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Satellite task planning not only plans the observation tasks to collect images of the earth surface, but also schedules the transmission
tasks to download images to the ground station for users’ using, which plays an important role in improving the efficiency of
the satellite observation system. However, most of the work to our knowledge, scheduling the observation and transmission tasks
separately, ignores the correlation between them in resource (e.g., energy andmemory) consumption and acquisition. In this paper,
we study the single-satellite observation and transmission task planning problem under amore accurate resource usagemodel. Two
preprocessing strategies including graph partition and nondominated subpaths selection are used to decompose the problem, and
an improved label-setting algorithm with the lower bound cutting strategy is proposed to maximize the total benefit. Finally, we
compare the proposed method with other three algorithms based on three data sets, and the experimental result shows that our
method can find the near-optimal solution in much less time.

1. Introduction

Earth observation satellite (EOS) collects images of the earth
surface and downloads them to the ground station for users’
using, which has been widely used in environmental moni-
toring, resource management, agricultural analysis, military
reconnaissance, and another aspect of life [1–3]. At present,
the contradiction between the overloaded requirements for
remote sensing images and the limited EOS resources is
increasingly acute. Satellite task planning is to optimize the
observation and transmission activities to maximize the total
benefit that receives much attention from the government
and space agency [1, 4–6].

As is shown in Figure 1, the EOS orbits the earth. The
observation payload takes images and stores them in the
storage when a target is in the view of the EOS; this process
is called “observation.” The transmission payload downloads
images to the ground and frees the corresponding storage
when the EOS is in the visible range of a ground station; this
process is called “transmission.” Energy is consumed in the
process of observation and transmission and acquired when
the EOS is in the sun. There is a strong correlation between
the observation tasks and the transmission tasks in resource

(e.g., energy and memory) consumption and acquisition,
which makes the problem intractable to solve.

In this paper, we study the single-satellite observation
and transmission tasks planning problem (SOTTP) under a
more accurate resource usage model. The main contribution
includes the following: (1) we develop a directed acyclic graph
model and propose two preprocessing strategies including
graph partition and nondominated subpaths selection.These
two preprocessing strategies decompose the graphmodel into
a series of subgraphs that effectively reduce the complexity
of the problem. (2) We construct an equivalent mathematical
model and propose an improved label-setting algorithmwith
the lower bound cutting strategy to solve the SOTTP. This
strategy removes the low-benefit paths in each subgraph that
improves the search efficiency. (3) Numerical experiments
on three data sets show that our method can find the near-
optimal solution in much less time.

This paper is organized as follows. Section 2 places the
related work of our research. Section 3 describes the problem
which includes the time-dependent resource change relation
and the resource constraints. In Section 4, two preprocess-
ing strategies including graph partition and nondominated
subpaths selection are used to decompose the problem, and
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Figure 1: The operation of an EOS.

an equivalent mathematical model is developed. In Section 5,
an improved label-setting algorithm with the lower bound
cutting strategy is adopted to solve the problem. Section 6
describes experimental result on three data sets. Section 7
provides concluding remarks and future works.

2. Relate Works

Satellite task planning is a typical combinatorial optimiza-
tion problem and proved to be NP-Hard [1, 2, 6, 7],
which has been widely concerned by scholars and made
great achievements. According to the planning approach,
the research can be mainly classified into three categories:
separate planning, hierarchical planning, and coordinate
planning.

In separate planning, the observation tasks and the trans-
mission tasks are scheduled separately. Either the satellite
observation task planning problem (SOTP) or the satellite
transmission task planning problem (STTP, it is also called
the satellite ground station scheduling problem) is generally
formulated by some mathematical models, such as graph
model [8–10], integer programmingmodel [1, 2, 7, 8, 11, 12], or
constraint satisfaction programming model [6, 13, 14]. Then
they are solved by metaheuristic algorithms (like genetic
algorithm [3, 6, 13], tabu search [14, 15], and ant colony
optimization [9]), mathematical programmingmethods (like
Lagrangian relaxation [2, 12], branch and cut [7], and column
generation [8]), and other domain knowledge based heuristic
approaches [10, 16]. However, the memory constraint is
ignored or the storage is assumed to be large enough in the
SOTP [1–3, 8–11, 14–18]. The energy and memory constraints
are neglected or simplified, and the minimum download
time is used as the primary optimization objective in the
STTP [6, 7, 12, 13, 19–21]. Though the separate planning
approach simplifies the problem, it disregards the correlation
between the observation tasks and the transmission tasks
in resource (e.g., energy and memory) consumption and
acquisition.

In hierarchical planning [22, 23], the observation tasks
are first planned by an algorithm; then the transmission tasks
are scheduled by another algorithm based on the selected
observation tasks in the previous stage.Thequality of solution
not only depends on the performance of the two algorithms,
but also relates to the way to bond them. The planning

result of the observation tasks can be easily destroyed while
scheduling the transmission tasks.

In coordinate planning [5, 24, 25], the observation tasks
and the transmission tasks are scheduled together. Such
studies are not much and still in the exploring stage. Li et
al. [24] proposed a 𝐾-shortest path genetic algorithm to
balance the response time and resource utilization. Wang
et al. [25] studied the scheduling problem of four optical
satellites and four SAR satellites and presented a priority-
based heuristic method to maximize the rewards of the
images taken and transmitted. Chen et al. [5] considered
the specific constraints of electromagnetic detection satellites
and adopted a genetic algorithm with solution repairing
strategy to solve the problem. Because of the limitation of
the TT&C (Telemetry, Tracking, and Command) network
resource, the maximum working time is used to model the
resource constraint (e.g., the working time of the EOS in
each orbital period is the same) in the above research. In the
real world, the resource (e.g., energy and memory) status is
continuous and correlated [7, 26, 27]. The more resources
consumed in the current orbital period, the fewer resources
available in the next cycle. It is evident that the traditional
resource usage model is imprecise that usually limits the
capacity of the EOS. With the emergence of autonomous
satellite [26] and the use of data relay satellite [28], it is
possible to get the resource status in real time and use the
onboard resource usage model to accurately represent the
realistic constraints of the EOS rather than the traditional
model.

In this paper, we study the single-satellite observation
and transmission task planning problem from the perspective
of resource consumption and acquisition and coordinately
plan the observation tasks and the transmission tasks. A
more accurate resource usage model is considered, and an
approximate path searching method is proposed to solve the
problem.

3. Problem Description

In the problem, we consider the following hypotheses:
(1) The observation tasks and the transmission tasks are

given before planning.
(2) The energy and the memory are renewable resources,

but they are limited by the battery capacity and
storage capacity, respectively.

(3) The EOS may view more than one ground station
simultaneously, but it can only download the images
to one ground station at a time.

(4) The EOS cannot transmit the images to the ground
station during observing.

(5) Once an observation task or a transmission task is
executed, it cannot be interrupted or removed.

3.1. Planning Horizon. 𝐻 = [Ta,Te] is the planning horizon,
where Ta is the start time and Te is the end time. All
observation and transmission tasks must be in the planning
horizon.
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Figure 2: The charging rate in different situations.

3.2. Data Set

(1) Task Set 𝑆𝑇. The observation task and the transmission
task are collectively referred to as task. ∀𝑖 ∈ ST, it is expressed
by a 3-tuple (ta𝑖, te𝑖, 𝑏𝑖):

(i) ta𝑖: the start time of task 𝑖, which is a constant
(ii) te𝑖: the end time of task 𝑖, which is a constant
(iii) 𝑏𝑖: the benefit of task 𝑖. For an observation task,𝑏𝑖 ∈ [1, 40], the higher the value, the more important

the task. For a transmission task, it does not take
any pictures except downloading them to the ground
station such that the benefit is set as zero.

(2) Light Window Set 𝐿𝑊. The EOS can only recharge the
battery in the light window. ∀𝑘 ∈ LW, it is expressed by a
2-tuple (la𝑘, le𝑘):

(i) la𝑘: (a constant) the start time of light window 𝑘,
whichmeans the EOS goes into the sunshine from the
shadow

(ii) le𝑘: (a constant) the end time of light window 𝑘,
which means the EOS goes into the shadow from the
sunshine.

3.3. Temporal Relation between Tasks. The EOS cannot per-
form two tasks at a time in our problem. As a result, a setup
time Ts(𝑖, 𝑗) (Ts(𝑖, 𝑗) ≤ Ts𝑚, where Ts𝑚 is the maximum setup

time) is required for any two tasks 𝑖 and 𝑗,∀𝑖, 𝑗 ∈ ST.Note that
Ts(𝑖, 𝑗) is a constant and predefined before planning.Then the
temporal relation can be presented as follows:

ta𝑖 < ta𝑗 󳨀→
ta𝑗 − te𝑖 ≥ Ts (𝑖, 𝑗) ,

∀𝑖, 𝑗 ∈ ST.
(1)

3.4. Time-Dependent Resource Change Relation

(1) The Change of Energy. The EOS collects energy by the
solar panel and stores it in the battery to support the basic
functionality and perform tasks. The change of energy is
described as follows:

Δ𝑒 (𝑡1, 𝑡2) = ∫𝑡2
𝑡1

(𝜋𝑒+ (𝑡) − 𝜋𝑒− (𝑡) − 𝜙𝑒− (𝑡)) 𝑑𝑡,
𝑡2 > 𝑡1,

(2)

where 𝜋𝑒−(𝑡) is the energy consumption rate of basic func-
tionality, 𝜙𝑒−(𝑡) is the energy consumption rate of satellite
payloads, and 𝜋𝑒+(𝑡) is the charging rate. If the EOS wants
to charge in the high charging rate, it must adjust the attitude
that points the solar panel to the sun when it is idle (e.g., no
task to do) and a minimum charging time is needed. As a
result, 𝜋𝑒+(𝑡) is defined by a piecewise function (see (3)), as
is shown in Figure 2.

𝜋𝑒+ (𝑡) =
{{{{{{{{{{{{{{{

0 (1) if ∀𝑘 ∈ LW such that 𝑡 ∉ [la𝑘, le𝑘]
𝜋𝑙 (𝑡) (2) if ∃𝑘 ∈ LW, ∃𝑖 ∈ ST such that 𝑡 ∈ [la𝑘, le𝑘] , 𝑡 ∈ [ta𝑖, te𝑖]
𝜋𝑙 (𝑡) (3) if ∃𝑘 ∈ LW, ∀𝑖 ∈ ST such that 𝑡 ∈ [la𝑘, le𝑘] , 𝑡 ∉ [ta𝑖, te𝑖] , Δ𝑇𝑐 (𝑘, 𝑡) < 𝐶min

𝜋ℎ (𝑡) (4) if ∃𝑘 ∈ LW, ∀𝑖 ∈ ST such that 𝑡 ∈ [la𝑘, le𝑘] , 𝑡 ∉ [ta𝑖, te𝑖] , Δ𝑇𝑐 (𝑘, 𝑡) ≥ 𝐶min,
(3)

where 𝜋𝑙(𝑡) is the low charging rate, 𝜋ℎ(𝑡) is the high charging
rate, 𝐶min (𝐶min > Ts𝑚) is the minimum charging time, andΔ𝑇𝑐(𝑘, 𝑡) is the available charging time which is defined by

Δ𝑇𝑐 (𝑘, 𝑡) = min {le𝑘, ta𝑖 | 𝑖 ∈ ST, ta𝑖 > 𝑡}
− max {la𝑘, ta𝑖 | 𝑖 ∈ ST, ta𝑖 < 𝑡} . (4)
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(2) The Change of Data. The change of data is described as

Δ𝑑 (𝑡1, 𝑡2) = ∫𝑡2
𝑡1

𝜙𝑑 (𝑡) 𝑑𝑡, 𝑡2 > 𝑡1, (5)

where𝜙𝑑(𝑡) is the change rate of data,𝜙𝑑(𝑡) > 0when the EOS
is performing an observation task at time 𝑡, and 𝜙𝑑(𝑡) < 0
when the EOS is performing a transmission task at time 𝑡;
otherwise 𝜙𝑑(𝑡) = 0.
3.5. Energy andMemory Constraints. Theenergy level cannot
exceed the lower bound and upper bound of energy at any
time because of the limitation of battery capacity. When the
energy level reaches the upper bound, it will stop increasing.
Let 𝑒(𝑡) be the energy level at time 𝑡, 𝐸min be the lower bound,
and 𝐸max be the upper bound; then the energy constraint is
represented as follows:

𝑒 (𝑡) = min {𝐸max, 𝑒 (𝑡1) + Δ𝑒 (𝑡1, 𝑡)} ≥ 𝐸min, 𝑡 > 𝑡1. (6)

The memory constraint is similar to the energy con-
straint. The difference is that the data level will stop decreas-
ing when it reaches the lower bound of memory (e.g., all
images are downloaded to the ground). Let 𝑑(𝑡) be the data
level at time 𝑡 and 𝐷min (𝐷min = 0 in the problem) and 𝐷max
be the lower bound and upper bound of memory; then the
memory constraint is formulated as follows:

𝑑 (𝑡) = max {𝐷min, 𝑑 (𝑡1) + Δ𝑑 (𝑡1, 𝑡)} ≤ 𝐷max,
𝑡 > 𝑡1. (7)

Definition 1 (resource vector). Let 𝑝 be the plan in the
period [𝑡1, 𝑡2]; then the resource usage of plan 𝑝 can be
expressed by the resource vector 𝑅 = (Δ𝑒max, Δ𝑒min, Δ𝑑max,Δ𝑑min, Δ𝑒end, Δ𝑑end) (Figure 3); for the computation, one can
refer to Appendix A.

(i) Δ𝑒max ≥ 0 and Δ𝑒min ≤ 0: the maximum and
minimum change of energy while performing plan 𝑝.

(ii) Δ𝑑max ≥ 0 and Δ𝑑min ≤ 0: the maximum and
minimum change of data while performing plan 𝑝.

(iii) Δ𝑒end and Δ𝑑end: the change of energy and memory
after plan 𝑝 is performed.

Theorem 2. Let 𝑒(𝑡1) and 𝑑(𝑡1) be the energy and data level
at time 𝑡1. If 𝑝 is a feasible plan in the period [𝑡1, 𝑡2], it must
satisfy the following constraints:

max {Δ𝑒 (𝑡1, 𝑡󸀠) , 𝑡󸀠 ∈ [𝑡1, 𝑡]} − Δ𝑒 (𝑡1, 𝑡)
≤ 𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛, 𝑡 ∈ [𝑡1, 𝑡2] , (8a)

Δ𝑑 (𝑡1, 𝑡) − min {Δ𝑑 (𝑡1, 𝑡󸀠] , 𝑡󸀠 ∈ [𝑡1, 𝑡)}
≤ 𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛, 𝑡 ∈ [𝑡1, 𝑡2] , (8b)

𝑒 (𝑡1) + Δ𝑒𝑚𝑖𝑛 ≥ 𝐸𝑚𝑖𝑛, (8c)

𝑑 (𝑡1) + Δ𝑑𝑚𝑎𝑥 ≤ 𝐷𝑚𝑎𝑥. (8d)

Observing Transmitting Charging
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Figure 3: The resource vector in the period [𝑡1, 𝑡2].

Proof. See Appendix B.

Theorem 3. Let 𝑒(𝑡1) and 𝑑(𝑡1) be the energy and data level at
time 𝑡1. If 𝑝 is a feasible plan in the period [𝑡1, 𝑡2], the energy
and data level at time 𝑡2 can be computed as follows:

𝑒 (𝑡2) = min {𝐸𝑚𝑎𝑥 − Δ𝑒𝑚𝑎𝑥, 𝑒 (𝑡1)} + Δ𝑒end, (9a)

𝑑 (𝑡2) = max {𝐷𝑚𝑖𝑛 − Δ𝑑𝑚𝑖𝑛, 𝑑 (𝑡1)} + Δ𝑑end. (9b)

Proof. See Appendix C.

3.6. Optimization Objective. Theobjective of the SOTTP is to
plan the observation and transmission tasks in the planning
horizon which maximize the total benefit without violating
all constraints.

4. The Preprocessing Strategies and the
Planning Model

In this section, we first develop a directed acyclic graph
model for the problem. Then the graph is partitioned into
several subgraphs by the graph partition strategy, and the
nondominated subpaths in each subgraph are searched by
the nondominated subpaths selection strategy. Finally, an
equivalent planning model is established.

4.1. The Directed Acyclic Graph Model. Given the tasks and
sorting them in chronological order, the directed acyclic
graph 𝐺 = (𝑉, 𝐸) (Figure 4) is used to model the problem,
where 𝑉 is the set of nodes and 𝐸 is the set of edges. Each
node V𝑖 ∈ 𝑉 is expressed as (ta𝑖, te𝑖), where ta𝑖, te𝑖 are the start
time and end time of task 𝑖, 𝑖 ∈ ST. Each edge (𝑖, 𝑗) ∈ 𝐸 is
denoted by (𝑅𝑖𝑗, 𝑏𝑖𝑗), where 𝑅𝑖𝑗 = (Δ𝑒𝑖𝑗max, Δ𝑒𝑖𝑗min, Δ𝑒𝑖𝑗end, Δ𝑑𝑖𝑗max,Δ𝑑𝑖𝑗min, Δ𝑑𝑖𝑗end) is the resource vector (edge (𝑖, 𝑗) is a plan in
the period [te𝑖, te𝑗], see Definition 1) and 𝑏𝑖𝑗 is equal to the
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Figure 4: The directed acyclic graph model.

benefit of task 𝑗, 𝑗 ∈ ST. ∀V𝑖, V𝑗 ∈ 𝑉, if they satisfy the
constraints (1), (8a), and (8b), there is a directed edge point
from V𝑖 to V𝑗. There are also two virtual nodes V󸀠Ta = (Ta,Ta)
(the source node) and V󸀠Te = (Te,Te) (the sink node) in the
graph. The goal is to find an elementary path from V󸀠Ta to V󸀠Te
that maximizes the total benefit without violating the energy
and memory constraints.

Some notations used in the model are defined as follows:

(i) 𝐸𝑜, 𝐷𝑜: the amounts of energy and data that the EOS
stored at the beginning of the planning horizon

(ii) 𝐸min, 𝐸max: the minimum and maximum allowable
amounts of energy to be stored in the battery (e.g., the
lower bound and upper bound of energy)

(iii) 𝐷min, 𝐷max: the minimum and maximum allowable
amounts of data to be stored in the storage (e.g., the
lower bound and upper bound of memory)

(iv) 𝑥𝑖𝑗 ∈ {0, 1}: the decision variable; 𝑥𝑖𝑗 = 1 means edge(𝑖, 𝑗) is selected; otherwise it is not, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
(v) 𝑦𝑗 ≥ 0: the decision variable, which represents the

total amount of energy spilled throughout edges that
point to node V𝑗, 1 ≤ 𝑗 ≤ 𝑛

(vi) 𝑧𝑗 ≥ 0: the decision variable, which represents the
total amount of data spilled throughout edges that
point to node V𝑗, 1 ≤ 𝑗 ≤ 𝑛.

Then the mathematical model can be formulated as
follows:

Maximize
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑏𝑖𝑗 ∗ 𝑥𝑖𝑗 (10)

Subject to
𝑛∑
𝑗=1

𝑥1𝑗 = 1 (11)

𝑛∑
𝑖=1

𝑥𝑖𝑛 = 1 (12)

𝑗−1∑
𝑖=1

𝑥𝑖𝑗 ≤ 1, 1 < 𝑗 < 𝑛 (13)

𝑗−1∑
𝑖=1

𝑥𝑖𝑗 = 𝑛∑
𝑘=𝑖+1

𝑥𝑗𝑘, 1 < 𝑗 < 𝑛 (14)

𝐸0 + 𝑘−1∑
𝑗=2

(𝑗−1∑
𝑖=1

Δ𝑒𝑖𝑗end ∗ 𝑥𝑖𝑗 − 𝑦𝑗)

+ 𝑘−1∑
𝑖=1

Δ𝑒𝑖𝑘max ∗ 𝑥𝑖𝑘 − 𝑦𝑘 ≤ 𝐸max,
1 < 𝑘 ≤ 𝑛

(15)

𝐸0 + 𝑘−1∑
𝑗=2

(𝑗−1∑
𝑖=1

Δ𝑒𝑖𝑗end ∗ 𝑥𝑖𝑗 − 𝑦𝑗)

+ 𝑘−1∑
𝑖=1

Δ𝑒𝑖𝑘min ∗ 𝑥𝑖𝑘 ≥ 𝐸min, 1 < 𝑘 ≤ 𝑛
(16)

𝐸0 + 𝑘−1∑
𝑗=2

(𝑗−1∑
𝑖=1

Δ𝑑𝑖𝑗end ∗ 𝑥𝑖𝑗 + 𝑧𝑗)

+ 𝑘−1∑
𝑖=1

Δ𝑑𝑖𝑘max ∗ 𝑥𝑖𝑘 ≤ 𝐷max, 1 < 𝑘 ≤ 𝑛
(17)

𝐸0 + 𝑘−1∑
𝑗=2

(𝑗−1∑
𝑖=1

Δ𝑑𝑖𝑗end ∗ 𝑥𝑖𝑗 + 𝑧𝑗)

+ 𝑘−1∑
𝑖=1

Δ𝑑𝑖𝑘min ∗ 𝑥𝑖𝑘 + 𝑧𝑘 ≥ 𝐷min,
1 < 𝑘 ≤ 𝑛.

(18)

The objective function (10) is used to maximize the total
benefit over the planning horizon. Constraints (11), (12), (13),
and (14) are the outdegree and indegree constraints of each
node. Constraints (15), (16), (17), and (18) ensure that the
energy and data level at each node cannot exceed the lower
bound and upper bound of energy and memory.

4.2. Graph Partition. In this subsection, a virtual common
node based edge-cut method is used to partition the graph.
The definition of the virtual common node is as follows.

Definition 4. Partition point and virtual commonnode: given
a time 𝑡𝐴, let 𝑉(𝐿𝐴) be the set of nodes whose start time is
less than 𝑡𝐴 and 𝑉(𝑅𝐴) be the set of nodes whose end time is
greater than 𝑡𝐴. If the following two conditions are satisfied
(as is shown in Figure 5), then time 𝑡𝐴 is a partition point and
node V󸀠𝐴 = (𝑡𝐴, 𝑡𝐴) is a virtual common node of graph 𝐺.

(1) ∀𝑘 ∈ LW → 𝑡𝐴 ∉ [la𝑘, le𝑘], min{ta𝑗 | V𝑗 ∈ 𝑉(𝑅𝐴)} −
max{te𝑖V𝑖 ∈ 𝑉(𝐿𝐴)} ≥ Ts𝑚.

(2) ∃𝑘 ∈ LW → 𝑡𝐴 − max{la𝑘, te𝑖 | V𝑖 ∈ 𝑉(𝐿𝐴)} ≥𝐶min, min{le𝑘, ta𝑗 | V𝑗 ∈ 𝑉(𝑅𝐴)} − 𝑡𝐴 ≥ 𝐶min.

If node V󸀠𝐴 = (𝑡𝐴, 𝑡𝐴) is a virtual common node of graph𝐺, then the edges that connect the nodes on the left and right
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Figure 5: The partition point in a plan.
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Figure 6: The DAG model after graph partition.

side of V󸀠𝐴 are updated (e.g., edges (𝑖, 𝐴), (𝐴, 𝑗) are added in the
graph and edge (𝑖, 𝑗) is removed, ∀V𝑖 ∈ 𝑉(𝐿𝐴), ∀V𝑗 ∈ 𝑉(𝑅𝐴)).
After all virtual common nodes are found and the edges are
updated, the graph is partitioned (as is shown in Figure 6).
Note that there is also an edge that connects two neighbor
virtual common nodes.

Lemma 5. If node V󸀠𝐴 = (𝑡𝐴, 𝑡𝐴) is a virtual common node of
graph 𝐺, the connectivity and the resource vector between any
two nodes are consistent before and after graph partition.

Proof. From requirement (1) and requirement (2), ∀V𝑖 ∈𝑉(𝐿𝐴), ∀V𝑗 ∈ 𝑉(𝑅𝐴), ta𝑗 − te𝑖 > min{Ts𝑚, 𝐶min} =
Ts𝑚 ≥ Ts(𝑖, 𝑗), so there is an edge or path connecting node
V𝑖 and node V𝑗 before and after graph partition. That is, the
connectivity is consistent.∀V𝑖 ∈ 𝑉(𝐿𝐴),∀V𝑗 ∈ 𝑉(𝑅𝐴), let𝜋󸀠𝑒+(𝑡),𝜋󸀠󸀠𝑒+(𝑡), and𝜋󸀠󸀠󸀠𝑒+(𝑡) be
the charging rate on edges (𝑖, 𝑗), (𝑖, 𝐴), and (𝐴, 𝑗), respectively.
If requirement (1) or requirement (2) is met, from formula
(3), we know that 𝜋󸀠𝑒+(𝑡𝐴) = 𝜋󸀠󸀠𝑒+(𝑡𝐴) = 𝜋󸀠󸀠󸀠𝑒+(𝑡𝐴); ∀𝑡 ∈ [te𝑖, 𝑡𝐴],𝜋󸀠𝑒+(𝑡) = 𝜋󸀠󸀠𝑒+(𝑡); ∀𝑡 ∈ [𝑡𝐴, ta𝑗], 𝜋󸀠𝑒+(𝑡) = 𝜋󸀠󸀠󸀠𝑒+(𝑡). That is, the
charging rates in the period [te𝑖, ta𝑗] are the same before and
after graph partition. FromDefinition 1, we can conclude that
the resource vector is consistent.

By using the graph partition strategy, the graph model
can be described as 𝐺 = {𝐺1, 𝐺2, . . . , 𝐺𝑠}, where 𝐺𝑖 is the

𝑖th subgraph and 𝑠 is the number of subgraphs. Let 𝑉󸀠 ={V󸀠0, . . . , V󸀠𝑠} be the set of virtual nodes where V󸀠0 = V󸀠Ta and V
󸀠
𝑠 =

V󸀠Te;𝑉(𝐺𝑖) is the set of nodes in𝐺𝑖; then𝑉(𝐺𝑖) ∩𝑉(𝐺𝑖+1) = V󸀠𝑖 ,⋃1≤𝑖≤𝑠 𝑉(𝐺𝑖) = 𝑉(𝐺) ∪ 𝑉󸀠.
4.3. Nondominated Subpaths Selection. After the graph is
partitioned, the label-setting algorithm [18, 29, 30] is used
to search the nondominated subpaths in each subgraph. The
dominance relation used in this algorithm is relaxed, which
is defined as follows.

Definition 6 (dominance relation). Let 𝑃𝑖,𝑗 be the set of paths
from node V𝑖 to node V𝑗. ∀𝑝𝑚, 𝑝𝑛 ∈ 𝑃𝑖,𝑗, if they satisfy one
of the following three conditions, then path 𝑝𝑚 is dominant
to path 𝑝𝑛 and expressed as 𝑝𝑚 ≳ 𝑝𝑛, where 𝑏𝑚 is the total
benefit of 𝑝𝑚, Δ𝑒𝑚end and Δ𝑑𝑚end are the change of energy and
memory of𝑝𝑚 (seeDefinition 1), and𝛼, 𝛽, 𝛾 are the relaxation
factor of benefit, energy, and memory, respectively. In these
conditions, 𝑏𝑚, 𝛼, 𝛽, 𝛾 are nonnegative, and Δ𝑒𝑚end, Δ𝑑𝑚end can
be positive or negative.

(1) 𝑏𝑚 ∗ (1 + 𝛼) ≥ 𝑏𝑛, Δ𝑒𝑚end ≥ Δ𝑒𝑚end, and Δ𝑑𝑚end ≤ Δ𝑑𝑚end.
(2) 𝑏𝑚 ≥ 𝑏𝑛, Δ𝑒𝑚end ∗ (1+𝛽∗ (Δ𝑒𝑚end/|Δ𝑒𝑚end|)) ≥ Δ𝑒𝑛end, andΔ𝑑𝑚end ≤ Δ𝑑𝑛end.
(3) 𝑏𝑚 ≥ 𝑏𝑛, Δ𝑒𝑚end ≥ Δ𝑒𝑛end, and Δ𝑑𝑚end ∗ (1 − 𝛾 ∗(Δ𝑑𝑚end/|Δ𝑑𝑚end|)) ≤ Δ𝑑𝑛end.
For 𝑝𝑛 ∈ 𝑃𝑖,𝑗, if ∄𝑝𝑚 ∈ 𝑃𝑖,𝑗 with 𝑚 ̸= 𝑛 that satisfies𝑝𝑚 ≳ 𝑝𝑛, then 𝑝𝑛 is a nondominated path; otherwise it is a

dominated path.
The process of nondominated subpaths selection in sub-

graph 𝐺𝑖 is to search the nondominated paths from node V󸀠𝑖−1
to node V󸀠𝑖 ; for details, one can refer to [30]. Note that the
subpaths violating constraint (8a) or (8b) are also removed
in the process.

4.4. The Equivalent Planning Model. Through preprocessing,
the graph model is partitioned into several subgraphs, and
the problem is transformed to search a feasible subpath from
each subgraph without violating the resource constraint.
An equivalent planning model is developed in this subsec-
tion. The notations used in the model are summarised as
follows.
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Parameters

(i) 𝑠: the number of subgraphs in graph 𝐺
(ii) 𝑛𝑖: the number of subpaths in subgraph 𝐺𝑖, 1 ≤ 𝑖 ≤ 𝑠
(iii) tg𝑖: the end time of subgraph 𝐺𝑖, which is equal to the

end time of node V󸀠𝑖

(iv) 𝑃𝑖: the set of subpaths (from node V󸀠𝑖−1 to node V󸀠𝑖 ) in
subgraph 𝐺𝑖

(v) 𝑄𝑖: the set of paths (from node V󸀠Ta to node V󸀠𝑖 ) in
subgraph 𝐺𝑖

(vi) 𝑝𝑖𝑗: the 𝑗th subpath in 𝑃𝑖
(vii) 𝑏󸀠𝑖𝑗: the total benefit of subpath 𝑝𝑖𝑗
(viii) 𝑅󸀠𝑖𝑗 = (Δ𝑒𝑖𝑗󸀠max, Δ𝑒𝑖𝑗󸀠min, Δ𝑑𝑖𝑗󸀠max, Δ𝑑𝑖𝑗󸀠min, Δ𝑒𝑖𝑗󸀠end, Δ𝑑𝑖𝑗󸀠end): the

resource factor of subpath 𝑝𝑖𝑗 (a plan in the period[tg𝑖−1, tg𝑖]); for details, refer to Definition 1

(ix) 𝐸𝑜, 𝐷𝑜, 𝐸min, 𝐸max, 𝐷min, 𝐷max: refer to Section 4.1.

Variables

(i) 𝑥󸀠𝑖𝑗 ∈ {0, 1}: the binary value that represents whether
subpath 𝑝𝑖𝑗 is selected, 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑗 ≤ 𝑛𝑖

(ii) 𝑒(tg𝑖): the energy level at the end of subgraph 𝐺𝑖, 1 ≤𝑖 ≤ 𝑠
(iii) 𝑑(tg𝑖): the data level at the end of subgraph𝐺𝑖, 1 ≤ 𝑖 ≤𝑠.

Then the planning model is formulated as follows:

Maximize
𝑠∑
𝑖=1

𝑛𝑖∑
𝑗=1

𝑏󸀠𝑖𝑗 ∗ 𝑥󸀠𝑖𝑗 (19)

Subject to
𝑛𝑖∑
𝑗=1

𝑥󸀠𝑖𝑗 = 1, 1 ≤ 𝑖 ≤ 𝑠 (20)

𝑒 (tg0) = 𝐸𝑜 (21)

𝑑 (tg0) = 𝐷𝑜 (22)

𝑒 (tg𝑖)
= min

{{{
𝐸max − 𝑛𝑖∑

𝑗=1

Δ𝑒𝑖𝑗󸀠max ∗ 𝑥󸀠𝑖𝑗, 𝑒 (tg𝑖−1)}}}
+ 𝑛𝑖∑
𝑗=1

Δ𝑒𝑖𝑗󸀠end ∗ 𝑥󸀠𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑠
(23)

𝑑 (tg𝑖)
= max

{{{
𝐷min − 𝑛𝑖∑

𝑗=1

Δ𝑑𝑖𝑗󸀠min ∗ 𝑥󸀠𝑖𝑗, 𝑑 (tg𝑖−1)}}}
+ 𝑛𝑖∑
𝑗=1

Δ𝑑𝑖𝑗󸀠end ∗ 𝑥󸀠𝑖𝑗, 1 ≤ 𝑖 ≤ 𝑠
(24)

𝑒 (tg𝑖−1) + 𝑛𝑖∑
𝑗=1

Δ𝑒𝑖𝑗󸀠min ∗ 𝑥󸀠𝑖𝑗 ≥ 𝐸min, 1 ≤ 𝑖 ≤ 𝑠 (25)

𝑑 (tg𝑖−1) + 𝑛𝑖∑
𝑗=1

Δ𝑑𝑖𝑗󸀠max ∗ 𝑥󸀠𝑖𝑗 ≤ 𝐷max,
1 ≤ 𝑖 ≤ 𝑠.

(26)

The objective function (19) is the same as (10). Equa-
tion (20) enforces that there is one and only one subpath
that can be selected in each subgraph. Constraints (21)
and (22) initialize the amount of energy and data that
satellite stored at the beginning of the planning horizon.
Constraint (23) defines the energy level at the end of each
subgraph. Constraint (24) defines the data level at the end
of each subgraph. Constraint (25) ensures that the energy
level cannot be less than the lower bound of energy in
each subgraph. Constraint (26) ensures that the data level
cannot be greater than the upper bound of memory in each
subgraph.

5. The Improved Label-Setting Algorithm

In this section, we propose an improved label-setting algo-
rithm with the lower bound cutting strategy (LSLBC) to
search the near-optimal solution of the SOTTP. The label-
setting algorithm (LS) is an exact path searching algorithm
that can find all nondominated paths in each subgraph.
However, only the nondominated path with the maximum
benefit is selected in our problem, and low-benefit paths in
each subgraph are mostly useless. The lower bound cutting
strategy is used to remove the paths in each subgraph
whose benefit is less than the lower bound, which avoids
enumerating all nondominated paths and improves search
efficiency.

5.1. The Lower Bound Cutting Strategy. The lower bound of
each subgraph is the key of the lower bound cutting strategy,
but they are hard to be computed. In fact, there is a connection
between them and the lower bound of the problem, such that
we can compute the approximate lower bound of a subgraph
based on this relation.

5.1.1. The Lower Bound of the Problem. We design a two-
phase hierarchical algorithm (calledGS-BC) to find the lower
bound of the problem. Before discussing the algorithm, the
concept it used is given as follows.
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Input: graph 𝐺 = {𝐺1, . . . , 𝐺𝑠}.
Output: solution 𝑃∗ = {𝑝∗1 , . . . , 𝑝∗𝑠 } /∗ 𝑝∗𝑖 is the selected subpath in 𝐺𝑖. ∗/
(1) ∀𝑖 ∈ [1, 𝑠], 𝑝∗𝑖 ← null;
(2) for all 𝐺𝑖 ∈ 𝐺 do
(3) 𝑝𝑗 ← maxbenefit(𝑃𝑖); /∗ 𝑝𝑗 is the subpath with the maximum benefit in 𝑃𝑖. ∗/
(4) 𝑝∗𝑖 ← 𝑝𝑗;
(5) 𝑃𝑖 ← 𝑃𝑖\𝑝𝑗;
(6) if isconflict(𝑃∗) then /∗ whether the energy constraint is violated. ∗/.
(7) while isconflict(𝑃∗) do
(8) 𝑚 ← repairid(𝑃∗); /∗ 𝑚 is the index of the subpath with the minimum energy efficiency in 𝑃∗. ∗/
(9) 𝑝𝑘 ← maxbenefit(𝑃𝑚); /∗ 𝑝𝑘 is the subpath with the maximum benefit in 𝑃𝑚. ∗/
(10) 𝑝∗𝑚 ← 𝑝𝑘;
(11) 𝑃𝑚 ← 𝑃𝑚\𝑝𝑘;
(12) end while
(13) end if
(14) end for

Algorithm 1: Energy efficiency based greedy search algorithm.

Definition 7 (energy efficiency).

𝜂 (𝑝𝑖𝑗) = Δ𝑒𝑖𝑗󸀠end − max {Δ𝑒𝑖𝑘󸀠end | 𝑝𝑖𝑘 ∈ 𝑃𝑖}
𝑏󸀠𝑖𝑗 + 𝜀 , (27)

where 𝜂(𝑝𝑖𝑗) is the energy efficiency of subpath 𝑝𝑖𝑗 and 𝜀 is the
smallest constant in the computer used to avoid zero-division
error.

The energy efficiency represents the amount of energy
consumed per unit of benefit and satisfies 𝜂(𝑝𝑖𝑗) ≤ 0.

In the first phase of GS-BC, the observation tasks are
planned by the energy efficiency based greedy search algo-
rithm (GS, as is shown in Algorithm 1).This algorithm selects
a subpath from each subgraph one by one until reaching
the end. When it searches a subgraph, the subpath with the
maximum benefit is added to the solution. If the energy
constraint is violated, then the subpath with the minimum
energy efficiency in the solution is replaced by another
subpath (it is not searched and has the maximum benefit)
until the conflict is removed. In the second phase of GS-BC,
the branch and cut algorithm (BC) [7] is used to schedule the
transmission tasks based on the selected observation tasks in
the first phase.

5.1.2.TheLower Bound of the Subgraph. Let𝑃∗ = {𝑝∗1 , 𝑝∗2 , . . . ,𝑝∗𝑠 } be the solution of GS-BC, 𝑝∗𝑖 be the selected subpath in
subgraph 𝐺𝑖, and 𝑏∗𝑖 be the benefit of subpath 𝑝∗𝑖 ; then we
define the lower bound of a subgraph as

𝐿 (𝑘) = 𝑓𝑙(∑𝑘𝑖=1 𝑏∗𝑖∑𝑠𝑖=1 𝑏∗𝑖 ) ∗ 𝑘∑
𝑖=1

𝑏∗𝑖 , 1 ≤ 𝑘 ≤ 𝑠, (28)

where 𝑓𝑙(𝑥) is the discount function that represents the
relation between the lower bound of a subgraph and the lower
bound of the problem. 𝑓𝑙(𝑥) is obtained by the statistical
method; for details, refer to Section 6.2.2.

5.2. The Improved Label-Setting Algorithm. After the lower
bound of each subgraph is computed, the improved label-
setting algorithm with the lower bound cutting strategy is
used to find the near-optimal solution of the problem. This
algorithm incrementally searches the nondominated paths
from the first subgraph to the last subgraph one by one
until reaching the end. When it searches a subgraph, the
low-benefit paths are removed by the lower bound cutting
strategy, and the dominated paths are discarded based on the
dominance relation (see Definition 6) that avoids exploring
the whole paths in the solution space. For details, refer to
Algorithm 2.

6. Computational Experiments

6.1. Test Data. In the experiment, there are one satellite and
four ground stations [25] (Kashi, Miyun, Sanya, and Beiji).
The EOS is selected from the STK (Satellite Tool Kit) satellite
database. The planning horizon is set as a typical 1 day from
2017-04-01 00:00:00 to 2017-04-02 00:00:00.

There is no acknowledged benchmark data set in the
single-satellite observation and transmission tasks planning
problem, so we randomly generate three data sets: regional
city data set, global city data set, and global point data set.
Cities in the regional city data set and global city data set
are selected from the STK city database. In the regional city
data set, all targets are randomly distributed in the area: 0∘N∼
65∘N and 0∘E∼150∘E. In the global city data set and global
point data set, all targets are randomly distributed in the area:−65∘S∼65∘N and −180∘W∼180∘E. The access times between
the EOS and the ground station or the EOS and the target
are calculated by STK. Each access time is corresponding to a
task.

There are nine problem sets in each data set. Each
problem set contains ten problems (i.e., a total of 90
problems in each data set). The number of observation
tasks in each problem set is from 100 to 500 with step of
50.
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Input: graph 𝐺 = {𝐺1, . . . , 𝐺𝑠}.
Output: the optimal path 𝑞∗𝑠
(1) for 𝑖 = 2, . . . , 𝑠 do
(2) for all 𝑝𝑖 ∈ 𝑃𝑖 do /∗ 𝑃𝑖 is set of subpaths in subgraph 𝐺𝑖. ∗/
(3) for all 𝑞𝑖−1 ∈ 𝑄𝑖−1 do /∗ 𝑄𝑖−1 is set of paths in subgraph 𝐺𝑖−1. ∗/
(4) if notconflict(𝑞𝑖−1, 𝑝𝑖) then /∗ 𝑝𝑖 must satisfy the constraint when adding it to 𝑞𝑖−1. ∗/
(5) 𝑞𝑖 ← append(𝑞𝑖−1, 𝑝𝑖); /∗ add 𝑝𝑖 to 𝑞𝑖−1. ∗/
(6) 𝑄𝑖 ← 𝑄𝑖 ∪ 𝑞𝑖;
(7) end if
(8) end for
(9) 𝐿 𝑖 ← getlowerbound(); /∗ 𝐿 𝑖 is the lower bound of subgraph 𝐺𝑖. ∗/
(10) for 𝑗 = 1, . . . , num(𝑄𝑖) do /∗ num(𝑄𝑖) is the number of paths in 𝑄𝑖. ∗/
(11) if 𝑏𝑗 < 𝐿(𝑖) then /∗ the total benefit must greater than the lower bound. ∗/
(12) 𝑄𝑖 ← 𝑄𝑖\𝑞𝑗;
(13) end if
(14) end for
(15) for 𝑗 = 1, . . . , num(𝑄𝑖) do
(16) for 𝑘 = 𝑗 + 1, . . . , num(𝑄𝑖) do
(17) if 𝑞𝑗 ≲ 𝑞𝑘 then
(18) 𝑄𝑖 ← 𝑄𝑖\𝑞𝑗;
(19) break;
(20) else if 𝑞𝑗 ≳ 𝑞𝑘 then
(21) 𝑄𝑖 ← 𝑄𝑖\𝑞𝑘;
(22) end if
(23) end for
(24) end for
(25) end for
(26) end for
(27) 𝑞∗𝑠 ← maxbenefit(𝑄𝑠); /∗ 𝑞∗𝑠 is the path with the maximum benefit in 𝑄𝑠. ∗/

Algorithm 2: Improved label-setting algorithm.

All algorithms in the experiment are implemented and
compiled withMicrosoft C# complier and run onWindows 7
OS with an Intel E5-2650 2.30GHz CPU and 8GB memory.

6.2. Parameter Study

6.2.1. The Effect of the Relaxation Factors. To investigate the
effect of the three relaxation factors in our method, we
conduct several experiments based on the global city data set.

Figures 7 and 8 show the result of LS under single
relaxation factor. The horizontal axis represents the number
of observation tasks, the vertical axis represents the average
benefit or average CPU time, and the legend “𝛼 = 0.001”
means the relaxation factor of benefit is 0.001 and the other
two relaxation factors are set as zero.

In Figure 7, the average benefit falls with the increase of
each relaxation factor. In Figure 7(a), the average benefit is
drastically reduced when 𝛼 is greater than 0.002. It reveals
that LS is sensitive to the relaxation factor of benefit. In
Figures 7(b) and 7(c), the gap of benefit is pretty narrowwhen𝛽 or 𝛾 is less than 0.01.

In Figure 8, the average CPU time apparently decreases
with the increase of each relaxation factor. It illustrates that
these relaxation factors have a significant effect on the CPU
time.

Based on the above analysis, we primarily investi-
gate three combinations of them: {“0.001-0.005-0.005”,

“0.002-0.005-0.005”, “0.02-0.01-0.01”}. The parameters in a
combination represent the relaxation factor of benefit, energy,
and memory, respectively. The result is shown in Figures 9
and 10.

In Figure 9, the average benefit of “0.001-0.005-0.005”
is slightly more than “0.002-0.005-0.005” and the worst is
“0.002-0.01-0.01,” and themaximumgap between them is less
than 0.3%.

In Figure 10, the average CPU time of “0.001-0.005-0.005”
is more than “0.002-0.005-0.005” and “0.02-0.01-0.01.” The
larger the relaxation factors, the more paths removed and the
less CPU time.

6.2.2. The Effect of the Lower Bound Cutting Strategy. We
first describe the computation of the discount function 𝑓𝑙(𝑥)
mentioned in Section 5.1.2. Based on the amount of training
data (the same size as the test data), we compute 𝑓𝑙(𝑥) by
regression analysis. The process is as follows:

(1) Select one problem from the training data set.

(2) Let 𝑃󸀠 = {𝑝󸀠1, 𝑝󸀠2, . . . , 𝑝󸀠𝑠} (𝑝󸀠𝑖 is the selected subpath in
subgraph 𝐺𝑖) be the solution of CPLEX solver (used
as the optimal solution) and 𝑃∗ = {𝑝∗1 , 𝑝∗2 , . . . , 𝑝∗𝑠 } be
the solution of GS-BC (used as the estimate solution).
The relational data (𝑥𝑘, 𝑦𝑘), 𝑘 ∈ [1, 𝑠], is recorded.
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Figure 7: The average benefit of LS under single relaxation factor.
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Figure 8: The average CPU time of LS under single relaxation factor.
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Figure 9: The average benefit of LS under the combinations of relaxation factors.
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Figure 10: The average CPU time of LS under the combinations of relaxation factors.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

y

Figure 11: The distribution of the relational data (𝑥𝑘, 𝑦𝑘).

(𝑥𝑘, 𝑦𝑘) = (∑𝑘𝑖=1 𝑏∗𝑖∑𝑠𝑖=1 𝑏∗𝑖 ,
∑𝑘𝑖=1 𝑏󸀠𝑖∑𝑠𝑖=1 𝑏∗𝑖 ) , (29)

where 𝑏∗𝑖 and 𝑏󸀠𝑖 are the benefit of subpaths 𝑝∗𝑖 and 𝑝󸀠𝑖 ,
respectively. The relational data describes the relation
between the estimate solution and optimal solution at
a subgraph.

(3) Return to (1) until all problems are solved.
(4) Compute the regression curve of the lower boundary

of the relational data.

Figure 11 shows the distribution of the relational data
and the approximate regression curve of the lower boundary,
where the blue point is the relational data, the mauve point
is the lower boundary, and the red line is 𝑓𝑙(𝑥). In fact, a
piecewise function is used as the approximate expression of𝑓𝑙(𝑥) and confirmed to be effective.

Next, we analyze the effect of the lower bound cutting
strategy in LSLBC. The average CPU time is shown in
Figure 12. The average benefit is almost the same as Figure 9
that it is not shown here.

Comparing Figures 10 and 12, the CPU time is greatly
reduced by using the lower bound cutting strategy. It is
because the strategy removes a large number of low-benefit
paths during searching.

Through the above analysis, we finally select 𝛼 = 0.002,𝛽 = 0.005, and 𝛾 = 0.005 (e.g., the combination “0.002-0.005-
0.005”) as the parameters of LSLBC.

6.3. Comparison Study. Three algorithms including the im-
proved genetic algorithm (IGA) with a stochastic greedy
conflict repairing strategy [5], the hierarchical algorithm [7]
(called GA-BC), and the CPLEX solver [31] are used as base-
lines for comparison in this subsection.The stochastic greedy
conflict repairing strategy in the IGA is slightly modified to
meet the needs of our problem. In the repairing strategy, the
observation task with the lowest benefit is removed when
the solution violates constraints (6) and (7) until all conflicts
are resolved. In the hierarchical algorithm, the observation
tasks are firstly planned by the genetic algorithm [3]; then
the transmission tasks are scheduled by the branch and cut
algorithm [7] based on the selected observation tasks in the
previous stage.

The parameters of genetic algorithm in IGA and GA-BC
are set as follows: the population size is 50, the crossover
probability is 0.8, the mutation probability is 0.008, and the
iterative number is 10000. If the solution is not improved
in 500 iterations, then the algorithm stops. In CPLEX
solver, the gap is set as 0.01, the stop time is set as 5
hours, and other parameters are executed in the default
settings. All experiments are repeated 50 times.The following
information is recorded; note that these statistics are com-
puted only considering the problems that are solved by all
algorithms.

(i) 𝑎V𝑒.𝑏: the average benefit of an algorithm in a problem
set. For example, the average benefit of LSLBC in a
problem set is calculated as (1/10)∑10𝑘=1 𝑏𝑘(LSLBC),
where 𝑏𝑘(LSLBC) is the (average) benefit of LSLBC on
the 𝑘th problem in the problem set.
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Figure 12: The average CPU time of LSLBC under the combinations of relaxation factors.

Table 1: The computational result on the regional city data set.

Observation tasks Problems CPLEX LSLBC IGA GA-BC
ave.𝑏 ave.𝑡 ave.𝑏 ave.𝑡 ave.𝑔 ave.𝑏 ave.𝑡 ave.𝑔 ave.𝑏 ave.𝑡 ave.𝑔

100 10 1501 26.21 1490 0.067 0.70% 1484 3.777 1.09% 1493 3.654 0.56%
150 10 1902 80 1891 0.175 0.62% 1869 7.11 1.73% 1875 7.873 1.42%
200 10 2168 192 2156 0.598 0.55% 2126 10.51 1.91% 2136 11.34 1.46%
250 10 2350 416 2341 1.256 0.37% 2302 12.97 2.02% 2299 15.42 2.17%
300 10 2522 700 2510 2.454 0.46% 2473 16.02 1.95% 2475 17.22 1.87%
350 10 2685 1134 2666 2.987 0.72% 2627 18.66 2.17% 2629 21.10 2.09%
400 10 2810 2205 2794 4.106 0.59% 2744 20.86 2.34% 2748 26.26 2.21%
450 10 2900 3634 2881 4.755 0.67% 2839 23.75 2.11% 2845 28.74 1.91%
500 10 3010 4433 2990 5.603 0.68% 2941 26.04 2.30% 2944 32.46 2.22%

(ii) 𝑎V𝑒.𝑡: the average CPU time of an algorithm in a
problem set, measured in seconds. For example, the
average CPU time of LSLBC in a problem set is cal-
culated as (1/10)∑10𝑘=1 𝑡𝑘(LSLBC), where 𝑡𝑘(LSLBC) is
the (average) CPU time of LSLBC on the 𝑘th problem
in the problem set.

(iii) 𝑎V𝑒.𝑔: the average benefit gap between an algorithm
and the CPLEX solver. For example, the average
benefit error of LSLBC in a problem set is calculated as(1/10)∑10𝑘=1((𝑏𝑘(CPLEX) − 𝑏𝑘(LSLBC))/𝑏𝑘(CPLEX)).

Computational results on three data sets are given in
Tables 1, 2, and 3.

In Tables 1, 2, and 3, the benefit of LSLBC is better
than IGA and GA-BC, except in a few problems that the
number of observation tasks is 100 in the regional city data
set and the global point data set. The average CPU times of
LSLBC are all less than IGA and GA-BC in the above three
data sets. This is because the two preprocessing strategies
and the lower bounding cutting strategy in LSLBC remove
a large number of redundant paths (the nondominated
paths and the low-benefit paths). Though the IGA have a
strong global search capability, the local search capability

is weak. Besides, the stochastic greedy repair strategy does
not consider the correlation between the observation tasks
and the transmission tasks in resource consumption and
acquisition. The GA-BC breaks up the optimal solution of
the observation tasks during scheduling the transmission
tasks.

Tables 1, 2, and 3 show that the average benefit gap of
LSLBC is from −0.08% to 0.72% in three data sets. As the
number of observation tasks increases, the number of edges
in the graphmodel grows dramatically.TheCPLEX solver has
to take longer in the preprocessing, which even makes five
problems unsolved (in Table 3). In the experiment, the gap of
CPLEX solver is 1% which means the solution is not optimal.
The LBLSC is an appropriate algorithm that it may be better
than CPLEX solver in some problems when the relaxation
factors are small, for example, some problems in the global
point data set when the number of observation tasks is 200,
250, and 500 (in Table 3). Though the CPLEX solver can find
a better solution for most problems, the CPU time is too long
that it is difficult to meet the real requirement. The result
verifies the ability of LSLBC to solve the SOTTP.

When comparing Tables 1, 2, and 3, we can know that the
benefit gap of LSLBC in the global point data set is the least,
the next is in the global city data set, and the largest is in the
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Table 2: The computational result on the global city data set.

Observation tasks Problems CPLEX LSLBC IGA GA-BC
ave.𝑏 ave.𝑡 ave.𝑏 ave.𝑡 ave.𝑔 ave.𝑏 ave.𝑡 ave.𝑔 ave.𝑏 ave.𝑡 ave.𝑔

100 10 1680 37.92 1669 0.110 0.64% 1661 4.699 1.08% 1668 5.203 0.69%
150 10 2090 132 2080 0.422 0.48% 2041 8.278 2.31% 2076 9.542 0.65%
200 10 2384 371 2377 1.519 0.30% 2314 12.56 2.92% 2361 14.66 0.96%
250 10 2644 722 2636 3.605 0.30% 2570 16.69 2.79% 2619 19.45 0.95%
300 10 2843 1390 2838 6.751 0.16% 2759 21.44 2.97% 2812 24.43 1.09%
350 10 3023 2082 3015 7.846 0.24% 2923 24.98 3.31% 2991 30.34 1.04%
400 10 3193 3956 3183 10.48 0.32% 3088 29.58 3.29% 3154 33.23 1.21%
450 10 3350 7146 3334 12.34 0.49% 3227 33.97 3.69% 3303 40.00 1.43%
500 10 3496 7207 3482 11.98 0.39% 3354 38.54 4.06% 3445 42.26 1.44%

Table 3: The computational result on the global point data set.

Observation tasks Problems CPLEX LSLBC IGA GA-BC
ave.𝑏 ave.𝑡 ave.𝑏 ave.𝑡 ave.𝑔 ave.𝑏 ave.𝑡 ave.𝑔 ave.𝑏 ave.𝑡 ave.𝑔

100 10 1785 28.98 1778 0.124 0.36% 1765 5.779 1.11% 1784 6.559 0.02%
150 10 2246 117 2243 1.039 0.16% 2206 11.87 1.80% 2240 14.95 0.26%
200 10 2532 341 2532 3.893 0 2471 17.26 2.42% 2522 23.96 0.40%
250 10 2768 671 2768 9.349 0.02% 2704 22.91 2.34% 2752 31.80 0.59%
300 10 2949 1441 2944 15.84 0.15% 2871 28.38 2.66% 2932 41.77 0.59%
350 10 3118 3217 3113 26.95 0.16% 3037 34.75 2.59% 3096 48.86 0.67%
400 10 3268 7086 3266 35.25 0.08% 3187 42.05 2.50% 3250 60.00 0.57%
450 10 3415 6873 3406 34.33 0.28% 3318 48.71 2.85% 3385 67.14 0.87%
500 10(5)1 3475 11471 3478 41.30 −0.08%2 3381 56.89 2.70% 3449 74.34 0.74%
1There are 5 problems unsolved by CPLEX; 2LSLBC is better than CPLEX in some problems.

regional city data set. This reveals that our LSLBC has better
performance on decentralized targets.

7. Conclusion

In this paper, we study the single-satellite observation and
transmission tasks planning problem under a more accurate
resource usagemodel. Twopreprocessing strategies including
graph partition and nondominated subpaths selection are
used to decompose the problem, and an improved label-
setting algorithm with the lower bound cutting strategy is
used to solve the problem, which avoids exploring the whole
nondominated path set and accelerates the solving procedure.
The optimality and feasibility of the proposed method are
validated on three data sets, totaling 270 problems. The
results demonstrate that our method can find the near-
optimal solution in much less time and indicate the ability
of our method to solve the SOTTP under different task
size.

The future work of our study is mainly focused on
two aspects: (1) extending our approach to the scheduling
of an agile satellite, which not only selects the tasks to
be performed, but also determines the start time of them;
(2) extending our approach to the onboard task planning
problem for an autonomous satellite. The onboard dynamic
situations are considered, such as the arrival of new tasks and
cloud disturbances.

Appendix

A. The Computation of the Resource Vector

We define a set of intervals within the period [𝑡1, 𝑡2];
whenever time 𝑡 is an extreme point of 𝜋𝑒+(𝑡) − 𝜋𝑒−(𝑡) −𝜙𝑒−(𝑡) or 𝜙𝑑(𝑡), a new interval is started (as is shown in
Figure 3). This indicates that the energy level and data level
are monotonously increasing or decreasing in each interval.

Let {𝑡󸀠0, 𝑡󸀠1, . . . , 𝑡󸀠𝑤} be the set of time points in the period[𝑡1, 𝑡2], where 𝑤 is the number of intervals, 𝑡󸀠0 = 𝑡1, 𝑡󸀠𝑤 = 𝑡2.
The resource vector of plan 𝑝 can be calculated by

Δ𝑑max = max{ 𝑙∑
𝑘=1

Δ𝑑 (𝑡󸀠𝑘−1, 𝑡󸀠𝑘) , 1 ≤ 𝑙 ≤ 𝑤} ,

Δ𝑒max = max{ 𝑙∑
𝑘=1

Δ𝑒 (𝑡󸀠𝑘−1, 𝑡󸀠𝑘) , 1 ≤ 𝑙 ≤ 𝑤} ,

Δ𝑑min = min{ 𝑙∑
𝑘=1

Δ𝑑 (𝑡󸀠𝑘−1, 𝑡󸀠𝑘) , 1 ≤ 𝑙 ≤ 𝑤} ,

Δ𝑒min = min{ 𝑙∑
𝑘=1

Δ𝑒 (𝑡󸀠𝑘−1, 𝑡󸀠𝑘) , 1 ≤ 𝑙 ≤ 𝑤} ,

Δ𝑑end = 𝑤∑
𝑘=1

Δ𝑑 (𝑡󸀠𝑘−1, 𝑡󸀠𝑘) ,
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Δ𝑒end = 𝑤∑
𝑘=1

Δ𝑒 (𝑡󸀠𝑘−1, 𝑡󸀠𝑘) .
(A.1)

The energy level and data level at each time point can be
calculated by

𝑒 (𝑡󸀠𝑙) = min {𝑒 (𝑡󸀠𝑙−1) + Δ𝑒 (𝑡󸀠𝑙−1, 𝑡󸀠𝑙) , 𝐸max} ,
1 ≤ 𝑙 ≤ 𝑤, (A.2a)

𝑑 (𝑡󸀠𝑙) = max {𝑑 (𝑡󸀠𝑙−1) + Δ𝑑 (𝑡󸀠𝑙−1, 𝑡󸀠𝑙) , 𝐷min} ,
1 ≤ 𝑙 ≤ 𝑤. (A.2b)

B. The Proof of Theorem 2

Proof. In Appendix A, ∀𝑙 ∈ [1, 𝑤], it must satisfy the
constraint 𝑒(𝑡󸀠𝑙 ) ≥ 𝐸min. We can get the following relation
from formula (A.2a):

𝑒 (𝑡󸀠𝑙) ≥ 𝐸min, 1 ≤ 𝑙 ≤ 𝑤,
⇐⇒ 𝑒 (𝑡󸀠𝑙−1) + Δ𝑒 (𝑡󸀠𝑙−1, 𝑡󸀠𝑙) ≥ 𝐸min,

⇐⇒
{{{{{{{{{{{{{{{{{

𝐸max + Δ𝑒 (𝑡󸀠𝑙−1, 𝑡󸀠𝑙) ≥ 𝐸min...
𝐸max + Δ𝑒 (𝑡󸀠1, 𝑡󸀠𝑙) ≥ 𝐸min

𝑒 (𝑡󸀠0) + Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑙) ≥ 𝐸min,

⇐⇒
{{{{{{{{{{{{{{{{{

𝐸max + Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑙) − Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑙−1) ≥ 𝐸min...
𝐸max + Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑙) − Δ𝑒 (𝑡󸀠0, 𝑡󸀠1) ≥ 𝐸min

𝑒 (𝑡󸀠0) + Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑙) ≥ 𝐸min,
⇐⇒ {{{

max {Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑎) , 1 ≤ 𝑎 ≤ 𝑙} − Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑙) ≤ 𝐸max − 𝐸min

𝑒 (𝑡󸀠0) + Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑙) ≥ 𝐸min.

(B.1)

From (A.1) and formula (A.2a), the energy constraints of
plan 𝑝 can be described by the following formulation:

𝑒 (𝑡󸀠𝑙) ≥ 𝐸min, ∀𝑙 ∈ [1, 𝑤] ,
⇐⇒ {{{

max {Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑎) , 1 ≤ 𝑎 ≤ 𝑙} − Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑙) ≤ 𝐸max − 𝐸min, 1 ≤ 𝑙 ≤ 𝑤
𝑒 (𝑡󸀠0) + min {Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑙) , 1 ≤ 𝑙 ≤ 𝑤} ≥ 𝐸min,

⇐⇒ {{{
max {Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑎) , 1 ≤ 𝑎 ≤ 𝑙} − Δ𝑒 (𝑡󸀠0, 𝑡󸀠𝑙) ≤ 𝐸max − 𝐸min, 1 ≤ 𝑙 ≤ 𝑤
𝑒 (𝑡󸀠0) + Δ𝑒min ≥ 𝐸min,

⇐⇒ {{{
max {Δ𝑒 (𝑡1, 𝑡󸀠) , 𝑡󸀠 ∈ [𝑡1, 𝑡]} − Δ𝑒 (𝑡1, 𝑡) ≤ 𝐸max − 𝐸min, 𝑡 ∈ [𝑡1, 𝑡2]
𝑒 (𝑡1) + Δ𝑒min ≥ 𝐸min.

(B.2)

From (A.1) and formula (A.2b), the memory con-
straint of plan 𝑝 is similarly equivalent to the following
formulation:

− min {Δ𝑑 (𝑡1, 𝑡󸀠) , 𝑡󸀠 ∈ [𝑡1, 𝑡]} + Δ𝑑 (𝑡1, 𝑡)
≤ 𝐷max − 𝐷min, 𝑡 ∈ [𝑡1, 𝑡2] ,
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𝑑 (𝑡1) + Δ𝑑max ≤ 𝐷max.
(B.3)

C. The Proof of Theorem 3

Proof. According to Appendix A, let 𝑓(𝑙) = 𝑒(𝑡󸀠0) +∑𝑙𝑘=1 Δ𝑒(𝑡󸀠𝑘−1, 𝑡󸀠𝑘) and 𝑓(𝑙) reaches the maximum when 𝑙 = 𝑙0.
If 𝑓(𝑙0) < 𝐸max, ∀𝑙 ∈ [1, 𝑤], 𝑒(𝑡󸀠𝑙 ) = 𝑓(𝑙) < 𝐸max, then

𝑒 (𝑡2) = 𝑒 (𝑡󸀠𝑤) = 𝑒 (𝑡󸀠0) + 𝑤∑
𝑘=1

Δ𝑒 (𝑡󸀠𝑘−1, 𝑡󸀠𝑘)
= min {𝐸max, 𝑒 (𝑡1) + Δ𝑒max}

− (Δ𝑒max − Δ𝑒end)
= min {𝐸max − Δ𝑒max, 𝑒 (𝑡1)} + Δ𝑒end.

(C.1)

If 𝑓(𝑙0) ≥ 𝐸max, then 𝑒(𝑡󸀠𝑙0) = 𝐸max and 𝑒(𝑡󸀠𝑙 ) < 𝐸max, 𝑙0 <𝑙 ≤ 𝑤, such that

𝑒 (𝑡2) = 𝑒 (𝑡󸀠𝑤) = 𝐸max + 𝑤∑
𝑘=𝑙0+1

Δ𝑒 (𝑡󸀠𝑘−1, 𝑡󸀠𝑘)

= 𝐸max − ( 𝑙0∑
𝑘=1

Δ𝑒 (𝑡󸀠𝑘−1, 𝑡󸀠𝑘) − 𝑤∑
𝑘=1

Δ𝑒 (𝑡󸀠𝑘−1, 𝑡󸀠𝑘))
= min {𝐸max, 𝑒 (𝑡󸀠0) + Δ𝑒max}

− (Δ𝑒max − Δ𝑒end)
= min {𝐸max − Δ𝑒max, 𝑒 (𝑡1)} + Δ𝑒end.

(C.2)

Similarly, the data level at the end time of subgraph 𝐺𝑖 is
computed by the following equation:

𝑑 (𝑡2) = max {𝐷min − Δ𝑑min, 𝑑 (𝑡1)} + Δ𝑑end. (C.3)
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