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Hubs are critical facilities in the power projection network. Due to the uncertainty factors such as terrorism threats, severe weather,
and natural disasters, hub facilitiesmay be disrupted randomly, which could lead to excessive cost or loss in practice.One of themost
effective ways to withstand and reduce the impact of disruptions is designing more resilient networks. In this paper, a stochastic
programmingmodel is employed for the hub location problem in the presence of random hub failures. A heuristic algorithm based
on Monte Carlo method and tabu search is put forward to solve the model. The proposed approach is more general if there are
numbers of hubs that would fail even with different failure probability. Compared with the benchmark model, the model which
takes the factor of stochastic failure of hubs into account can give a more resilient power projection network.

1. Introduction

Power projection is a term used in military to refer to the
capacity of a state to apply national transportation network
to rapidly and effectively deploy and sustain forces in and
from multiple dispersed locations to respond to crises, to
contribute to deterrence, and to enhance regional stability
[1]. In the process of power projection, persons and materials
are consolidated at the transportation hubs (station, port,
airport, etc.) through motorized march firstly, and then
they are delivered using backbone transportation (highway,
railway, marine transport, etc.). Finally they are deployed to
dispersed locations through motorization march according
to the mission demands [2]. The ability of a state to project
its forces into an area may serve as an effective diplomatic
lever, influencing the decision-making process and acting
as a potential deterrent on other states’ behavior. Examples
of power projection include the US-led Invasion of Iraq [3]
and the Russians invasion of Georgia [4]. Another typical
example of the power projection network is the earthquake
relief action of the Chinese army in 2008 Sichuan earthquake.

About 160 thousand troops and eightmillion tons ofmaterials
were project from thousands of kilometers to the disaster area
by road, rail, and air in three days after the earthquake [5].

Generally, a hub-and-spoke structure is adopted in the
power projection network. Hub facilities play key roles in
the network by concentrating, distributing, and switching
traffic flows instead of transferring flows between each
origin–destination (O–D) pair directly [6]. There are two
basic assignment rules for the connection of nonhub nodes
and hub nodes, which are entitled by single-allocation (SA)
and multiple-allocation (MA) rules [7]. The SA rule refers to
each nonhub node to connect with only one hub so that all
flows from an origin must travel to the same hub. In contrast,
theMA rule is more flexible in routing by allowing each node
to interact with more than one hub [8]. A typical real-life
example of multiple-allocation is the express delivery system.
Packages from one origin are assigned to different hubs
depending on their destinations. The location of hubs has
significant influence on the efficiency and safety of the
network. Suffered from the uncertain risk of enemy’s attack,
terrorism threats, severe weather, natural disasters, and so
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forth, hubs would be disrupted randomly and make the
network partially or completely unavailable. Resilience is the
ability of a network to withstand and reduce the impact
of disruption events [9, 10]. Design of a resilient power
projection network is a very important practical issue for
strengthening the ability of strategic power projection. For
response to hub failure, two strategies are usually adopted
which include reactive (e.g., repairing [11] and rescheduling
[12, 13]) and proactive strategies (e.g., adjusting the network
hub location strategy [14, 15] and protecting key hubs [16–
19]). It is sensible to take into account the impact of hub
random disruptions in advance for designing a more resilient
network.

A number of studies addressed hub location problem in
the presence of hub disruptions. Bi et al. [2] assumed that
the enemy would select the hubs for attack which result in
the greatest damage to the network. They gave a resilient
hub location strategy considering the failure of specific
hubs. However, the enemy usually could not have perfect
information about the location of hubs. Other risks such as
severe weather, natural disasters, and traffic congestion are
uncertain. It is more common that hubs fail randomly. An
et al. [20] did some analytical work on the reliable hub-and-
spoke design with consideration of the stochastic failures of
hubs. They employed nonlinear mixed integer programming
models and used Lagrangian relaxation and branch-bound
method to solve the models. Azizi et al. [21] incorporated
hub unavailability into the classical single-allocation p-hub
median problem. They assumed that once a hub stopped
normal operations, the entire demand initially served by this
hub was handled by a backup facility.They proposed a mixed
integer quadratic programming model and a metaheuristic
algorithm.The latter two studies both assumed that there was
at most one-hub failure in the network, and it was somehow
unreasonable in practice. For example, if there is a 10-hub
network with hub reliability 0.7, the expected number of
hub failures is 3 rather than 1. In addition, the proposed
approaches in the latter two papers which translated the fail-
ure probability directly into themathematical expectation are
not suitable for the situation where hubs have different failure
probability. More relevant works can be found in the review
papers of Reggiani et al. [22] and Mattsson and Jenelius
[23].

Note that the reliable server assignment problem is sim-
ilar to the resilient problem defined in this paper. However,
there are some distinctions between resilience and reliability.
Resilience refers to the capacity of networks to absorb
and return to normal conditions after a critical event, while
reliability refers to the probability of a device performing
its purpose adequately for the period of time intended
under the operating conditions encountered. For example,
connectivity-based reliability measures assume that a net-
work is not functional even if a single node fails or becomes
disconnected. In practice, however, a network continues to
serve the remaining connected components even though one
or more nodes have become disconnected. Although net-
work reliability measures have been frequently used in the
literature as network design criteria, network resilience mea-
sures represent a viable alternative approach. The network
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Figure 1: A sketch map of the power projection network.

resilience measure used in this work is more comprehen-
sive than traditional network reliability measures since it
incorporates traffic demand into its determination. For more
discussions about resilience and reliability, see Mattsson and
Jenelius [23].

In fact, when the hubs in the network fail randomly,
it is hard to determine which one of the hubs would be
disrupted in the future. Sometimes it is also out of control
to find a suitable backup hub and alternate route. There-
fore, compared with traditional hub location problems, it is
more complex for resilient hub location in power projection
network considering random hub failures. In this paper,
a stochastic programming model is employed for the hub
location problem in the presence of random hub failures. A
heuristic algorithm based on Monte Carlo method and tabu
search is put forward to solve the model. The superiority
of the proposed approach is illustrated by a computational
example compared with the benchmark model.

2. Problem Description and Assumptions

The main work in this paper is determining the location of
hubs and the allocation relationship of nodes to hubs. First,
we assume that the network is fully connected and all the
nodes are in normal state. Second, we select some nodes
as hubs randomly and determine the best assignment for
nonhub nodes and hub nodes. Once the allocation relation-
ship of nodes to hubs is determined, the redundant links are
removed. Then we get a hub-spoke distribution network, as
shown in Figure 1. Persons andmaterials are consolidated and
deployed through the hubs. It is assumed that when hub fail-
ure occurs, its function will be lost and cannot be recovered
limited time. However, the traffic generated at this hub and
the flow through this hub will not be lost; in other words, this
hub point changes into a nonhub point. The traffic flow will
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be replanned based on the shortest path principle through
the remaining hubs. For example, assume that the traffic
flow between (𝑛1, 𝑛4) is originally transported via the hubs
(𝑝1, 𝑝4). When hub 𝑝1 fails and the other hubs are normal,
the traffic flow can select route 𝑛1 → 𝑝2 → 𝑝4 → 𝑛4 for
two-hub stop transport or route 𝑛1 → 𝑝3 → 𝑛4 for one-hub
stop transport. The specific route to be used depends on the
transport cost. Due to the fact that nonhub nodes cannot be
directly connected, if a pair of start-end point cannot find a
suitable hub transport, then the traffic loss occurs.The cost of
loss can bemeasured by the cost of direct transportmultiplied
by a penalty factor.

Other basic assumptions are as follows:

(1) Hubs are connected by a complete network.
(2) A nonhub node can be connected with multiple hub

nodes, but nonhub nodes cannot be directly con-
nected.

(3) A discount factor exists for the transportation cost
when backbone transportation is used between the
hubs.

(4) The hubs are randomly disrupted, but the reliability of
the hub (corresponding to the probability of failure)
is known.

(5) The hubs and links are uncapacitated.
(6) The route planning and emergency scheduling follow

the shortest path principle.

The resilience of the power projection network is defined
as follows [2]:

𝑅 = 𝐶before
𝐶after

, (1)

where 𝑅 is the resilience of the power projection network,
𝐶before is the transportation costs of the network in normal
situation, and𝐶after is the transportation costs of the network
when some hub nodes have been disrupted.

3. Model Parameters and Variables

Themodel parameters and variables mentioned in this paper
are defined as follows”

𝑁 = {1, 2, . . . , 𝑛}: set of nodes
𝐴 = (𝑎𝑖𝑗): set of links
𝐺 = (𝑁,𝐴): directed graph of the network
𝐻: set of hub nodes
𝑃: number of hubs
W = (𝑤𝑖𝑗): flow matrix,𝑤𝑖𝑗 being the flow from 𝑖 ∈ 𝑁
to 𝑗 ∈ 𝑁, and 𝑤𝑖𝑖 = 0
𝑐𝑖𝑗: unit transport cost from node 𝑖 to 𝑗, and 𝑐𝑖𝑖 = 0
𝛼: cost discount factor between hubs
𝐶𝑖𝑗𝑘𝑚 = 𝑐𝑖𝑘 +𝛼𝑐𝑘𝑚 + 𝑐𝑚𝑗: unit transportation cost from
node i to j through hub pair (𝑘,𝑚)

𝑟𝑘: reliability of the hub 𝑘, 0 < 𝑟𝑘 < 1
𝑟𝑘𝑚: reliability of the hub pair (𝑘,𝑚) (if 𝑘 ̸= 𝑚, 𝑟𝑘𝑚 =
𝑟𝑘 ⋅ 𝑟𝑚, otherwise 𝑟𝑘𝑚 = 𝑟𝑘 = 𝑟𝑚)
s = (𝑠1, 𝑠2, . . . , 𝑠𝑝), 0-1 state vector for hub set (𝑠𝑖 = 1,
hub normal; 𝑠𝑖 = 0, hub failed)
𝜉: a random variable, indicating the probability of
finding the backup hub and alternate route when a
node fails to pass through the hub, 0 ≤ 𝜉 ≤ 1
𝜑: penalty factor, penalty cost caused by goods trans-
portation between nodes failed due to hub disabled
(𝜑 = 10 in this paper)
𝑦𝑘: decision variable, whether node 𝑘 is selected as a
hub or not
𝑋𝑖𝑗𝑘𝑚: decision variable, whether the transportation
from node 𝑖 to 𝑗 go through the hub pair (𝑘,𝑚)
𝑈𝑖𝑗𝑞𝑠: the decision variable, whether the transporta-
tion from node 𝑖 to 𝑗 goes through the backup hub
pair (𝑞, 𝑠)
𝑇: Monte Carlo repetitions
𝐶𝑡: total transportation cost for the 𝑡th hub in a
specific state given the probability of hub failure
𝐸(𝐶) ≈ (1/𝑇)∑𝑇𝑡=1 𝐶𝑡: the expected transportation
cost estimation of projection network under a failure
probability using Monte Carlo method

4. Models and Algorithm

In order to illustrate the importance of considering the
possible failure of the hub in the design of the network, the
multiple assignment hub locationmodel in the normal state is
provided as the benchmark model, and then a stochastic
programming model considering the probability of hub
failure is proposed.

4.1. Benchmark Model. The uncapacitated multiple assign-
ments hub location model [24] for the power projection
network without hub failure is as follows. The model is used
to determine which nodes will be selected as hubs and the
relationship of the nonhub nodes and hubs.

(I) Minimize 𝐶 = ∑
𝑖∈𝑁

∑
𝑗∈𝑁

∑
𝑘∈𝑁

∑
𝑚∈𝑁

𝑤𝑖𝑗𝑋𝑖𝑗𝑘𝑚𝐶𝑖𝑗𝑘𝑚 (2)

s.t. ∑
𝑘∈𝑁

𝑦𝑘 = 𝑝 (3)

∑
𝑘∈𝑁

∑
𝑚∈𝑁

𝑋𝑖𝑗𝑘𝑚 = 1, ∀𝑖, 𝑗 ∈ 𝑁 (4)

𝑋𝑖𝑗𝑘𝑚 ≤ 𝑦𝑘, ∀𝑖, 𝑗, 𝑘, 𝑚 ∈ 𝑁 (5)

𝑋𝑖𝑗𝑘𝑚 ≤ 𝑦𝑚, ∀𝑖, 𝑗, 𝑘, 𝑚 ∈ 𝑁 (6)

𝑦𝑘, 𝑋𝑖𝑗𝑘𝑚 ∈ {0, 1} ∀𝑖, 𝑗, 𝑘, 𝑚 ∈ 𝑁. (7)

The objective function (2) minimizes the total cost of the
power projection network in the normal state without hub
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failure. Constraint (3) requires that there are 𝑝 hubs to be
located. Constraints (4) refer to the route choice of each O-D
pair (𝑖, 𝑗) through one hub or a pair of hubs. Constraints (5)
and (6) indicate that eachO-D pair can only be assigned to an
existing hub pair. Constraints (7) are binary requirements.

4.2. The Stochastic Programming Model under Random Hub
Failures. Based on the hypothesis and notations mentioned
above, the stochastic programming model for hub location
in the power projection network considering the probability
of hub failure is as follows:

(II) Minimize 𝐸 (𝐶)

= ∑
𝑖∈𝑁

∑
𝑗∈𝑁

∑
𝑘∈𝑁

∑
𝑚∈𝑁

𝑤𝑖𝑗𝑟𝑘𝑚𝑋𝑖𝑗𝑘𝑚𝐶𝑖𝑗𝑘𝑚 + ∑
𝑖∈𝑁

∑
𝑗∈𝑁

∑
𝑞∈𝑁

∑
𝑠∈𝑁

𝑤𝑖𝑗 (1 − 𝑟𝑘𝑚) 𝜉𝑈𝑖𝑗𝑞𝑠𝐶𝑖𝑗𝑞𝑠

+ ∑
𝑖∈𝑁

∑
𝑗∈𝑁

∑
𝑘∈𝑁

∑
𝑚∈𝑁

∑
𝑞∈𝑁

∑
𝑠∈𝑁

𝑤𝑖𝑗 (1 − 𝑟𝑘𝑚) (1 − 𝜉) 𝜑𝑐𝑖𝑗

(8)

subject to (3)–(7), and (9)

∑
𝑘∈𝑁

∑
𝑚∈𝑁

𝑋𝑖𝑗𝑘𝑚 + ∑
𝑞∈𝑁

∑
𝑠∈𝑁

𝑈𝑖𝑗𝑞𝑠 = 1, ∀𝑖, 𝑗 ∈ 𝑁 (10)

𝑈𝑖𝑗𝑞𝑠 ≤ 𝑦𝑞, ∀𝑖, 𝑗, 𝑞, 𝑠 ∈ 𝑁 (11)

𝑈𝑖𝑗𝑞𝑠 ≤ 𝑦𝑠, ∀𝑖, 𝑗, 𝑞, 𝑠 ∈ 𝑁 (12)

𝑈𝑖𝑗𝑞𝑠 ∈ {0, 1} ∀𝑖, 𝑗, 𝑞, 𝑠 ∈ 𝑁, (13)

where 𝜉 is a random variable, which refers to the probability
that a backup hub and alternate route can be found in the
network when some hubs are disrupted. The objective func-
tion (8) represents the expected total transportation cost.The
first item on the right side of the equation is the expected
transportation cost when all hubs are workable, the second
is the expected transportation cost when the traffic flow is
affected by the hub failure, and the third one is the penalty
cost of traffic loss when a viable alternate route cannot
be found in the network. Formula (10) is routing constraint,
which guarantees that the transportation for any pair of
nodes can only be executed on one route under a specific
state. Constraints (11) and (12) indicate that the backup route
selection only occurs when the pair of hubs is still work-
able during routes replanning. Formula (13) is 0-1 integer
constraint.

The two above-mentionedmodels are interrelated. When
the reliability 𝑟𝑘𝑚 of hub pair equals 1, that is, there is no hub
failure, the last two items in (8) will be equal to 0. In this case,
model (II) can be simplified to model (I).

4.3. Estimations of the Expected Projection Cost and Resilience
Using MC Method. When the hub in the power projection
network randomly failedwith a certain probability, theMonte
Carlo method [24] can be utilized to estimate the expected
transportation cost based on the Floyd shortest path algo-
rithm, and then the network resilience can also be calculated.
The method is as follows.

Denote H = {ℎ1, ℎ2, . . . , ℎ𝑝} as the initial hub set in
the power projection network, 𝐺 = (𝑁, 𝐸) as the structure
diagram, and 𝑁 = {1, 2, . . . , 𝑛}, 𝑒𝑖𝑗 ∈ 𝐸 is the edge of 𝐺. The
length 𝑑𝑖𝑗 of 𝑒𝑖𝑗 is defined as follows:

𝑑𝑖𝑗 =

{{{{{{{
{{{{{{{
{

𝛼𝑐𝑖𝑗 ∀𝑖, 𝑗 ∈ H, 𝑖 ̸= 𝑗
𝑐𝑖𝑗 ∀𝑖 ∈ H, 𝑗 ∉ H ∨ 𝑖 ∉ H, 𝑗 ∈ H

𝜑𝑐𝑖𝑗 ∀𝑖, 𝑗 ∉ H

0 ∀𝑖 = 𝑗.

(14)

Let the initial weight matrix of the network be D =
(𝑑𝑖𝑗)𝑛×𝑛 and the routingmatrix beR = (𝑟𝑖𝑗)𝑛×𝑛 and 𝑟𝑖𝑗 = 𝑗 rep-
resents the subscript of the first hub in the shortest path from
node i to node j. When there is no hub failure, the shortest
path and unit transport cost matrix for any start-end point
can be calculated based on the Floyd shortest path algorithm
[25]. The specific steps are as follows.

(1) Input weight matrix:D(0) = D, R(0) = R.
(2) Calculate D(𝑘) = (𝑑(𝑘)𝑖𝑗 )𝑛×𝑛 (𝑘 = 1, 2, . . . , 𝑛), and 𝑑(𝑘)𝑖𝑗 =

min[𝑑(𝑘−1)𝑖𝑗 , 𝑑(𝑘−1)
𝑖𝑘

+𝑑(𝑘−1)
𝑘𝑗

]; calculateR(𝑘) = (𝑟(𝑘)𝑖𝑗 )𝑛×𝑛 (𝑘 = 1, 2,
. . . , 𝑛), and 𝑟(𝑘)𝑖𝑗 = {𝑟(𝑘−1)𝑖𝑗 , if 𝑑(𝑘−1)𝑖𝑗 ≤ 𝑑(𝑘−1)

𝑖𝑘
+𝑑(𝑘−1)
𝑘𝑗

; 𝑟(𝑘−1)
𝑖𝑘

, if
𝑑(𝑘−1)𝑖𝑗 > 𝑑(𝑘−1)

𝑖𝑘
+ 𝑑(𝑘−1)
𝑘𝑗

}.
(3) The element in D(𝑛) = (𝑑(𝑛)𝑖𝑗 )𝑛×𝑛 is the weight of the

shortest path between any two points, the element 𝑟(𝑛)𝑖𝑗 in
R(𝑛) = (𝑟(𝑛)𝑖𝑗 )𝑛×𝑛 is the subscript of the head for the first arc of
the shortest path from node i to node j, and the relationship
between the nonhub and the hub can be obtained from the
matrix. The shortest path for 𝑖 → 𝑗 is 𝑖 → 𝑟(𝑛)𝑖𝑗 → 𝑟(𝑛)𝑗𝑖 → 𝑗.

The overall cost matrix C = D(𝑛) under the optimal
allocation route can be obtained by the above-mentioned
iterative process when the hub is workable, and the total
transportation cost of the network is calculated as
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𝐶before = ∑
𝑖

∑
𝑗

W
⋅

∗ C. (15)

Considering the situation where the hub is randomly
defeated with a certain probability, take s = (𝑠1, 𝑠2, . . . , 𝑠𝑝) as
the 0-1 state vector for the hub set.When the hub is workable,
𝑠𝑖 = 1; otherwise, 𝑠𝑖 = 0. A specific Monte Carlo experiment
is designed and then repeated a total of 𝑇 times. During each
repeat, p random numbers are generated using the uniform
[0, 1] interval distribution. Denote these random numbers as
(𝜀𝑖) and do comparison with the hub reliability 𝑟𝑖. If 𝜀𝑖 > 𝑟𝑖,
𝑠𝑖 = 0; otherwise, 𝑠𝑖 = 1. Let the state of the hub set be s𝑡 for
the 𝑡th experiment, and the normal working hub set be H𝑡.
After substitutingH𝑡 into (14), the weightmatrix of the power
projection network at the 𝑡th experiment will be obtained.
Repeat the Floyd algorithm mentioned above, and calculate
the transportation cost 𝐶𝑡 for the power projection network
at the 𝑡th experiment.The expected transportation cost of the
power projection network with a failure probability obtained
by the Monte Carlo method is calculated as

𝐸 (𝐶after) ≈
1
𝑇
𝑇

∑
𝑡=1

𝐶𝑡. (16)

According to the definition of resilience, the expected
resilience of the power projection network with the specific
probability of failure is calculated as

𝐸 (𝑅) = 𝐶before
𝐸 (𝐶after)

=
∑𝑖∑𝑗W⋅ ∗ C

(1/𝑇)∑𝑇𝑡=1 𝐶𝑡
. (17)

4.4. Tabu Search Algorithm. Model (II) is one of the combi-
natorial optimization problems with random variables. It is
difficult to solve such problems by using traditional quan-
titative methods [7] and the programming software. In this
paper we employ the tabu search [26] based on the Monte
Carlo method to solve the model. The basic idea of the
solution is to randomly generate a set of nodes, and then the
former 𝑝 nodes are treated as the initial hub solution set. The
neighborhood area for the solution can be constructed by
using 2-swap exchange; that is, the swap of a nonhub and the
hub can be used to construct the neighborhood area. Given
the hub set, formula (16) for the expected network cost can be
treated as the evaluation function.

In the process of optimization, the acceptance for one
exchange of a hub node and a nonhub node in current
solution is called a move. The moving rule is as follows: all
solutions in the neighborhood area of the current solution are
sorted according to the evaluation function and used as can-
didate solutions. If the move produced by the candidate solu-
tion with the smallest value of the evaluation function is not
in the tabu table or in the tabu table but satisfies the aspiration
criterion, it will be accepted and the current solution is
updated for the next iteration; otherwise the next candidate
solution gets the chance; if all candidate solutions are tabu, the
best candidate solution is selected as the new current solution
for the next iteration. It should be noted that theMonte Carlo
experiment is carried out for each move.

The overall process of tabu search algorithmbased onMC
method is as follows.

Step 1. Set the tabu table to be empty, the maximum run
times for algorithm to be Max Run, the maximum number
of iterations for each run to beMax Iteration, the number of
iterations for the optimal and consistent solution to be Max
Count, and the node tabu frequency matrix to be the zero
matrix.

Step 2. Generate the initial solution and take the initial
solution as the current one and the current solution as the
optimal one.

Step 3. Generate the neighborhood area for current solution.
For each hub set in the neighborhood area, the corresponding
evaluation function values are estimated by using the men-
tioned Monte Carlo experiment method and then sorted as
the candidate solutions.

Step 4. Is the best candidate solution better than the optimal
solution? If yes, turn to Step 7; otherwise, go to Step 5.

Step 5. Are all solutions tabu? If yes, select the best candidate
solution as the current solution; otherwise, select the nontabu
and the best candidate solution as the current solution and
then turn to Step 6.

Step 6. Update the current solution, the tabu and tabu
frequency, Iteration + 1, and Count + 1.

Step 7. Take the solution as the current one, and update the
optimal solution, the tabu and tabu frequency, and Iteration
+ 1.

Step 8. If the number of iterations and the number of
iterations for the optimal and consistent solution do not reach
to the limitation, the iteration will continue. If the limit has
been reached, the count of runs is incremented and go to
Step 9.

Step 9. Eliminate the nodes with high frequency of tabu, and
this results in a new initial feasible solution, and go to Step 2.

Step 10. Max Run is reached, and then the algorithm ends,
and the result outputs.

5. Illustrated Example

Suppose that there are 20 projection nodes; the horizon-
tal and vertical coordinates are sampled randomly from
[0, 1000], as shown in Table 1. The spatial distribution of
nodes is shown in Figure 2. The distance matrix between
nodes is calculated from the Euclidean distance of the nodes
on the plane, in kilometers. The traffic flow between nodes is
generated by randomly getting value from [200, 600] in tones.
The unit transportation cost is set at 0.6/RMB/ton/km.There
are a total of𝑝 = 10 hubs to be located, and the transportation
cost discount coefficient of hub links is set to 𝛼 = 0.5.

Model (I) and model (II) are solved by tabu search
algorithm, and, based on Matlab 7.10, both run on Intel Core
i5 2.20GHz/8.00GB computer. In tabu search algorithm, the
tabu length is set to 15, the tabu frequency is set to 5, the
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Table 1: Serial number and coordinates of the projection nodes.

Node 𝑋 𝑌
1 50 900
2 70 560
3 100 300
4 240 950
5 250 600
6 300 200
7 350 400
8 450 500
9 500 750
10 510 310
11 550 50
12 650 530
13 670 360
14 730 200
15 750 790
16 780 650
17 800 460
18 850 800
19 880 120
20 920 920
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Figure 2: Spatial distribution of the projection nodes and hub
nodes.

maximum number of iterations is set to 50 for each run, and
the number of iterations for the optimal and consistent solu-
tion is set to 20. The algorithm runs a total of 20 times. The
parameter values in the tabu procedure are set using the
experiences from our early related work; see Bi et al. [2]. The
number of Monte Carlo trials for each hub reliability level is
10,000, and the statistical standard error is about 0.2%.

Model (I) is the conventional hub location scheme, and
the model solves the result in 2.8 seconds. The optimal hub
location scheme is [1 3 4 5 7 10 11 12 14 15]. As shown in Figure 2
by symbol ⊚, the corresponding objective function value is
3.3415 × 107 RMB. Since model (I) is optimized without
considering any hub failure, the optimal hub location strategy

is the same corresponding to different hub reliability levels.
When the power projection network is facedwith uncertainty
threat factors, the expected cost of the power projection
network corresponding to Model (I) can be estimated by the
Monte Carlo experiment method proposed in Section 4.3.

With the hub failures are taken into consideration in the
early stage of the network design, the hub location scheme
can be obtained by solving Model (II). Table 2 shows the
hub location scheme, expected transportation cost, network
resilience, and solution time cost for Model (II) under
different hub reliability. The related results of Model (II) are
compared with those of Model (I).

As shown in Table 2, when the hub reliability equals
1, that is, no hub fails, the hub location strategy in Model
(II) is exactly the same as that in Model (I), indicating the
correctness ofModel (II).When the hub reliability is at a high
level (𝑟 ≥ 0.9), the hub location strategy corresponding to
Model (II) has one-hub difference with the conventional hub
location scheme. The expected cost and network resilience
are almost the same, and Model (II) is a little better. This is
due to the fact that the total expected transportation cost of
Model (II) includes the expected transportation cost of the
default route, the expected transportation cost of the emer-
gency planning route, and the expected penalty cost of the
traffic loss. When the hub reliability is high, the expected
transportation cost of the default route will be the dominant
part in the optimization process, and therefore the optimal
hub location schemes provided by Model (I) and Model (II)
are almost the same. With the decrease of the hub reliability,
the probability of the hub random failure increases, and
the difference between the hub set generated by Model (II)
and Model (I) also increases. Meanwhile, the expected cost
and difference in network resilience increase. The network
designed with Model (II) is significantly superior to Model
(I). This is due to the fact that when the number of failed
hubs is more than expected, the proportion of the expected
transportation cost for emergency planning route and traffic
loss in the total expected cost increases, and thenmore effects
will be made on the optimization process to get the optimal
evaluation solution.

Figure 3 shows the comparison of network resilience
between Model (II) and Model (I) at different hub reliability
levels. It can be concluded that the network resilience of the
hub location scheme designed by Model (II) is superior to
the conventional hub location scheme provided byModel (I).
With the probability of hub failure increase, the advantage is
more obvious. Therefore, it can improve the resilience of the
power projection network to a certain extent, when taking the
factors of hub random failure and the hub reliability level into
consideration in advance.

It should be emphasized that the solution time cost by
Model (II) differs from tenminutes tomore than three hours.
The lower the hub reliability is, the longer the solution time
costs. The reason is that solving Model (II) requires a large
number ofMonte Carlo experiments. Considering such great
amount of calculations, the program can be improved in the
optimization process. On one hand, since the nonhub can
only be connected with the hub, the Floyd algorithm for a
given hub set can just be iterated by p times. On the other
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Table 2: Comparison results for the two models under different levels of hub reliability.

Model Hub
reliability Hub set Expected cost

×107 Resilience Solution time
(s)

(I) 1 [1 3 4 5 7 10 11 12 14 15] 3.3415 1 2.8
(II) [1 3 4 5 7 10 11 12 14 15] 3.3415 1 762.9
(I) 0.95 [1 3 4 5 7 10 11 12 14 15] 3.4598 0.9658 —
(II) [1 3 4 5 7 9 10 12 14 15] 3.4414 0.9709 1806.6
(I) 0.9 [1 3 4 5 7 10 11 12 14 15] 3.5837 0.9324 —
(II) [1 3 4 5 7 9 10 12 14 15] 3.5228 0.9485 4178.1
(I) 0.8 [1 3 4 5 7 10 11 12 14 15] 3.8587 0.8660 —
(II) [3 4 5 7 9 10 12 14 15 17] 3.7789 0.8843 6260.4
(I) 0.7 [1 3 4 5 7 10 11 12 14 15] 4.1702 0.8013 —
(II) [3 4 5 7 9 10 12 14 15 16] 4.0697 0.8211 7415.5
(I) 0.6 [1 3 4 5 7 10 11 12 14 15] 4.5429 0.7355 —
(II) [4 5 7 9 10 12 13 14 15 16] 4.3620 0.7661 8476.2
(I) 0.5 [1 3 4 5 7 10 11 12 14 15] 5.0240 0.6651 —
(II) [4 5 7 8 10 12 13 14 15 16] 4.6567 0.7176 9686.8
(I) 0.4 [1 3 4 5 7 10 11 12 14 15] 5.8160 0.5745 —
(II) [5 7 8 9 10 12 13 15 16 17] 5.1602 0.6476 11368.7
(I) 0.3 [1 3 4 5 7 10 11 12 14 15] 7.4326 0.4496 —
(II) [4 5 7 8 9 10 12 13 14 16] 6.2406 0.5354 13289.4

Network resilience for model (I)
Network resilience for model (II)
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Figure 3: Network resilience for the two models under different
levels of hub reliability.

hand, it can be seen fromTable 2 that the difference in hub set
is gradually increased with the decrease of hub reliability. So
when using the tabu search algorithm, the optimal solution
at a reliability level can be used as the initial solution for tabu
search at next reliability level. These mentioned improve-
ments can decrease the calculation burden greatly in the opti-
mization process. In addition, the current computing speed
and overall performance of computers are high enough, so
that a large number of Monte Carlo experiments for param-
eter estimation become possible. The longest time for Model

(II) to get the solution is 3.7 hours, and it is acceptable in the
network design period.

6. Conclusion

In this paper, we study the hub location problem when ran-
dom hub failure occurs in the power projection network. A
stochastic programming model is employed account for
the scenario. A heuristic algorithm based on Monte Carlo
method and tabu search is put forward to solve themodel.The
superiority of the proposedmodel is illustrated by the change
of the network resilience in response to the different proba-
bility of hub failure with the benchmark model. Results show
that the factor of stochastic hub disruptions should be taken
into account in advance for design of the power projection
network, which can improve the resilience of the power
projection network to deal with the hub random failure to a
certain extent.

Compared with the situation that only some specific hub
fails, the problem of hub random failure is more general.
Dealing with the random hub failure, methods in the existing
literature are only applicable to cases where there is at most
one-hub failure. However, in this paper, the Monte Carlo
method can be used to simulate the state of a hub set
at any probability, which is applicable to the case where
there are several hubs failure with different probability.
Therefore, the approach proposed in this paper is more
general.
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