × exp(𝑏 × 𝑆ℎ𝑆V/𝐴 𝑡) Bias, normal Bias, lognormal
𝑎 𝑏 mean COV mean COV

Default FHWA simplified method 1 0 1.03 0.281 1.03 0.330
Modified FHWA simplified method 1.76 −0.60 1.00 0.248 1.00 0.283
Note. 𝐴𝑡 = 1.5 × 1.5m2 = 2.25m2 is typical tributary area used to make𝑀 dimensionless.
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Figure 11: Influence of empirical constants 𝑎 and 𝑏 on estimated outcomes of bias COV for (a) constant 𝑏; (b) constant 𝑎 (modified FHWA
simplified method; see (12)).

Table 4: Design outcomes of nail length at different depths for pullout limit state.

Method Nail number Depth, 𝑧/𝐻 Nail length, 𝐿/𝐻
Normal Lognormal

Default FHWA simplified method

1 0.05 0.82 0.84
2 0.20 0.85 0.87
3 0.35 0.78 0.80
4 0.50 0.70 0.72
5 0.65 0.62 0.64
6 0.80 0.50 (0.43)∗ 0.50 (0.45)∗
7 0.95 0.50 (0.20)∗ 0.50 (0.20)∗

Sum (𝐿/𝐻) 4.78 (4.41) 4.88 (4.53)

Modified FHWA simplified method

1 0.05 0.80 0.80
2 0.20 0.82 0.83
3 0.35 0.74 0.75
4 0.50 0.66 0.67
5 0.65 0.58 0.59
6 0.80 0.50 (0.41)∗ 0.50(0.42)∗
7 0.95 0.50 (0.18)∗ 0.50(0.19)∗

Sum (𝐿/𝐻) 4.59 (4.18) 4.65 (4.25)
Note. Values in brackets are computed nail lengths that correspond to the target reliability index of 2.33; those nail lengths are increased to be 0.50 as per the
requirement of FHWA soil nail wall design manual [1, 2], that is, 𝐿/𝐻 ≥ 0.50.

the COV of bias was about 30%, regardless of the distri-
bution type (i.e., normal or lognormal). The default FHWA
simplified nail load equation was then modified empirically
to improve the prediction accuracy. The modified FHWA
simplified equationwas shown to have biasmean values equal
to one and smaller bias COV values for both normal and
lognormal cases.

TheBayesian InformationCriterion (BIC) was adopted to
perform a comparison of suitability between the competing
normal and lognormal statistical models that were intended

for description of model bias. The BIC values of the two
candidate models were further used to compute their proba-
bilities of being the bestmodel.The results showed thatmodel
bias for nail load prediction equations is better described as a
normal random variable.

A reliability-based design example against internal pull-
out limit state of soil nails was presented to show the influence
of selection of distributions for model bias on design out-
comes and to demonstrate the benefit of performing model
calibration and using calibratedmodel for design of soil nails.
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Figure 12: Nail lengths at different depth for the design example
using default (see (4)) andmodified (see (12)) FHWA simplified nail
load equations.

The modified FHWA simplified nail load equation can be
used for rigorous reliability-based design of soil nails and
for calibration of resistance factors for internal limit states of
soil nails within a load and resistance factor design (LRFD)
framework.
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