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Correspondence should be addressed to Hector Puebla; hpuebla@correo.azc.uam.mx

Received 27 August 2017; Revised 4 December 2017; Accepted 11 December 2017; Published 28 December 2017

Academic Editor: Miguel A. F. Sanjuan

Copyright © 2017 Hector Puebla et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The desire to understand physiological mechanisms of neuronal systems has led to the introduction of engineering concepts to
explain how the brain works. The synchronization of neurons is a central topic in understanding the behavior of living organisms
in neurosciences and has been addressed using concepts from control engineering. We introduce a simple and reliable robust
synchronization approach for neuronal systems.The proposed synchronizationmethod is based on amaster-slave configuration in
conjunction with a coupling input enhanced with compensation of model uncertainties. Our approach has two nice features for the
synchronization of neuronal systems: (i) a simple structure that uses the minimum information and (ii) good robustness properties
againstmodel uncertainties and noise. Two benchmark neuronal systems,Hodgkin-Huxley andHindmarsh-Rose neurons, are used
to illustrate our findings. The proposed synchronization approach is aimed at gaining insight into the effect of external electrical
stimulation of nerve cells.

1. Introduction

Understanding how the brain works from a quantitative
viewpoint is the domain of neural engineers [1]. Neural engi-
neers apply mathematical and computational models, elec-
trical engineering, and signal processing of living neuronal
tissues [1, 2]. Two fundamental issues in neurosciences are
the synchronization of individual neurons and the functional
role of synchronized activity [3, 4]. Synchronization of neu-
ron’s activities is necessary for memory, calculation, motion
control, and diseases such as epilepsy [5–8].

Synchronized activity and temporal correlation are crit-
ical for encoding and exchanging information for neuronal
information processing in the brain [2–4]. Synchronization
approaches in neuronal systems are aimed at exploring the
communication between neurons with the computing of
coupling functions that resemble observed experimental
electrical cell activity [6–10]. From the general synchro-
nization point of view, synchronization approaches can be
classified into two general groups [11, 12]: (i) natural coupling
(self-synchronization) [13–21] and (ii) artificial coupling
using state observers or feedback control approaches [22–34].

Classical approaches to the problem of neuronal syn-
chronization include diffusive and phase couplings [12–21].
Diffusive coupling via gap junctions is considered as the
natural form of coupling inmany neuronal processes [19–21].
Gap junctions can be written as a particular form of diffusive
coupling. Phase coupling consists of modeling each member
of the population as a phase oscillator and coupling them
through the sine of their phase differences [21]. For instance,
Wang et al. [19] applied phase differences to study different
states of synchrony in two electrically coupled neurons.

From control engineering, two ways for synchronization
of nonlinear systems, including the case of neuronal systems,
are (i) observer-based synchronization [11, 12, 22], which uses
state observers to synchronize nonlinear oscillators with the
same order and structure, reaching identical synchronization,
and (ii) controller-based synchronization [23–34], which uses
control laws to achieve the synchronization between nonlin-
ear oscillators, with different structure and order.

Control designs pose significant challenges due to the
presence of disturbances, dynamic uncertainties, and non-
linearities in neuronal models. Indeed, neuronal models
have significant structural and parametric uncertainties. For
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instance, cell capacitances and resistances are obtained from
biophysical data obtained from diverse sources [4, 35].
Moreover, experimental observations have pointed out that
the synchronization phenomena in neuronal systems have
robustness properties against cellular variability and intrinsic
noise [36–40].

Relevant contributions addressing the synchronization
of neuronal systems are the following. Aguilar-López and
Mart́ınez-Guerra [24] proposed a high order sliding mode
controller that shows good robustness capabilities to external
perturbations and internal noise. Bin et al. [25] introduced a
backstepping control approach based on a Lyapunov function
that achieves synchronization despite external disturbances.
Based on feedback linearization ideas, Cornejo-Pérez and
Femat [26] and Wang et al. [27, 28] introduced nonlinear
controllers that achieve synchronization of coupled neurons
despite external disturbances and unmeasured states. Nguyen
andHong [29] designed nonlinear and linear controllers with
parameter adaptation to consider parameter uncertainties.
They achieved synchronization of two coupled neurons.
Using MPC and optimal controllers, Fröhlich and Jezernik
[30, 31] designed controllers for the suppression of oscilla-
tions in neurons. Rehan et al. [23] and Rehan and Hong
[32] proposed robust synchronization approaches using a
linear matrix inequality controller and adaptation laws for
uncertain parameters. Puebla et al. [33] introduced a robust
feedback control scheme endowed with uncertainty compen-
sation for regulation and tracking tasks in coupled neurons.
Wang and Zhao [34] proposed a nonlinear model-based
controller based on the inversion of the dynamics which
guarantees the synchronization under no parametric uncer-
tainties. Most of the above papers have addressed the robust
synchronization problem of neuronal systems. However,
their practical application is limited because of their structure
and high computing cost as well as involved control designs.

A particular configuration for controller designs is the
master-slave synchronization configuration, where the vari-
able states of slave neurons are forced to follow the trajectories
of a master neuron, which leads to an autonomous syn-
chronization error. In this work, we address the master-slave
synchronization of neuronal systems using a robust approach
based on modeling error compensation (MEC) ideas [41].
There are different types of synchronization for coupled sys-
tems [11–13]. In this paper, synchronization of neuronal
systems is defined as the match of the membrane potential. It
is found that theMEC approachmay achieve robust synchro-
nization of the membrane potential via a coupling function
also applied to the membrane potential. Numerical sim-
ulations on two benchmark neuronal systems show good
performance of the robust synchronizer design.

The main contributions of this work can be summarized
in four aspects. (i) We derive our control approach based
on the direct dynamics of the master-slave synchronization
error, leading to an autonomous tracking error and avoiding
the change of coordinates as in feedback linearization and
backstepping approaches. (ii) The proposed robust synchro-
nization approach uses the minimum systems information
(only the membrane potential measurement), and the cou-
pling signal is also injected only to the membrane potential,

facilitating its implementation in real systems. (iii) We use
singular-perturbation theory as our main nonlinear stability
tool [41, 42], including the effect of interconnection dynamics
induced bymodel uncertainties. (iv) Our approach has a sim-
ple structure and provides good robustness against external
perturbations and noise facilitating its physiological interpre-
tation.

The rest of this work is organized as follows. In Section 2,
we introduce two benchmark case studies of neuronal sys-
tems. In Section 3, the proposed robustmaster-slave synchro-
nization is introduced. Section 4 presents the implementation
and performance of the robust master-slave synchronization
approach. Finally, in Section 5, we provide some concluding
remarks.

2. Modeling Neurons

Mathematical modeling has made an enormous impact on
neuroscience [1–4, 35]. A variety of dynamic models of
the electrical activity of neurons have been reported in the
literature [2–4, 43–46]. In this section, we introduce two
benchmark case studies of neuronal systems: (i) the model
proposed by Hodgkin and Huxley (HH) [35, 43–46], which
is a realistic neuron model describing the propagation of an
electric pulse along a squid axon membrane, and (ii) the
Hindmarsh-Rose (HR) neuron model based on Hodgkin-
Huxley typemodels describing the signal transmission across
axons in neurobiology [2, 16, 35]. Based on the model
structure of case studies, a general model of coupled or
uncoupled neuronal systems is introduced. For completeness,
we provide a brief introduction to the modeling of neurons.

2.1. Modeling the Electrical Activity of Neurons. The nervous
system of an organism, which consists of neurons, is a com-
munication network that allows for rapid transmission of
information between cells [2, 16, 35]. A neuron receives
information through the dendrites which are transported via
axons, which provide links to other neurons via synapses [2,
16]. The transport of ions of sodium and potassium through
the outermembrane of a nerve cell is responsible for electrical
signals that transmit information to other neurons [2, 16].

Neurons are excitable media and respond to electrical
stimuli, and this response is exploited when studying neu-
rons. After a low impact of electric current, the excitable cells
relax immediately to their initial state. If a pulse exceeds a
threshold value, a single nerve pulse appears on the excitable
membrane of the nerve tissue (action potential) that prop-
agates along the nerve, preserving constant amplitude and
form [2, 16, 35].

The propagation mechanism of an electric pulse along a
membrane axon is associated with the fact that the permittiv-
ity of a membrane depends on existing currents and voltages
and is different for different ions [43–45]. In particular,
sodium and potassium ions are fundamental in the function-
ing of a neuron [2, 16, 35]. The cell membrane of a neuron is
impermeable to sodium and potassium ions when the cell is
in a resting state. An inactive neuron has a resting potential,
which is generated via a transport protein called the sodium-
potassiumpump.This proteinmoves sodium ions outside the
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cell and simultaneously moves some potassium ions into the
cell’s cytoplasm. Thus, the cell is more positive outside than
inside, due to the fact that the number of sodium ions moved
outside the cell is greater than the number of potassium ions
moved inside. When a stimulus arrives at the nerve cell, its
surface becomes permeable to sodium ions, which flows into
the cells, resulting in a reversal of polarization.The interior of
the cell becomes positively charged, and the outside becomes
negatively charged. Then, the interior becomes permeable to
potassium which flows outside through potassium channels,
reversing the polarization of the cell below the polarization of
the resting state. To restore that polarization, the excess of the
cell sodium (at the interior) and potassium (at the exterior) is
pumped [2, 16, 35, 43–46].

HH described the action potential wave of excited squid
giant axons with an external electrical signal via a set ofmath-
ematical equations [2, 16, 35, 43–46]. At present, it is still the
basic model for describing such phenomena [2, 16, 35]. The
HHmodel for excitability in themembrane of the squid giant
axon is complicated and consists of one nonlinear partial
differential equation coupled to three ordinary differential
equations [43–45].

In the early 1960s, FitzHugh applied model reduction
techniques to the analysis of the HH equations [45]. That
reduction of the HH equations later became known as the
FitzHugh-Nagumo (FHN) model and had given a great
insight into the mathematical and physiological complexities
of the excitability process [2, 16, 45]. The FHN model reduc-
tion uses the fact that the time scales of the two channels are
quite different. Sodium channel had a faster time scale than
potassium channel. Thus, the sodium channel can always be
considered in equilibrium, reducing the HH model to two
equations [45]. Thus, FHN model is an approximation to the
HHmodel retaining essential features of the action potential.

2.2. HH Neuron Model. The HH neurons are usually used as
realistic models of neuronal systems, for studying neuronal
synchronization.TheHHmodel describes how action poten-
tials in neurons are initiated and propagated and approxi-
mates the electrical characteristics of excitable cells [44]. The
HH model for two neurons is described by the following set
of eight ordinary differential equations (ODEs) [2, 16, 35]:

𝑑𝑥𝑀,1
𝑑𝑡 = − 1

𝐶𝑚,𝑀 (𝑔k,𝑀𝑥
2
𝑀,2 (𝑥𝑀,1 − 𝑥𝑀,1k)

+ 𝑔Na,𝑀𝑥𝑀,3𝑥𝑀,4 (𝑥𝑀,1 − 𝑥𝑀,1Na)

+ 𝑔l,𝑀 (𝑥𝑀,1 − 𝑥𝑀,1l)) + 1
𝐶𝑚,𝑀 𝐼𝑀,

𝑑𝑥𝑀,2
𝑑𝑡 = 𝛼𝑛,𝑀 (𝑥𝑀,1) (1 − 𝑥𝑀,2) − 𝛽𝑛,𝑀 (𝑥𝑀,1) 𝑥𝑀,2,

𝑑𝑥𝑀,3
𝑑𝑡 = 𝛼𝑚,𝑀 (𝑥𝑀,1) (1 − 𝑥𝑀,3) − 𝛽𝑚,𝑀 (𝑥𝑀,1) 𝑥𝑀,3,

𝑑𝑥𝑀,4
𝑑𝑡 = 𝛼ℎ,𝑀 (𝑥𝑀,1) (1 − 𝑥𝑀,4) − 𝛽ℎ,𝑀 (𝑥𝑀,1) 𝑥𝑀,4,

𝑑𝑥𝑆,1
𝑑𝑡 = − 1

𝐶𝑚,𝑆 (𝑔k,𝑆𝑥
2
𝑆,2 (𝑥𝑆,1 − 𝑥𝑆,1k)

+ 𝑔Na,𝑆𝑥𝑆,3𝑥𝑆,4 (𝑥𝑆,1 − 𝑥𝑆,1Na) + 𝑔l,𝑆 (𝑥𝑆,1 − 𝑥𝑆,1l))

+ 1
𝐶𝑚,𝑆 𝐼𝑆,

𝑑𝑥𝑆,2
𝑑𝑡 = 𝛼𝑛,𝑆 (𝑥𝑆,1) (1 − 𝑥𝑆,2) − 𝛽𝑛,𝑆 (𝑥𝑆,1) 𝑥𝑆,2,
𝑑𝑥𝑆,3
𝑑𝑡 = 𝛼𝑚,𝑆 (𝑥𝑆,1) (1 − 𝑥𝑆,3) − 𝛽𝑚,𝑆 (𝑥𝑆,1) 𝑥𝑆,3,
𝑑𝑥𝑆,4
𝑑𝑡 = 𝛼ℎ,𝑆 (𝑥𝑆,1) (1 − 𝑥𝑆,4) − 𝛽ℎ,𝑆 (𝑥𝑆,1) 𝑥𝑆,4,

(1)

where 𝑥𝑖,1, 𝑥𝑖,2, 𝑥𝑖,3, and 𝑥𝑖,4 (subindices 𝑖 = 𝑀, 𝑆 denote
master and slave neurons) represent themembrane potential,
the activation of the potassium flow current, and the activa-
tion and inactivation of the sodiumflow current, respectively.
𝐶𝑚,𝑖 is the membrane capacitance, 𝑔k,𝑖, 𝑔Na,𝑖, and 𝑔l,𝑖 are the
maximum ionic and leak conductance, and 𝑥𝑖,1k, 𝑥𝑖,1Na, and𝑥𝑖,1l stand for the ionic and leak reversal potentials [2, 4, 16,
39]. 𝐼𝑖 is the external stimulus current.The functions 𝛼𝑗,𝑖(𝑥𝑖,1)
and 𝛽𝑗,𝑖(𝑥𝑖,1) describe the transition rates between open and
closed states of the channels.

2.3. Hindmarsh-Rose Neurons. As a second case study, we
consider a benchmarkHindmarsh-Rose (HR) neuronmodel,
which can be seen as a physiologically realistic model of the
HH type describing the signal transmission across axons in
neurobiology [2, 16, 35]. Under external current stimulation,
the individual HR model may show chaotic behavior. The
model of two uncoupled HR neurons is described as

𝑑𝑥𝑀,1
𝑑𝑡 = 𝑥𝑀,2 − 𝑎𝑀𝑥3𝑀,1 + 𝑏𝑀𝑥2𝑀,1 − 𝑥𝑀,3 + 𝐼𝑀,

𝑑𝑥𝑀,2
𝑑𝑡 = 𝑐𝑀 − 𝑑𝑀𝑥2𝑀,1 − 𝑥𝑀,1,

𝑑𝑥𝑀,3
𝑑𝑡 = 𝑟𝑀 [𝑠𝑀 (𝑥𝑀,1 − 𝑥𝑀,10) − 𝑥𝑀,3] ,
𝑑𝑥𝑆,1
𝑑𝑡 = 𝑥𝑆,2 − 𝑎𝑆𝑥3𝑆,1 + 𝑏𝑆𝑥2𝑆,1 − 𝑥𝑆,3 + 𝐼𝑆,
𝑑𝑥𝑆,2
𝑑𝑡 = 𝑐𝑆 − 𝑑𝑆𝑥2𝑆,1 − 𝑥𝑆,1,
𝑑𝑥𝑆,3
𝑑𝑡 = 𝑟𝑆 [𝑠𝑆 (𝑥𝑆,1 − 𝑥𝑆,10) − 𝑥𝑆,3] ,

(2)

where 𝑥𝑖,1 is the membrane potential, 𝑥𝑖,2 is associated with
the fast current Na+ or K+, and 𝑥𝑖,3 is associated with the slow
current, for example, Ca2+. 𝐼 is the external current input.
2.4. A General Model of Synchronized Neuronal Systems. We
consider a general class of master-slave configuration of
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neuronal systems coupled through the membrane potential,
that is, 𝑥𝑖,1. The dynamics of the master neuron are modeled
as

𝑑𝑥𝑀,1 (𝑡)
𝑑𝑡 = 𝑓𝑀,1 (𝑥𝑀 (𝑡)) ,

𝑑𝑥𝑀,𝑗 (𝑡)
𝑑𝑡 = 𝑓𝑀,𝑗 (𝑥𝑀 (𝑡)) ,

(3)

where 𝑥𝑀,1(𝑡) denotes the membrane potential of the master
neuron and 𝑥𝑀,𝑗(𝑡) are the remaining states of the master
neuron.

The dynamics of the slave neuron are modeled as

𝑑𝑥𝑆,1 (𝑡)
𝑑𝑡 = 𝑓𝑆,1 (𝑥𝑆 (𝑡)) ,

𝑑𝑥𝑆,𝑗 (𝑡)
𝑑𝑡 = 𝑓𝑆,𝑗 (𝑥𝑆 (𝑡)) ,

(4)

where 𝑥𝑆,1(𝑡) denotes the membrane potential of the slave
neuron and 𝑥𝑆,𝑗(𝑡) are the remaining states of the slave neu-
ron.

Coupled neurons can be modeled as

𝑑𝑒 (𝑡)
𝑑𝑡 = 𝑑𝑥𝑆,1 (𝑡)

𝑑𝑡 − 𝑑𝑥𝑀,1 (𝑡)𝑑𝑡
= 𝑓𝑆,1 (𝑥𝑆 (𝑡)) − 𝑓𝑀,1 (𝑥𝑀 (𝑡)) + 𝑢 (𝑡) ,

(5)

where 𝑒(𝑡) denotes the synchronization error and 𝑢(𝑡) is an
external electrical input applied to the slave neuron.

The following comments are in order:

(i) The original HHmodel is given by coupled nonlinear
ODEs which are a simplification of full partial dif-
ferential equations (PDEs) that describes the neuron
membrane [2, 16, 35, 43–46]. Both HH and HR neu-
ronmodels can reproduce itsmain featureswhen they
are exposed to an external current (existence of an
excitation threshold, relative and absolute refractory
periods, and the generation of pulse trains). Thus, for
synchronization design purposes, benchmarkmodels
with small dimension and less complexity are more
suitable.

(ii) The external input 𝑢(𝑡) represents an externally ap-
plied current into the cell from an electrode. The
membrane voltage can also be readily measured,
and the controller can be realized easily using this
combination of input-output variables. The use of an
external current as the manipulable variable is real-
istic since it has a significant effect on the dynamics
of membrane potential leading to depolarization and
repolarization of the neuron [2, 4]. On the other
hand, several experimental studies have shown that
the synchronization of coupled neurons depends on
external stimulus properties [10, 13–15].

(iii) Uncertainties in neuron models arise in two main
ways: structural and parametric [35, 40, 43]. Struc-
tural uncertainty refers to different choices of fitting

Master neuron Slave neuron

Synchronizer

Coupling 
signal, u

External
I？ＲＮ

External
current,current, I？ＲＮ

ym = xm1 ys = xs1

Figure 1: Master-slave synchronization of neuronal systems.

of sodium and potassium conductance curves in a
model. The uncertainty that arises from the approx-
imation of complex models to simpler ones also fits
into the category of model uncertainty. Parametric
uncertainty refers to variation in the numerical base
values of different parameters of the model. These
parameters may include changes due to intrinsic elec-
tric and magnetic properties of tissue. For instance,
each neuron may have a different set of conductances
[16, 35, 40]. Moreover, the thermal motion of the
molecules leads to noise and fluctuations in the
variables of the model [36–39].

3. Robust Master-Slave Synchronization

In this section, based on modeling error compensation
(MEC) ideas, the synchronizer design is presented. First, the
problem is stated as a master-slave configuration, and some
assumptions for the synchronizer design are introduced.
Next, robustness and stability issues of the synchronization
approach are provided.

3.1. Synchronization Problem. The synchronization problem
is stated as follows; that is, the output of a master neuron is
the reference of a slave neuron so that the output of the slave
system follows the output of the master system asymptoti-
cally. We apply an external signal at the slave neuron to track
the desired behavior of themaster neuron. Figure 1 shows the
scheme of the synchronization approach.

The following assumptions complete the synchronization
problem description:

(A1) Nonlinear functions 𝑓𝑀,1(𝑥𝑀) and 𝑓𝑆,1(𝑥𝑆) are
smooth functions.

(A2) The general coupled neuron model given by (5) is
affected by uncertainties and external perturbations
with bounded variation.

(A3) The measurement of the membrane voltage in the
master and slave neurons is available for synchroniza-
tion design purposes.
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The following comments are in order:

(i) (A1) is realistic. Indeed, the primary source of non-
linearity in neuronmodels is the conductance curves,
which meet these assumptions [2, 16, 35].

(ii) (A2) considers that the coupled neuron model con-
tains uncertainties related to uncertain parameters
and unmodeled dynamics, that is, 𝜋(𝑡) + 𝜉(𝑦(𝑡)). As
stated in the above section, functions 𝑓𝑀,1(𝑥𝑀) and𝑓𝑆,1(𝑥𝑆) can contain uncertain parameters, or, in the
worst case, the whole terms are unknown. Indeed, the
parameters in neuron models have some degree of
uncertainty, as these parameter values are commonly
estimated from experimental data, which contain
errors due to both the estimation procedure adopted
to fit data and the experimental errors of the data
themselves [35, 40, 43].

3.2. Robust Synchronization Design. The synchronizer design
consists of the following steps.

(1) Consider the coupled neurons model given by (5):

𝑑𝑒 (𝑡)
𝑑𝑡 = 𝑑𝑥𝑆,1 (𝑡)

𝑑𝑡 − 𝑑𝑥𝑀,1 (𝑡)𝑑𝑡
= 𝑓𝑆,1 (𝑥𝑆 (𝑡)) − 𝑓𝑀,1 (𝑥𝑀 (𝑡)) + 𝑢 (𝑡) .

(6)

(2) Lump the uncertain terms in a single new state 𝜂(𝑡)
[33, 34]. From themodel given by (5) and assumptions
(A1) and (A2), the modeling error 𝜂(𝑡) and the
equivalent model are written as

𝜂 (𝑡) = 𝑓𝑆,1 (𝑥𝑆 (𝑡)) − 𝑓𝑀,1 (𝑥𝑀 (𝑡)) ,
𝑑𝑒 (𝑡)
𝑑𝑡 = 𝜂 (𝑡) + 𝑢 (𝑡) .

(7)

(3) Estimate the uncertain term 𝜂(𝑡) via a reduced order
observer [33, 34]:

𝑑𝜂 (𝑡)
𝑑𝑡 = 𝜏−1𝑒 (𝜂 (𝑡) − 𝜂 (𝑡)) ; (8)

introducing 𝜔(𝑡) = 𝜏𝑒𝜂(𝑡) − 𝑦(𝑡), the reduced order
observer can be written as follows:

𝑑𝜔 (𝑡)
𝑑𝑡 = 𝑢 (𝑡) − 𝜂 (𝑡), (9)

where 𝜏𝑒 is the only observer design parameter. In the
context of control theory, the reduced observer can be
seen as a signal estimator, where the modeling error
signal is seen as an additional state. In this way, the
estimation of the modeling error endows the control
system with robustness against model uncertainties.

(4) Design a synchronizer to drive the synchronization
error to zero with the dynamics given by

𝑑𝑒 (𝑡)
𝑑𝑡 = 𝜏−1𝑐 𝑒 (𝑡) (10)

which is obtained using the following coupling input:

𝑢 (𝑡) = −𝜏−1𝑐 𝑒 (𝑡) + 𝜂 (𝑡) , (11)

where 𝜏𝑐 is the synchronizer design parameter. In this
way, the asymptotic convergence 𝑒(𝑡) → 0, and so
𝑥𝑆,1(𝑡) → 𝑥𝑀,1(𝑡), is guaranteed.

The resulting synchronizer depends only on themeasures
of the membrane voltages in the master and slave neurons
and the estimated value of the lumped uncertain terms 𝜂(𝑡).
It is also noted that the proposed synchronizer has only
two parameters, one for the observer and the other for the
coupling input 𝑢(𝑡).

The tuning of both parameters follows a simple rule [41]:
𝜏𝑝 > 0.5𝜏𝑐 > 0.5𝜏𝑒, where 𝜏𝑝 is the inverse of the dominant
oscillation frequency of the master neuron, 𝜏𝑐 can be seen
as a synchronization time constant which is tuned to get a
satisfactory synchronization performance, and 𝜏𝑒 determines
the smoothness of the modeling error estimation.

3.3. Robustness and Stability Properties. Toobtain satisfactory
and practical synchronization strategies, they should be
robust in response to both model uncertainties and exter-
nal perturbations. The robustness properties against model
uncertainties of the proposed synchronizer design are related
to the compensation of the estimated lumped uncertain
terms.

The stability analysis of the proposed synchronizer design
is based on singular-perturbation arguments [41, 42]. For the
sake of completeness in presentation, a sketch of main ideas
of the stability results for the MEC approach is provided as
follows [34].

Given the synchronization error 𝑒(𝑡) and defining the
estimation error as 𝜙(𝑡) = 𝜂(𝑡) − 𝜂(𝑡), then the synchronized
system becomes

𝑑𝑒 (𝑡)
𝑑𝑡 = −𝜏−1𝑐 𝑒 (𝑡) + 𝜙 (𝑡) ,

𝑑𝜙 (𝑡)
𝑑𝑡 = −𝜏−1𝑒 𝜙 (𝑡) + Γ (𝑒 (𝑡) , 𝜙 (𝑡)) ,

(12)

where Γ(𝑒(𝑡), 𝜙(𝑡)) stands for the time derivative of lumped
uncertain terms, which does not depend on 𝜏𝑒. By assump-
tions (A1) and (A2), it can be shown that such time derivative
is a continuous function of its arguments. Thus, there exist
two positive constants V1 and V2 both independent of 𝜏𝑒, such
that

󵄨󵄨󵄨󵄨Γ (𝑒 (𝑡) , 𝜙 (𝑡))󵄨󵄨󵄨󵄨 ≤ V1 |𝑒 (𝑡)| + V2
󵄨󵄨󵄨󵄨𝜙 (𝑡)󵄨󵄨󵄨󵄨 . (13)

The synchronized system can be seen as a nonlinear singu-
larly perturbed system with 𝜏𝑒 as the perturbation parameter
and 𝑒(𝑡) and 𝜙(𝑡) as the slow and fast variables, respectively
[42]. The reduced system (obtained by taking 𝜏𝑒 = 0) and the
boundary-layer system (obtained by taking the time-scaling
𝑡󸀠 = 𝑡/𝜏𝑒 and 𝜏𝑒 = 0) are linearly asymptotically stable.
Hence, there exists a maximum estimation time constant
𝜏𝑒∗, such that for all 𝜏𝑒 < 𝜏𝑒∗ the regulation error 𝑒(𝑡)
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goes asymptotically to zero. The maximum estimation time
constant can be taken as a measure of the robustness of the
proposed synchronizer. Larger values of 𝜏𝑒∗ lead to better
robustness capabilities. Smaller values of 𝜏𝑒 lead to a faster
estimation of the modeling error. However, excessively small
values of 𝜏𝑒 must be avoided in practice, since measurement
noise and unmodeled high-frequency dynamics (e.g., actua-
tor dynamics and dead-time) impose limitations on the esti-
mator bandwidth. Stability results imply that perturbations,
noise, and fluctuations with bounded variations do not affect
the stability of synchronizer design.

4. Numerical Studies

In this section, simulation results are presented for the syn-
chronization of the case studies. First, the proposed syn-
chronizer approach is presented for three sets of synchro-
nizer parameters [𝜏𝑐, 𝜏𝑒]. Next, robustness capabilities against
model parameters uncertainties are considered. Finally, the
synchronization capabilities are evaluated concerning ran-
dom fluctuations on the slave’s membrane potential.

4.1. Synchronization of HH Neurons. We consider two HH
neurons with the following form of the functions 𝛼𝑖(𝑥1) and𝛽𝑖(𝑥1) (𝑖 = 𝑛,𝑚, ℎ), which describes the transition rates
between open and closed states of the channels [4]:

𝛼𝑛 (𝑥1) = 0.01 (10 − 𝑥1)
exp [(10 − 𝑥1) /10] − 1 ,

𝛽𝑛 (𝑥1) = 0.125 exp(−𝑥180 ) ,

𝛼𝑚 (𝑥1) = 0.1 (25 − 𝑥1)
exp [(25 − 𝑥1) /10] − 1 ,

𝛽𝑚 (𝑥1) = 4 exp(−𝑥118 ) ,

𝛼ℎ (𝑥1) = 0.07 exp (−𝑥120 ) ,

𝛽ℎ (𝑥1) = 1
exp [(20 − 𝑥1) /10] + 1 .

(14)

Other model parameters for the base numerical simulation
are [19, 25] 𝑥𝑀,1Na = 𝑥𝑆,1Na = 115.0mV, 𝑥𝑀,1l = 𝑥𝑆,1l =10.599mV, 𝑥𝑀,1k = 7.2mV, 𝑥𝑀,1k = −12.0mV (repre-
senting the equilibrium potentials of the sodium, leak, and
potassium, resp.), 𝑔Na,𝑀 = 𝑔Na,𝑆 = 120.0ms/cm2, 𝑔L,𝑀 =
𝑔L,𝑆 = 0.3ms/cm2, and 𝑔K,𝑀 = 12.0ms/cm2, 𝑔K,𝑀 =
36.0ms/cm2 (representing the maximum conductance of the
corresponding ionic currents), 𝐶𝑀 = 𝐶𝑆 = 1.0 F/cm2 (mem-
brane capacitance), 𝐼𝑀 = 3.18, and 𝐼𝑆 = 80 (externally
applied currents). Numerical simulations were performed
using a fourth-order Runge-Kutta integration algorithm
which was programmed in Matlab software v.7, with an
integration step of 0.1 and the following initial conditions:
(𝑥𝑀,1(0), 𝑥𝑀,2(0), 𝑥𝑀,3(0), 𝑥𝑀,4(0)) = (0.1, 0.1, 0.01, 0.1) and
(𝑥𝑆,1(0), 𝑥𝑆,2(0), 𝑥𝑆,3(0), 𝑥𝑆,4(0)) = (50, 0.5, 0.2, 0.5).
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Figure 2: Synchronization of HH neurons for three sets of synchro-
nizer parameters.

4.1.1. Synchronization of Two HH Neurons. Figure 2 shows
the synchronization results for three different sets of the syn-
chronizer parameters [𝜏𝑐, 𝜏𝑒]: (a) base parameters [0.2, 0.1]
(continuous black line), (b) higher control parameters
[0.5, 0.2] (continuous blue line), and (c) smaller control
parameters [0.1, 0.05] (continuous red line). The coupling
input is switched on at time 𝑡 = 40ms. To consider realistic
values of applied external current, minimum and maximum
values of the coupling input 𝑢 are set as 𝑢min = 0 and 𝑢max =500.

As shown in Figure 2, HH neurons exhibit different
simple periodic dynamical behavior before the activation of
the synchronizer. After the proposed synchronizer approach
is applied, synchronization errors converge to zero. It is
observed that the synchronization error is lower for the base
synchronizer parameters. The slight mismatch between the
slave and master state is due to the saturation of the cou-
pling function. Lower values of the synchronizer parameters
induce a significant mismatch due to the high intensity of
the coupling function that stays most of the time at the
upper saturation level. On the other hand, larger values of
synchronizer parameters show a minor effort of the coupling
input, but in this case also a significant mismatch is observed.

From Figure 2, it can be observed that high values of the
external coupling function are required to synchronize the
membrane potential. This is in accordance with theoretical
and experimental observations, where it has been reported
that in HHneurons a small external applied current results in
a small net current that drives the membrane potential to rest
(repolarization) [4, 43]. Thus, intermediate to high external
applied currents produce perturbations required to achieve
the synchronization.



Mathematical Problems in Engineering 7

0

50

100

−50

0

50

0

200

400

10 20 30 40 50 60 70 800

10 20 30 40 50 60 70 800

10 20 30 40 50 60 70 800

Time (ms)

x
M

,1
,x

S,
1

e(
t)

u
(t
)

Figure 3: Robustness of the synchronization of HH neurons against
parameter mismatch.

4.1.2. Robustness against Uncertain Model Parameters and
Membrane Potential Fluctuations. The robustness capabili-
ties of the MEC synchronization scheme against parameter
mismatch and fluctuations in the membrane potential are
evaluated as follows. (i) A random parameter mismatch of
5% between master and slave neurons is first considered. (ii)
A random fluctuation of 10% was added in the membrane
potential of the slave neuron. The above perturbations are
simulated with Gaussian random noise, which is usually used
to simulate most common disturbances in neuroscience [4,
35]. Synchronizer parameters are set as the base values of
Figure 2.

The simulation results are shown in Figures 3 and 4. A
similar synchronization error is noted as in the case of iden-
tical parameters, only with slight distortions of the coupling
function.Thus, it can be observed that the performance of the
synchronization scheme shows good robustness capabilities
to random perturbations.

4.2. Synchronization of HR Neurons. For the second case
study, we consider two HR neurons. Base parameter values
are [13, 21] 𝑎𝑚 = 𝑎𝑠 = 1, 𝑏𝑚 = 𝑏𝑠 = 3, 𝑐𝑚 = 𝑐𝑠 = 1,
𝑑𝑚 = 𝑑𝑠 = 5, 𝑠𝑚 = 𝑠𝑠 = 4, 𝑟𝑚 = 𝑟𝑠 = 0.006,
𝐼𝑚 = 3.2, and 𝐼𝑠 = 2.8. The minimum value of the coupling
input in this case is 𝑢min = −2.8, such that the minimum
external current to the slave neuron is zero. In this case,
numerical simulations were also performed using a fourth-
order Runge-Kutta integration algorithm programmed in
Matlab v.7, with an integration step of 0.1 and the following
initial conditions: (𝑥𝑀,1(0), 𝑥𝑀,2(0), 𝑥𝑀,3(0)) = (0.1, 0.1, 0.1)
and (𝑥𝑆,1(0), 𝑥𝑆,2(0), 𝑥𝑆,3(0)) = (0.2, 0.2, 0.2).

4.2.1. Synchronization of Two HR Neurons. Figure 5 shows
numerical results for two neurons and three different sets
of the synchronizer parameters [𝜏𝑐, 𝜏𝑒]: (a) base parameters
[1, 0.5] (continuous black line), (b) higher control parameters
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Figure 4: Robustness of the synchronization of HHneurons against
noise.
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Figure 5: Synchronization of HR neurons for three sets of synchro-
nizer parameters.

[3, 1.5] (continuous blue line), and (c) smaller control param-
eters [0.1, 0.05] (continuous red line). The coupling input is
switched on at time 𝑡 = 400ms. It can be observed from
Figure 5 that before the synchronizer is implemented master
and slave neurons exhibit chaotic dynamical behaviors and
are not synchronized.

Figure 5 shows that, for nominal and small synchronizer
parameters, the synchronization error dynamics go quickly to
zero. On the other hand, for higher synchronizer parameter
values, the synchronization error also vanishes but after a
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significant transitory dynamic. Notice that the required cou-
pling functions for lower and higher synchronizer parameters
show oscillatory behaviors. In particular, the effect of small
synchronizer parameters leads to an increase of oscillatory
behavior due to the high sensitivity of the proposed estimator.

4.2.2. Robustness against Uncertain Model Parameters and
Membrane Potential Fluctuations. Figures 6 and 7 show, for
the base parameter values of the synchronizer, the robustness
capabilities of the synchronization approach to parameter
mismatch and measurement potential fluctuations. In both
cases, almost complete synchronization is achieved. Figure 6
shows that to suppress parameter uncertainties the coupling
input requires significant effort in the regions of spiking
behavior of the neurons. On the other hand, the effect of
measurement noise is also reflected in the coupling input,
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Figure 8: Synchronization of three HR neurons.

which shows a noisy behavior and a lower strength than
the case of noiseless measurements, reflecting some behavior
observed in real neurons [36–39].

4.2.3. Synchronization of Three HR Neurons. The extension
of the proposed synchronizer approach for three coupled
neurons (i.e., two slave neurons) is illustrated in Figure 8. In
this case, initial conditions for the second slave neuron are
(𝑥𝑆2,1(0), 𝑥𝑆2,2(0), 𝑥𝑆2,3(0)) = (0.15, 0.15, 0.15), and 𝐼𝑠2 = 3.
We have used nominal synchronizer parameters.

Figure 8 shows the synchronization error for both slave
neurons. It is noted that the synchronizer approach can
drive the synchronization errors to zero. The correspond-
ing coupling inputs show a slight oscillation with a fast
convergence to a flat ramp. Then, we can establish that
the proposed synchronization approach can be applied to
multiple neurons.

5. Conclusions

This paper introduces a robust approach for synchronization
of neuronal systems. Using a master-slave configuration, we
provide robustness capabilities via the lumping, estimation,
and compensation of model uncertainties. The coupling
function computing via the synchronization approach uses
only the membrane potential and is only also applied to the
membrane potential of the neuron, resembling the strength
of electrical gap junctions. Synchronization dynamics are
analyzed using stability arguments of nonsingular pertur-
bation systems. The performance of the proposed synchro-
nization approach is validated through in-depth numerical
simulations on two benchmark models of neuronal sys-
tems. Furthermore, since our approach uses the minimum
model information, the proposed method can be applied
for synchronization of more complex and multiple neuronal
systems. Our study aims to contribute to the understanding
of both processes that influence the synchronization of
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individual neurons and the functional role of synchronized
activity of coupled neurons in neural and mental disorders.
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[24] R. Aguilar-López and R. Mart́ınez-Guerra, “Synchronization
of a coupled Hodgkin-Huxley neurons via high order sliding-
mode feedback,” Chaos, Solitons & Fractals, vol. 37, no. 2, pp.
539–546, 2008.

[25] D. Bin,W. Jiang, and F. Xiangyang, “Synchronizing two coupled
chaotic neurons in external electrical stimulation using back-
stepping control,” Chaos, Solitons & Fractals, vol. 29, no. 1, pp.
182–189, 2006.
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