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This paper provides a two-space stabilized mixed finite element scheme for the Stokes eigenvalue problem based on local Gauss
integration. The two-space strategy contains solving one Stokes eigenvalue problem using the 𝑃1 − 𝑃1 finite element pair and then
solving an additional Stokes problem using the𝑃2−𝑃2 finite element pair.The postprocessing technique which increases the order of
mixed finite element space by using the same mesh can accelerate the convergence rate of the eigenpair approximations. Moreover,
our method can save a large amount of computational time and the corresponding convergence analysis is given. Finally, numerical
results are presented to confirm the theoretical analysis.

1. Introduction

The Stokes eigenvalue problem is one of the most important
eigenvalue problems and plays an important role in the
stability analysis of nonlinear partial differential equations
[1]. The eigenvalue problems are used in many applica-
tion areas: structural mechanics and fluid mechanics. Thus,
development of the efficient numerical methods for studying
the eigenvalue problems has practical meanings and has
been noticed by many researchers. At the time of writing,
numerous works are devoted to these problems (see [2–10]
and the references cited therein).

Many effective postprocessing strategies that improve the
convergence rate for the approximations of the eigenvalue
problems by the finite element methods have been well
developed. The two-grid method is one of these efficient
postprocessing methods. The basic idea of two-grid scheme
is first introduced by Xu [11, 12] for the nonsymmetric
and nonlinear elliptic problems. Hence, it can be seen as
a postprocessing technique and can take less CPU time
compared to the one grid methods. To the best of our
knowledge, some details of the two-grid scheme can be found
in the works of Xu and Zhou [13], Chien and Jeng [14, 15],
Chen et al. [7, 16], Hu and Cheng [17], Yang et al. [18, 19],

Huang et al. [8], and Weng et al. [20, 21]. The two-space
method is actually the iterative Galerkin method, which was
first used for solving integral equation eigenvalue problems
by Sloan [22] and differential equation eigenvalue problems
by Lin and Xie [23]. Particularly, Racheva and Andreev [24]
have proposed a postprocessing method for the 2𝑚-order
self-adjoint eigenvalue problems by two-grid method or the
two-space method. A similar method has been given for the
Stokes eigenvalue problem [7, 25], elliptic eigenvalue problem
[16], and the biharmonic eigenvalue problem [26] by mixed
finite element methods.

In fact, two-space method [27–29] can be cast in the
framework of Xu’s work regarding the two-grid method.
However, the two-space method is different from the two-
grid method. This two-space method consists in solving the
original Stokes eigenvalue problem in the 𝑘-order mixed
finite element space and one additional Stokes source prob-
lem in an augmented mixed finite element space by a 𝑘 + 1-
order mixed finite element space on the same mesh. Besides,
the two-space method only needs one mesh size while the
two-grid method needs two mesh sizes, a coarse mesh, and
a fine mesh. In fact, the two-space method can avoid the
discussion on the relation of the coarse and fine meshes. For
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this reason, in the present paper we establish a two-space
discretization scheme for the Stokes eigenvalue problem.

Recently, more attention has been paid to the lowest equal
order finite element pairs for simulating the incompressible
flow. The lowest equal order finite element pairs offer some
computational advances; for example, they are simple and
have practical uniform data structure and adequate accuracy,
because they show an identical degree distribution for both
the velocity and pressure. Moreover, they are of practical
importance in scientific computation owing to their very
convenient computational cost. However, the lowest equal
order mixed finite element pairs do not satisfy the inf-sup
condition. Numerical tests show that the violation of the inf-
sup condition often brings about unphysical pressure oscilla-
tions. In order to avoid the instability problem, the stabilized
finite elementmethods are applied to the incompressible flow.
Therefore, a lot of work focuses on stabilization (see [30–37])
of the lowest equal order pairs. Particularly, based on thework
of Bochev et al. [30], Li et al. [31, 32] used the projection
of the pressure onto the piecewise constant space to add the
stabilized term for 𝑃1 − 𝑃1 element and Zheng et al. [35] used
the projection of the pressure-gradient onto the piecewise
constant space to add the stabilized term for 𝑃2 − 𝑃2 element.

Influenced by the work mentioned above, the paper
focuses on the method, which combines two-space dis-
cretization scheme with a stabilized finite element method
based on local Gauss integration technique for the Stokes
eigenvalue problem. The paper is organized as follows.
In Section 2, we introduce the studied Stokes eigenvalue
problem and the notations and some well-known results
used throughout this paper. Some stabilized finite element
strategies based on two local Gauss integrations are recalled
in Section 3. In Section 4, a two-space stabilized finite element
algorithm is constructed and its error estimates are discussed.
In Section 5, numerical experiments are reported for illus-
trating the theoretical results and the high efficiency of the
proposed method. Finally, we will conclude our presentation
in Section 6 with a few comments and also possible future
research topics.

2. Preliminaries

In this paper, we consider the following Stokes eigenvalue
problem:

−Δu + ∇𝑝 = 𝜆u in Ω,
div u = 0 in Ω,

u = 0 on Γ,
(1)

where Ω ⊂ R2 is a bounded and convex domain with a
Lipschitz-continuous boundary Γ, 𝑝(x) represents the pres-
sure, u(x) is the velocity vector, and 𝜆 ∈ R is the eigenvalue.

We shall introduce the following Hilbert spaces:

V = [𝐻10 (Ω)]2 ,
𝑌 = [𝐿2 (Ω)]2 ,
𝑊 = 𝐿20 (Ω) = {𝑞 ∈ 𝐿2 (Ω) , ∫

Ω
𝑞 𝑑𝑥 = 0} .

(2)

The spaces [𝐿2(Ω)]𝑚, 𝑚 = 1, 2, are equipped with the
𝐿2-scalar product (⋅, ⋅) and 𝐿2-norm ‖ ⋅ ‖0. The norm and
seminorm in [𝐻𝑘(Ω)]2 are denoted by ‖ ⋅ ‖𝑘 and | ⋅ |𝑘,
respectively.The spaceV is equipped with the norm ‖∇ ⋅ ‖0 or
its equivalent norm ‖ ⋅ ‖1 due to Poincaré inequality. Spaces
consisting of vector-valued functions are denoted in boldface.
Furthermore, the norm in the space dual to 𝑉 is given by

‖u‖−1 = sup
k∈V,‖k‖1=1

(u, k) . (3)

Therefore, we define the following bilinear forms 𝑎(⋅, ⋅), 𝑑(⋅, ⋅),
and 𝑏(⋅, ⋅) on V × V, V × 𝑊, and V × V, respectively, by

𝑎 (u, k) = (∇u, ∇k) , ∀u, k ∈ V,
𝑑 (k, 𝑞) = (div k, 𝑞) , ∀k ∈ V, ∀𝑞 ∈ 𝑊,
𝑏 (u, k) = (u, k) , ∀u, k ∈ V

(4)

and a generalized bilinear form𝐵((⋅, ⋅), (⋅, ⋅)) on (V×𝑊)×(V×
𝑊); that is,
𝐵 ((u, 𝑝) , (k, 𝑞)) = 𝑎 (u, k) − 𝑑 (k, 𝑝) + 𝑑 (u, 𝑞) ,

∀ (u, 𝑝) , (k, 𝑞) ∈ V × 𝑊. (5)

With the above notations, the variational formulation of
problem (1) reads as follows: Find (u, 𝑝; 𝜆) ∈ (V × 𝑊) × R

with ‖u‖0 = 1, such that

𝐵 ((u, 𝑝) , (k, 𝑞)) = 𝜆𝑏 (u, k) , ∀ (k, 𝑞) ∈ V × 𝑊. (6)

From [1], we know that eigenvalue problem (6) has an
eigenvalue sequence {𝜆𝑗}

0 < 𝜆1 ≤ 𝜆2 ≤ 𝜆3 ≤ ⋅ ⋅ ⋅ (7)

and corresponding eigenvectors

u1, u2, u3, . . . , (8)

with the orthogonal property 𝑏(u𝑖, u𝑗) = 𝛿𝑖𝑗.
Let

𝑀(𝜆𝑖) = {u ∈ V, u is an eigenvector of (6)
corresponding to 𝜆𝑖} .

(9)

Moreover, the bilinear form 𝑑(⋅, ⋅) satisfies the inf-sup
condition for all 𝑞 ∈ 𝑊

sup
k∈V

󵄨󵄨󵄨󵄨𝑑 (k, 𝑞)󵄨󵄨󵄨󵄨
‖k‖1 ≥ 𝛽 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩0 , (10)
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where𝛽 > 0 is a constant depending only onΩ.Therefore, the
generalized bilinear form 𝐵 satisfies the continuity property
and coercive condition

󵄨󵄨󵄨󵄨𝐵 ((u, 𝑝) , (k, 𝑞))󵄨󵄨󵄨󵄨 ≤ 𝐶 (‖u‖1 + 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩0) × (‖k‖1 + 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩0) ,
sup
(k,𝑞)∈(V,𝑊)

󵄨󵄨󵄨󵄨𝐵 ((u, 𝑝) , (k, 𝑞))󵄨󵄨󵄨󵄨
‖k‖1 + 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩0 ≥ 𝛽1 (‖u‖1 + 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩0) ,

(11)

where 𝐶 and 𝛽1 are the positive constants depending only onΩ. Throughout the paper we use 𝑐 or 𝐶 to denote a generic
positive constant whose value may change from place to
place, which remains independent of the mesh parameter.

3. A Stabilized Mixed Finite Element Method

From now on, ℎ is a real positive parameter tending to 0. The
finite element subspaces Vℎ × 𝑊ℎ,Vℎ × 𝑊ℎ of V × 𝑊 are
characterized by 𝑇ℎ, a partitioning of Ω into triangles 𝑇 with
the mesh size ℎ, assumed to be uniformly regular in the usual
sense [38]. Then we define them as follows:

Vℎ = {Vℎ = (V1, V2) ∈ (𝐶0 (Ω))2 ∩ V : V𝑖󵄨󵄨󵄨󵄨𝑇
∈ 𝑃1 (𝑇) , ∀𝑇 ∈ 𝑇ℎ, 𝑖 = 1, 2} ,

𝑊ℎ = {𝑤 ∈ 𝐶0 ∩ 𝑊: 𝑤|𝑇 ∈ 𝑃1 (𝑇) , ∀𝑇 ∈ 𝑇ℎ} ,
Vℎ = {Vℎ = (V1, v2) ∈ (𝐶0 (Ω))2 ∩ V : V𝑖󵄨󵄨󵄨󵄨𝑇

∈ 𝑃2 (𝑇) , ∀𝑇 ∈ 𝑇ℎ, 𝑖 = 1, 2} ,
𝑊ℎ = {𝑤 ∈ 𝐶0 ∩ 𝑊: 𝑤|𝑇 ∈ 𝑃2 (𝑇) , ∀𝑇 ∈ 𝑇ℎ} ,
M1ℎ = {Vℎ = (V1, V2) ∈ 𝐶0 (Ω)2 ∩ V | V𝑖󵄨󵄨󵄨󵄨𝑇 ∈ 𝑃1 (𝑇)

⊕ 𝐵 (𝑇) , ∀𝑇 ∈ Tℎ, 𝑖 = 1, 2} ,
M2ℎ = {Vℎ = (V1, V2) ∈ 𝐶0 (Ω)2 ∩ V | V𝑖󵄨󵄨󵄨󵄨𝑇 ∈ 𝑃2 (𝑇)

⊕ 𝐵 (𝑇) , ∀𝑇 ∈ Tℎ, 𝑖 = 1, 2} ,

(12)

where 𝑃𝑘(𝑇) represents the set of all polynomials on 𝑇 of
degree less than 𝑘 ∈ 𝑁 and 𝐵(𝑇) denotes the space of bubble
functions. The bubble functions are defined as follows:

𝐵 (𝑇) = {Vℎ ∈ 𝐶 (𝑇) | Vℎ ∈ Span {𝜆0𝜆1𝜆2}}
∀𝑇 ∈ Tℎ,

(13)

where 𝜆𝑖 are area coordinates on 𝑇, 𝑖 = 0, 1, 2. The area
coordinate is also known as a triangle barycentre coordinate,
where the three components (𝜆0, 𝜆1, 𝜆2) are of the ratio
between the area of the three triangles and the area of the
mother triangle.

It is known that this choice of the approximate spaces
M1ℎ × 𝑊ℎ or M2ℎ × 𝑊ℎ satisfies the inf-sup condition in
[38], but this choice of the approximate spaces Vℎ × 𝑊ℎ

or Vℎ × 𝑊ℎ does not satisfy the inf-sup condition [30, 32,
35]. As a consequence, we give a stabilized finite element
approximation based on local Gauss integration technique
(see [32, 35]). The idea is as follows.

Let Π : 𝐿2(Ω) → 𝑅0 be the standard 𝐿2-projection:
(𝑝, 𝑞) (Π𝑝, 𝑞) , ∀𝑝 ∈ 𝑊, 𝑞 ∈ 𝑅0, (14)

where 𝑅0 = {𝑞 ∈ 𝑊 : 𝑞|𝑇 ∈ 𝑃0(𝑇), ∀𝑇 ∈ 𝑇ℎ}.
The projection operator Π has the following properties:

󵄩󵄩󵄩󵄩Π𝑝󵄩󵄩󵄩󵄩0 ≤ 𝑐 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩0 , ∀𝑝 ∈ 𝑊,
󵄩󵄩󵄩󵄩𝑝 − Π𝑝󵄩󵄩󵄩󵄩0 ≤ 𝑐ℎ 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩1 , ∀𝑝 ∈ 𝐻1 (Ω) . (15)

The 𝑃1 − 𝑃1 stabilized bilinear terms are used by

𝐺 (𝑝ℎ, 𝑞) = (𝑝ℎ − Π𝑝ℎ, 𝑞 − Π𝑞) , 𝑝ℎ, 𝑞 ∈ 𝑊ℎ, (16)

and the 𝑃2 − 𝑃2 stabilization term is given by

𝐺 (𝑝, 𝑞) = (∇𝑝 − Π∇𝑝, ∇𝑞 − Π∇𝑞) , ∀𝑝, 𝑞 ∈ 𝑊ℎ. (17)

The stabilized term which is defined by local Gaussian
quadrature can be rewritten as

𝐺 (𝑝, 𝑞) = ∑
𝑇∈𝑇ℎ

(∫
𝑇,2

∇𝑝 ⋅ ∇𝑞 𝑑x − ∫
𝑇,1

∇𝑝 ⋅ ∇𝑞 𝑑x) ,

∀𝑝, 𝑞 ∈ 𝑊ℎ,
(18)

where ∫
𝑇,𝑖

𝑔(𝑥, 𝑦)𝑑x denotes a Gaussian quadrature over 𝑇
which is exact for polynomials of degree 𝑖, 𝑖 = 1, 2. In
particular, when 𝑖 = 1, the trial function∇𝑝 ∈ 𝑊ℎ is projected
to the piecewise constant space. Besides, the stabilized term
𝐺(𝑝ℎ, 𝑞) can be rewritten as

𝐺 (𝑝ℎ, 𝑞)
= ∑
𝑇∈𝑇ℎ

(∫
𝑇,2

𝑝ℎ ⋅ 𝑞 𝑑𝑥 𝑑𝑦 − ∫
𝑇,1

𝑝ℎ ⋅ 𝑞 𝑑𝑥 𝑑𝑦) ,

∀𝑝ℎ, 𝑞 ∈ 𝑊ℎ,

(19)

where the trial function 𝑝ℎ ∈ 𝑊ℎ must be projected to 𝑅0
when 𝑖 = 1 for any 𝑞 ∈ 𝑊ℎ. Indeed, Becker and Hansbo
have found [33] that the stabilized methods of [30, 32] are
identical from a numerical point of view for these low-order
approximations.

By adding the stabilization term into the generalized
bilinear form 𝐵((⋅, ⋅), (⋅, ⋅)), we define

𝐵ℎ ((uℎ, 𝑝ℎ) , (k, 𝑞)) = 𝐵 ((uℎ, 𝑝ℎ) , (k, 𝑞))
− 𝐺 (𝑝ℎ, 𝑞) ,

𝐵ℎ ((𝑢ℎ, 𝑝ℎ) ; (V, 𝑞)) = 𝐵 ((𝑢ℎ, 𝑝ℎ) ; (V, 𝑞))
− 𝐺 (𝑝ℎ, 𝑞) .

(20)
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Then the corresponding discrete variational formulation
for the Stokes eigenvalue problem reads as follows: find
(uℎ, 𝑝ℎ; 𝜆ℎ) ∈ (Vℎ × 𝑊ℎ) × R with ‖uℎ‖0 = 1, such that

𝐵ℎ ((uℎ, 𝑝ℎ) , (k, 𝑞)) = 𝜆ℎ𝑟 (uℎ, k) ,
∀ (k, 𝑞) ∈ Vℎ × 𝑊ℎ

(21)

and find (uℎ, 𝑝ℎ; 𝜆ℎ) ∈ (Vℎ × 𝑊ℎ) × R with ‖uℎ‖0 = 1, such
that

𝐵ℎ ((𝑢ℎ, 𝑝ℎ) ; (V, 𝑞)) = 𝜆ℎ𝑟 (uℎ, k) ,
∀ (k, 𝑞) ∈ Vℎ × 𝑊ℎ.

(22)

Remark 1. For the 𝑃𝑘𝑏 − 𝑃𝑘 (M𝑘ℎ × 𝑊ℎ, 𝑘 = 1, 2) pair
which satisfy inf-sup condition, there are points of difference
between them. The 𝑃𝑘 − 𝑃𝑘 stabilized method in this article
only adds the stabilized term with respect to the pressure
space.However, the𝑃𝑘𝑏−𝑃𝑘method has the implicit stabilized
term in the velocity space.

With k = uℎ, 𝑞 = 𝑝ℎ and thanks to the positive definite-
ness of 𝑎(𝑢ℎ, 𝑢ℎ), we deduce that the discrete eigenvalues 𝜆𝑗ℎ
are positive. Let the eigenvalue of (21) be ordered as follows:

0 < 𝜆1ℎ ≤ 𝜆2ℎ ≤ 𝜆3ℎ ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑁ℎ, (23)

and let us consider the corresponding eigenfunctions

(u1ℎ, 𝑝1ℎ) , (u2ℎ, 𝑝2ℎ) , (u3ℎ, 𝑝3ℎ) , . . . , (u𝑁ℎ, 𝑝𝑁ℎ) , (24)

where 𝑟(u𝑖ℎ, u𝑗ℎ) = 𝛿𝑖𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑁, 𝑁 denotes the
dimension of the finite element space.

Similarly, let 𝑀ℎ(𝜆𝑖ℎ) be the eigenspace associated with
𝜆𝑖ℎ; that is,

𝑀ℎ (𝜆𝑖ℎ) = {uℎ ∈ Vℎ, uℎ is an eigenfunction of (21)
corresponding to 𝜆𝑖ℎ} .

(25)

For (22) with 𝑃1 − 𝑃1 pairs, it can be given similarly. The
corresponding nature of the eigenvalues is omitted for the
sake of simplicity.

The next theorem shows the continuity property
and the weak coercivity property of the bilinear form
𝐵ℎ((uℎ, 𝑝ℎ), (k, 𝑞)) for the finite element space Vℎ × 𝑊ℎ
in [35] and 𝐵ℎ((uℎ, 𝑝ℎ); (V, 𝑞)) for the finite element space
Vℎ × 𝑊ℎ in [30, 32].

Theorem 2. For all (uℎ, 𝑝ℎ), (k, 𝑞) ∈ Vℎ × 𝑊ℎ, there exist
positive constants 𝐶 and 𝛽2, independent of ℎ, such that

󵄨󵄨󵄨󵄨𝐵ℎ ((uℎ, 𝑝ℎ) , (k, 𝑞))󵄨󵄨󵄨󵄨
≤ 𝐶 (󵄩󵄩󵄩󵄩uℎ󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝑝ℎ󵄩󵄩󵄩󵄩0) × (‖k‖1 + 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩0) ,
sup

(k,𝑞)∈(Vℎ ,𝑊ℎ)

󵄨󵄨󵄨󵄨𝐵ℎ ((uℎ, 𝑝ℎ) , (k, 𝑞))󵄨󵄨󵄨󵄨
‖k‖1 + 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩0

≥ 𝛽2 (󵄩󵄩󵄩󵄩uℎ󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝑝ℎ󵄩󵄩󵄩󵄩0) .

(26)

Moreover, for all (uℎ, 𝑝ℎ), (k, 𝑞) ∈ (Vℎ × 𝑊ℎ), there exist
positive constants 𝐶1 and 𝛽3, independent of ℎ, such that

𝐵ℎ ((uℎ, 𝑝ℎ) ; (k, 𝑞))
≤ 𝐶1 (󵄩󵄩󵄩󵄩uℎ󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝑝ℎ󵄩󵄩󵄩󵄩0) × (‖k‖1 + 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩0) ,

sup
(k,𝑞)∈(Vℎ ,𝑊ℎ)

󵄨󵄨󵄨󵄨󵄨𝐵ℎ ((uℎ, 𝑝ℎ) ; (k, 𝑞))󵄨󵄨󵄨󵄨󵄨
‖k‖1 + 󵄩󵄩󵄩󵄩𝑞󵄩󵄩󵄩󵄩0

≥ 𝛽3 (󵄩󵄩󵄩󵄩uℎ󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝑝ℎ󵄩󵄩󵄩󵄩0) .

(27)

The next theorem contains the convergence result of
eigenfunctions and eigenvalues for the Stokes eigenvalue
problem in [8, 20].

Theorem 3. With (𝑢, 𝑝, 𝜆) belonging to (𝐻3(Ω)2 ∩ V) ×
(𝐻2(Ω) ∩ 𝑊) × R and being the exact solution of (6), one
deduces that there exists a discrete eigenpair (uℎ, 𝑝ℎ; 𝜆ℎ) of (21)
which satisfies the following error estimates:

󵄩󵄩󵄩󵄩u − uℎ
󵄩󵄩󵄩󵄩0 + ℎ (󵄩󵄩󵄩󵄩u − uℎ

󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝑝 − 𝑝ℎ󵄩󵄩󵄩󵄩0) ≤ 𝑐ℎ3,
󵄨󵄨󵄨󵄨𝜆 − 𝜆ℎ󵄨󵄨󵄨󵄨 ≤ 𝑐ℎ4.

(28)

Furthermore, if the exact solution (u, 𝑝; 𝜆) ∈ (𝐻2(Ω)2 ∩
V) × (𝐻1(Ω) ∩ 𝑊) × R, then (uℎ, 𝑝ℎ; 𝜆ℎ) ∈ Vℎ × 𝑊ℎ × R of
problem (22) satisfies

󵄩󵄩󵄩󵄩u − uℎ
󵄩󵄩󵄩󵄩0 + ℎ (󵄩󵄩󵄩󵄩u − uℎ

󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝑝 − 𝑝ℎ󵄩󵄩󵄩󵄩0) ≤ 𝑐ℎ2,
󵄨󵄨󵄨󵄨󵄨𝜆 − 𝜆ℎ󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐ℎ2. (29)

4. Two-Space Stabilized Finite Element
Scheme and Error Estimates

In this section, we shall present a two-space stabilized finite
element algorithm to reduce the computational cost. The
two-space stabilized finite element approximation consists of
three steps.

Step 1. On the mesh size ℎ, solve the following Stokes
eigenvalue problem by 𝑃1 − 𝑃1 pair and find (uℎ, 𝑝ℎ; 𝜆ℎ) ∈
(Vℎ×𝑊ℎ)×R and ‖uℎ‖0 = 1, such that, for all (k, 𝑞) ∈ Vℎ×𝑊ℎ,

𝐵ℎ ((uℎ, 𝑝ℎ) ; (k, 𝑞)) = 𝜆ℎ (uℎ, k) . (30)

Step 2. On the same mesh size ℎ, solve the following Stokes
problem by 𝑃2 −𝑃2 pair and find (uℎ, 𝑝ℎ) ∈ Vℎ ×𝑊ℎ such that
for all (kℎ, 𝑞ℎ) ∈ Vℎ × 𝑊ℎ

𝐵ℎ ((uℎ, 𝑝ℎ) ; (kℎ, 𝑞ℎ)) = 𝜆ℎ (uℎ, kℎ) . (31)

Step 3. Compute the eigenvalue by the Rayleigh quotient

𝜆ℎ = 𝐵ℎ ((uℎ, 𝑝ℎ) ; (uℎ, 𝑝ℎ))
(uℎ, uℎ) , (32)

where uℎ ∈ Vℎ \ {0}.
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Next, we will study the convergence of the two-space
stabilized finite element solution. To do this, we define the
Galerkin projection operator (𝑅ℎ, 𝑄ℎ) : (V,𝑊) → (Vℎ,𝑊ℎ)
by

𝐵ℎ ((𝑅ℎ (k, 𝑞) , 𝑄ℎ (k, 𝑞)) , (kℎ, 𝑞ℎ))
= 𝐵 ((k, 𝑞) , (kℎ, 𝑞ℎ)) , ∀ (kℎ, 𝑞ℎ) ∈ (Vℎ,𝑊ℎ) .

(33)

By Theorem 2, (𝑅ℎ, 𝑄ℎ) is well defined and the following
approximation properties are fulfilled in [20].

Lemma 4. For all (u, 𝑝) ∈ (H3(Ω)2 ∩V, 𝐻2(Ω)∩𝑊), one has
󵄩󵄩󵄩󵄩u − 𝑅ℎ (u, 𝑝)󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝑝 − 𝑄ℎ (u, 𝑝)󵄩󵄩󵄩󵄩0

≤ 𝑐ℎ2 (‖u‖3 + 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩2) .
(34)

The following identity that relates the errors in the
eigenvalue and eigenvector can be found in [3].

Lemma 5. Let (u, 𝑝; 𝜆) be an eigenpair of (6); for any s ∈ V \
{0} and 𝑤 ∈ 𝑊, one has

𝐵 ((s, 𝑤) , (s, 𝑤))
𝑟 (s, s) − 𝜆

= 𝐵 ((s − u, 𝑤 − 𝑝) , (s − u, 𝑤 − 𝑝))
𝑟 (s, s)

− 𝜆𝑟 (s − u, s − u)
𝑟 (s, s) .

(35)

The next theorem provides the error estimates for our
two-space scheme.

Theorem 6. Let (uℎ, 𝑝ℎ; 𝜆ℎ) be the 𝑖th discrete eigenpair. Then
the 𝑖th eigenpair (u, 𝑝; 𝜆) of the Stokes operator is such that

󵄩󵄩󵄩󵄩󵄩u − uℎ󵄩󵄩󵄩󵄩󵄩1 +
󵄩󵄩󵄩󵄩󵄩𝑝 − 𝑝ℎ󵄩󵄩󵄩󵄩󵄩0 ≤ 𝑐ℎ2 (‖u‖3 + 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩2) , (36)

󵄨󵄨󵄨󵄨󵄨𝜆 − 𝜆ℎ󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐ℎ4 (‖u‖3 + 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩2)2 . (37)

Proof. Denoted by (𝜃ℎ, 𝜌ℎ) = (𝑅ℎ(u, 𝑝) − uℎ, 𝑄ℎ(u, 𝑝) − 𝑝ℎ),
subtracting (6) from (31), we derive from (33)

𝐵ℎ ((𝜃ℎ, 𝜌ℎ) ; (k, 𝑞)) = 𝜆 (u − uℎ, k)
+ (𝜆 − 𝜆ℎ) (uℎ, k) .

(38)

Let (k, 𝑞) = (𝜃ℎ, 𝜌ℎ) in (38), by using Theorem 2, Sobolev
embedding theorem, andTheorems 3, we obtain

] 󵄩󵄩󵄩󵄩∇𝜃ℎ󵄩󵄩󵄩󵄩0 + 󵄩󵄩󵄩󵄩𝜌ℎ󵄩󵄩󵄩󵄩0
≤ 𝛽−12 (𝜆 󵄩󵄩󵄩󵄩u − uℎ

󵄩󵄩󵄩󵄩−1 + 󵄨󵄨󵄨󵄨󵄨𝜆 − 𝜆ℎ󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩uℎ󵄩󵄩󵄩󵄩−1)
≤ 𝑐ℎ2 (‖u‖2 + 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩1) .

(39)

Combining the triangle inequality with Lemma 4, we
deduce

󵄩󵄩󵄩󵄩󵄩(u − uℎ)󵄩󵄩󵄩󵄩󵄩1 +
󵄩󵄩󵄩󵄩󵄩𝑝 − 𝑝ℎ󵄩󵄩󵄩󵄩󵄩0

≤ 󵄩󵄩󵄩󵄩𝜃ℎ󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩(u − 𝑅ℎ (u, 𝑝))󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝜌ℎ󵄩󵄩󵄩󵄩0
+ 󵄩󵄩󵄩󵄩𝑝 − 𝑄ℎ (u, 𝑝)󵄩󵄩󵄩󵄩0 ≤ 𝑐ℎ2 (‖u‖3 + 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩2) ,

(40)

and finally we obtain (36).
Moreover, using (32) and Lemma 5, we have

𝜆ℎ − 𝜆 = 𝐵ℎ ((uℎ, 𝑝ℎ) ; (uℎ, 𝑝ℎ))
(uℎ, uℎ) − 𝜆

= 𝐵 ((uℎ − u, 𝑝ℎ − 𝑝) ; (uℎ − u, 𝑝ℎ − 𝑝)) − 𝐺 (𝑝ℎ, 𝑝ℎ)
(uℎ, uℎ)

− 𝜆(uℎ − u, uℎ − u)
(uℎ, uℎ) .

(41)

Taking the norm and using (15) and (36), we conclude the
proof that is

󵄨󵄨󵄨󵄨󵄨𝜆 − 𝜆ℎ󵄨󵄨󵄨󵄨󵄨 ≤ 𝑐 󵄩󵄩󵄩󵄩󵄩u − uℎ󵄩󵄩󵄩󵄩󵄩
2

1
+ ℎ2 󵄩󵄩󵄩󵄩󵄩𝑝ℎ − Π𝑝ℎ󵄩󵄩󵄩󵄩󵄩

2

0

+ 𝑐 󵄩󵄩󵄩󵄩󵄩𝑝 − 𝑝ℎ󵄩󵄩󵄩󵄩󵄩
2

0

≤ 𝑐 󵄩󵄩󵄩󵄩󵄩u − uℎ󵄩󵄩󵄩󵄩󵄩
2

1

+ ℎ2 󵄩󵄩󵄩󵄩󵄩𝑝ℎ − 𝑝 + 𝑝 − Π𝑝 + Π𝑝 − Π𝑝ℎ󵄩󵄩󵄩󵄩󵄩
2

0

+ 𝑐 󵄩󵄩󵄩󵄩󵄩𝑝 − 𝑝ℎ󵄩󵄩󵄩󵄩󵄩
2

0

≤ 𝑐 󵄩󵄩󵄩󵄩󵄩u − uℎ󵄩󵄩󵄩󵄩󵄩
2

1
+ ℎ2 󵄩󵄩󵄩󵄩𝑝 − Π𝑝󵄩󵄩󵄩󵄩20 + 𝑐 󵄩󵄩󵄩󵄩󵄩𝑝 − 𝑝ℎ󵄩󵄩󵄩󵄩󵄩

2

0

≤ 𝑐ℎ4 (‖u‖3 + 󵄩󵄩󵄩󵄩𝑝󵄩󵄩󵄩󵄩2)2 .

(42)

Remark 7. From Theorem 3, for the usual 𝑃2 − 𝑃2 stabilized
finite element solution (uℎ, 𝑝ℎ; 𝜆ℎ) which involves solving a
Stokes eigenvalue problem with mesh size ℎ, we have the
following error estimates:

󵄩󵄩󵄩󵄩u − uℎ
󵄩󵄩󵄩󵄩0 + ℎ (󵄩󵄩󵄩󵄩u − uℎ

󵄩󵄩󵄩󵄩1 + 󵄩󵄩󵄩󵄩𝑝 − 𝑝ℎ󵄩󵄩󵄩󵄩0) ≤ 𝑐ℎ3,
󵄨󵄨󵄨󵄨𝜆 − 𝜆ℎ󵄨󵄨󵄨󵄨 ≤ 𝑐ℎ4.

(43)

Furthermore, if we use the two-space stabilized finite
element method, then we get the convergence rate of the
same order as the usual stabilized finite elementmethod from
Theorem 6. However, our method is more efficient than the
𝑃2 − 𝑃2 stabilized finite element scheme in the same mesh
because our method for solving Stokes eigenvalue problem is
to compute an initial approximation based on a lower number
of nodes, which takes less CPU time.
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Table 1: Relative error and convergence rate for 𝑃2 − 𝑃2 pair.
1/ℎ 𝜆ℎ |𝜆 − 𝜆ℎ|/|𝜆| Rate CPU time
8 52.4269 1.570𝐸 − 3 0.156
16 52.3505 1.111𝐸 − 4 3.821 0.672
32 52.3451 7.345𝐸 − 6 3.919 3.469
64 52.3447 5.245𝐸 − 7 3.808 27.001

Table 2: Relative error and convergence rate of two-space method with 𝑃2 − 𝑃2 pair.
1/ℎ 𝜆ℎ |𝜆 − 𝜆ℎ|/|𝜆| Rate CPU time
8 52.4594 2.191𝐸 − 3 0.14
16 52.3529 1.570𝐸 − 4 3.803 0.609
32 52.3452 1.029𝐸 − 5 3.930 2.766
64 52.3447 6.536𝐸 − 7 3.977 13.875

Table 3: Relative error and convergence rate of two-space method with 𝑃2𝑏 − 𝑃2 pair.
1/ℎ 𝜆ℎ |𝜆 − 𝜆ℎ|/|𝜆| Rate CPU time
8 52.518 3.311𝐸 − 3 0.218
16 52.3594 2.817𝐸 − 4 3.555 0.875
32 52.3458 2.033𝐸 − 5 3.793 3.984
64 52.3448 1.338𝐸 − 6 3.926 22.916

Remark 8. For the two-space algorithm with 𝑃2𝑏 − 𝑃2 (M2ℎ ×𝑊ℎ) pair which satisfies inf-sup condition, we obtain the same
result. The procedure of the two-space method with 𝑃2𝑏 − 𝑃2
pair could be described in the following manner: Firstly, we
solve the following Stokes eigenvalue problem by 𝑃1𝑏 − 𝑃1
(M1ℎ × 𝑊ℎ) pair on the mesh size ℎ; then, we should solve
the new Stokes problem by 𝑃2𝑏 − 𝑃2 pair on the same mesh
size ℎ. Finally we can compute the eigenvalue by the Rayleigh
quotient.

5. Numerical Experiments

In this section we present numerical results to check the
theoretical analysis contained in Theorem 6. Our goal is
to confirm the theoretical results of the new two-space
stabilized finite element method for the two-dimensional
Stokes eigenvalue approximated by the equal order finite
element pairs based on local Gauss integration.

In our numerical experiments, Ω is the unit square
domain [0, 1] × [0, 1] in R2. The domain Ω is uniformly
divided by the triangulations of mesh size ℎ. Here, we just
consider the first eigenvalue of the Stokes eigenvalue problem
for the sake of simplicity. Following [4], we employ the
approximation 𝜆1 = 52.3446911 as the reference solution for
the first eigenvalue. Note that in these computations we set
] = 1.

When solving the Stokes problem with a mesh size ℎ,
we need the solutions 𝜆ℎ and uℎ generated by a lower finite
element pair𝑃1−𝑃1. To do this we interpolate the solutions 𝜆ℎ
anduℎ onto the gridwith the samemesh size ℎ, but increasing
the order of themixed finite element space. In conclusion, the
solution of the two-space method is obtained by one simple

eigenvalue problem by a lower finite element pair and one
time interpolation by a higher finite element pair 𝑃2 − 𝑃2.

Our goal in this test is to validate the merit of the two-
spacemethod as compared with the𝑃2−𝑃2 stabilizedmethod
and the two-space method with 𝑃2𝑏 − 𝑃2 pair. The eigenvalue
approximation 𝜆ℎ, the eigenvalue error, the convergence
rates, and the CPU time for the stabilized mixed finite
element methods for different values of ℎ are tabulated in
Tables 1, 2, and 3. From Tables 1, 2, and 3, we can see that
the three methods work well and keep the convergence rates
just as predicted by the theoretical analysis, but our two-space
method can take less CPU time. For the two-space method
with 𝑃2𝑏 − 𝑃2 pair, the two-space method with 𝑃2 − 𝑃2 pair
approximates the velocity variable with a lower number of
nodes, so our method can save a lot of time.

Next numerical test is about the second, third, and
fourth eigenvalues 𝜆ℎ2,3,4. The reference values are computed
over a fine mesh ℎ = 1/64 and the results are 𝜆2,3,4 =
92.1245411, 92.1245843, 128.209971. Then, in Figure 1, we
exhibit the 𝑂(ℎ4) convergence rate as has been predicted in
Theorem 6 with the two-space method.

Moreover, we give two plots of numerical solutions of two
kinds of two-space schemes at the mesh 1/ℎ = 48 in Figure 2
for the details. Figure 2 shows the stability of two schemes.

6. Conclusions

In this paper, we presented the two-space algorithm for the
Stokes eigenvalue problem discretized by stabilized mixed
finite element scheme, based on local Gauss integration
technique.Themain feature of our method is to combine two
equal order stabilizedmethods, then use the first-ordermixed
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Figure 1: The convergence rate of the eigenvalue for 𝜆2,3,4 on the unit square with the two-space method.
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Figure 2: Plots of the velocity and pressure at ℎ = 1/48: numerical solution of two-space method with 𝑃2 − 𝑃2(a–c) and numerical solution
of two-space method with 𝑃2𝑏 − 𝑃2(d–f) for 𝑢1ℎ, 𝑢2ℎ, 𝑝ℎ.
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finite element space to solve the original Stokes eigenvalue
problem, and solve the Stokes source problem in the second-
order mixed finite element space on the same mesh. More-
over, the related error estimates have been derived. Finally,
numerical tests show that the two-space stabilized mixed
finite element method is numerically efficient for solving
the Stokes eigenvalue problem. The two-space algorithm can
achieve the same accuracy as the stabilized finite element
solution as the 𝑃2 − 𝑃2 stabilized method by taking less CPU
time. Obviously, this method can be extended to the case of
three dimensions easily. And there are some open questions
including the possible extension of themethod to other linear
and nonlinear eigenvalue problems.
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