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This paper presents a methodology to improve installation of friction dampers in civil structures subjected to artificial and real
earthquakes using a metaheuristic optimization technique. The Firefly Algorithm is used in this work and it is linked with a
computational routine based on Finite Differences Method to solve simultaneous optimization of friction dampers problem. The
methodology is implemented for two kinds of structures: a 2D steel frame building and a 3D concrete frame building.The scope of
this study is to reduce two different objective functions: (i) the maximum displacement at the top of a structure and (ii) maximum
interstorey drift. The results showed that the methodology was able to reduce two objective functions and it can be recommended
as an efficient tool to project optimal fiction dampers.

1. Introduction

In order to avoid structural damage due to natural hazards
like earthquakes, structural engineering has presented several
advances in seismic energy dissipation devices.These devices
could be active or passive and their implementation depends
on project investment. The active devices change their prop-
erties in function of structural response; for this reason, they
are most expensive. On the other hand, passive devices are
cheaper than active ones, presenting a low cost of installation
and maintenance.

Because of their characteristics, passive devices stand out
between energy dissipation devices increasing development
of several of these devices, such as, viscoelastic dampers,
metallic yield dampers, and friction dampers [1]. Addition-
ally, an increasing number of applications of this kind of pas-
sive control systems highlight effectiveness of these devices
in reducing dynamic structural response, as demonstrated in
the works found in literature, for example, [2–6]. To allow
an economic use of these sorts of devices, in the last decade
several researches have started development of damper

optimizationmethodologies with the aim of optimizing their
parameters and best location on structure. In literature it is
possible to find several papers about optimization of Tuned
Mass Dampers (TMD), as, for instance, [7–13]. On the other
hand, few works about optimization of friction dampers are
found in literature, for example, [14–19].

Themain goal of this work is to present amethodology for
carrying out simultaneous optimization (friction forces and
best places in structure) for a maximum number of friction
dampers using a metaheuristic optimization algorithm such
as Firefly Algorithm improving installation of this sort of
devices in buildings located in regions with high seismic
activity with the aim of carrying out a passive control of
structural response. The dynamic response is obtained by a
computational routine based on Finite Differences Method
developed by the authors and it is linked with optimization
algorithm.

The metaheuristic algorithms are more suitable to deal
with dampers optimization problems because location of a
friction dampers at a particular position in building is a
discrete number; it is a discrete design variable, whereas
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friction forces of each damper are represented by a contin-
uous number, that is, a continuous design variable. Thus,
optimization problem presented in this work is a mixed-
variable problem and such problems are usually nonconvex.
According to Miguel et al. [20] metaheuristic algorithms
are capable of solving such problems and some of salient
characteristics of this sort of optimization techniques are as
follows: (a) they do not require gradient information; (b)
if metaheuristic algorithm is correctly tuned, it does not
become trapped in local minima; (c) it is possible to apply
in problems with discontinuous functions; (d) they provide a
set of optimal solutions rather than a single one, giving to the
designer a range of options to choose; (e) it is possible to use
in solving mixed-variable optimization problem.

Finally, optimization of friction dampers is a relatively
unexplored subject in the world, and this paper proposes a
methodology for optimization of this kind of passive energy
dissipation device.

2. Optimization Problem

Concerning civil structures located in regions with high seis-
mic activity, engineers are usually able to suggest a suitable
set of solutions to avoid structural damage. In order to avoid
classical approaches based on trial and error, optimization
techniques applied to energy dissipation devices have become
an important tool for design engineers, avoiding high costs
in project. In this way, it is possible to obtain optimal device
parameters. For friction damper location problem, calcula-
tion of structure response for every possible arrangement of
friction dampers mechanical parameters turns out to be a
very time consuming procedure because each case requires a
dynamical analysis of structure subjected to an external force
such as earthquakes.

In the last years, some researchers such as Mousavi
& Ghorbani-Tanha [21] have been optimizing location of
viscoelastic dampers using Genetic Algorithms (GA) for
reducing structure dynamic response in terms of displace-
ment. In this research, with aim of carrying out simultaneous
optimization, that is, obtain optimal location in building and
optimal mechanical parameters (friction forces) of a maxi-
mum number of friction dampers, optimization technique
has been improved through linking computational routine
based on Finite Differences Method developed in MAT-
LAB by the authors with Firefly Algorithm. Two objective
functions of simultaneous optimization of friction dampers
are proposed in this work: (i) maximum displacement at
the top of a structure and (ii) maximum interstorey drift.
Furthermore, complexity of optimization problem was a
criterion to choose metaheuristic techniques, for example,
Firefly Algorithm (FA).

Calculating objective functions for each arrangement of
friction dampers requires a dynamic analysis of structure
during earthquake. According to Miguel [22] it is possible
to solve motion equation (see (1)) using Finite Difference
Method. Thus, authors developed a computational routine
based on Central Finite Difference Method.

𝑀󳨀→̈x (𝑡) + 𝐶󳨀→̇x (𝑡) + 𝐾󳨀→x (𝑡) + 󳨀→𝐹𝑓𝑛 = −𝑀𝐵󳨀→̈x g (𝑡) . (1)

Equation (1) represents dynamic behavior of a multidegree
of freedom (MDOF) system with friction dampers and
subjected to external force, where 𝑀 and 𝐾 are 𝑛 × 𝑛 size
structural mass and stiffness matrices, respectively, and 𝑛
is number of degrees of freedom. Damping matrix 𝐶 is
proportional to𝑀 and 𝐾 matrices, as 𝐶 = 𝑎𝑀 + 𝑏𝐾. The 𝑛-
dimensional vector 󳨀→x (𝑡) represents the relative displacement
with respect to base and differentiation with respect to time
is represented with a dot over displacement vector symbol.
Coulomb friction force is represented by 𝑛-dimensional
vector 󳨀→𝐹𝑓𝑛. 𝐵 is a 𝑛 × 𝑤matrix that contains cosine directors
of angles formed between base motion and direction of
displacement considered degree of freedom (DOF). 𝑤 is
number of directions of ground motion and 󳨀→̈x g(𝑡) is 𝑤-
dimensional ground acceleration vector of seismic excitation.
Coulomb friction force is represented by (2) where 𝜇 is the
friction coefficient (assumed as constant),𝑁 is normal force
vector, sgn() is sign function, and V(𝑡) is relative velocity
vector between ends of damper.

𝐹𝑓𝑛 = 𝜇𝑁 sgn (V (𝑡)) . (2)

It is important to highlight that magnitude of friction force is
constant but its direction is always opposite to sliding velocity.
The changes in direction of velocity cause discontinuities in
friction force, leading to difficulties in evaluating response of
a system with friction dampers. For this reason, continuous
function 𝑓2(𝛼2V) = tanh(𝛼2V) with 𝛼2 = 1 × 1050 was
implemented, which was proposed by Mostaghel and Davis
[23] and represents discontinuity of Coulomb friction force,
where 𝛼2 is parameter that controls level of accuracy of
function representing friction force.The continuous function𝑓2 was already used in previous studies, for example, [14–
19, 22].

The friction damper is a device highlighted amongpassive
dampers because of low maintenance cost and high perfor-
mance to dissipate seismic energy. Behind its performance
lies solid friction mechanism that gives desired energy dis-
sipation to control structural response. An example of this
sort of device is friction damper (see Figure 1(a)) Model A
developed by Miguel [22]. The Model A develops friction
force because of two solid bodies sliding in relation to each
other. The material used for sliding bodies is brass and
control of normal force at contact between two solid bodies
is given by two compression springs. If the reader needsmore
information aboutModel A, the authors recommend reading
Master Dissertation of Miguel [22]. In this work, placement
of friction dampers in structure as diagonal bracing bars was
considered as shown in Figure 1(b).

The optimization problem consist in an objective func-
tion to be minimized, a search space defined over a set
of discrete design variable, and continuous design vari-
ables. Appropriate locations for a limited number of friction
dampers in a civil structure can be represented by discrete
variables and appropriate mechanical parameters for each
optimal located damper are best represented by continuous
variable. Optimization problem constraints are allowed limits
for friction forces (lower bound ≤ 󳨀→𝐹𝑓𝑛 ≤ upper bound),
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Figure 1: (a) Friction damper Model A; (b) n-storey structure with friction dampers.

Table 1: Objective functions.

Find 󳨀→y
Minimize J1 (󳨀→y ) = 𝐷max(󳨀→y ) J2 (󳨀→y ) = 𝑑max(󳨀→y )
Subjected to

𝐹min
𝑓𝑛 ≤ 𝐹𝑗

𝑓𝑛
≤ 𝐹max
𝑓𝑛 , 𝑗 = 1, . . . , 𝑛𝑑

𝑛𝑝 (number of available positions)
𝑛𝑑 (maximum number of dampers)

number of available positions (𝑛𝑝) in structure for installation
of a maximum number of friction dampers (𝑛𝑑). As was
mentioned above, positions for each passive device in struc-
ture are best represented as discrete design variable. Thus,󳨀→𝑃 is 𝑛𝑝-dimensional vector of damper positions containing
0 and 1; that is, 1 indicates that there is a damper in that
position. Thus, maximum number of ones in 󳨀→𝑃 is 𝑛𝑑. On the
other hand, friction forces 󳨀→𝐹𝑓𝑛 of each friction damper are
better represented as continuous design variables. With aim
of presenting a correct notation, design variables are grouped
into design vector󳨀→y = [󳨀→𝑃 󳨀→𝐹𝑓𝑛]. Two optimization problems
can be posed as shown in Table 1, where first objective
function J1(󳨀→y ) is minimize maximum displacement at top
of structure 𝐷max(󳨀→y ) and second objective function J2(󳨀→y )
is minimize maximum interstorey drift in structure 𝑑max(󳨀→y )
with same constraints mentioned above for two objective
functions.

3. Firefly Algorithm

Thismetaheuristic optimizationmethodologywas developed
by Yang [24] based on characteristic bioluminescence of
fireflies, that is, coleopteran insects notorious for their light
emissions. In later years, several researches have been focused

on solving structural optimization and damper optimization
problems implementing Firefly Algorithm, as is presented in
some works in literature, for example, [20, 25–36].

The Firefly Algorithm will evaluate objective function
after solving motion equation for each optimal arrangement
of friction dampers through computational routine based on
Central Finite Difference Method developed by the authors.
For each iteration a number 𝑝 of objective functions are
evaluated where fireflies’ population is 𝑝; in other words each
firefly will evaluate one objective function. For purposes of
guaranteeing optimal response and preventing Firefly Algo-
rithm from converging to local optimum, fireflies’ population
was set to fifty fireflies and iterations to one thousand.
Two stopping criteria were taken into account; first one is
maximum number of iterations (𝑡max) (also called generation
number) set to one thousand; second one is a consecutive
number of iterations (𝑡𝑘) without change in incumbent (best
objective function J(y𝑖) associated with best firefly in current
iteration) settled to one hundred iterations. Thus, Firefly
Algorithm may be stopped by either of two stop criteria. It
is worth highlighting that stop criteria developed reduces
computational time, in best case, up to a third of the time
spent by stop criteria of number of iterations. In order
to summarize information presented before, a flowchart of
Firefly Algorithm is presented in Figure 2. Besides, if the
reader requires more information about Firefly Algorithm,
the authors recommend the book Yang [24], which provides
several details about optimization methodology and compu-
tational code of Firefly Algorithm.

4. Numerical Simulations and
Illustrative Examples

In this section, with the aim of illustrating methodology
presented above and demonstrating capacity to optimize
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Figure 2: Flowchart of the Firefly Algorithm.

dynamic response of a structure under earthquake excitation,
two kinds of structures are implemented: a 2D steel building
adapted from Miguel et al. [37] and a 3D concrete building
located in Cúcuta, Colombia.

As explained above, two objective functions are used
to illustrate performance of proposed methodology for
optimum design of friction dampers. The two objective
functions involve computing of vector 󳨀→𝑥(𝑡) through solving
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Figure 3: Ten-storey steel building.

(1) using finite difference explicit method as was mentioned
previously.

4.1. Ten-Storey Steel Building. The first structure analyzed is a
steel, three-bay, 10-storey building, 37.51m high and 23.78m
wide, shown in Figure 3, in which it is also shown diagonal
disposition of friction dampers. The structure is modeled as
a FE 2D frame structure consisting of 70 elements and 44
nodes, that is, 132 degrees of freedom. The finite element is
a 2D beam element with three degrees of freedom per node.
The mass and stiffness matrices of element are present below
in (3) and (4), respectively.

𝑚𝑒

=

[[[[[[[[[[[[[[[[[[[[[
[

𝜌𝐴𝑙
3 0 0 𝜌𝐴𝑙

6 0 0
0 13𝜌𝐴𝑙

35
11𝜌𝐴𝑙2
210 0 9𝜌𝐴𝑙

70 −13𝜌𝐴𝑙2420
0 11𝜌𝐴𝑙2

210
𝜌𝐴𝑙3
105 0 13𝜌𝐴𝑙2

420 −𝜌𝐴𝑙3140𝜌𝐴𝑙
6 0 0 𝜌𝐴𝑙

3 0 0
0 9𝜌𝐴𝑙

70
13𝜌𝐴𝑙2
420 0 13𝜌𝐴𝑙

35 −11𝜌𝐴𝑙2210
0 −13𝜌𝐴𝑙2420 −𝜌𝐴𝑙3140 0 −11𝜌𝐴𝑙2210

𝜌𝐴𝑙3
105

]]]]]]]]]]]]]]]]]]]]]
]

(3)

𝑘𝑒 =

[[[[[[[[[[[[[[[[[
[

𝐸𝐴
𝑙 0 0 −𝐸𝐴𝑙 0 0
0 12𝐼𝑧𝑧𝐸𝑙3

6𝐼𝑧𝑧𝐸𝑙2 0 12𝐼𝑧𝑧𝐸𝑙3
6𝐼𝑧𝑧𝐸𝑙2

0 6𝐼𝑧𝑧𝐸𝑙2
4𝐼𝑧𝑧𝐸𝑙 0 −6𝐼𝑧𝑧𝐸𝑙2

2𝐼𝑧𝑧𝐸𝑙
−𝐸𝐴𝑙 0 0 𝐸𝐴

𝑙 0 0
0 12𝐼𝑧𝑧𝐸𝑙3 −6𝐼𝑧𝑧𝐸𝑙2 0 12𝐼𝑧𝑧𝐸𝑙3 −6𝐼𝑧𝑧𝐸𝑙2
0 6𝐼𝑧𝑧𝐸𝑙2

2𝐼𝑧𝑧𝐸𝑙 0 −6𝐼𝑧𝑧𝐸𝑙2
4𝐼𝑧𝑧𝐸𝑙

]]]]]]]]]]]]]]]]]
]

(4)

in which 𝜌 is specific mass, 𝐴 is cross-sectional area, 𝑙 is
element length, 𝐸 is Young’s modulus, and 𝐼𝑧𝑧 is moment of
inertia. Geometrical properties of members of structure are
presented in Table 2.

As well-known Finite Difference Method employed in
this work is a conditionally stable method, it requires using
a time integration step Δ𝑡 less than a critical time step Δ𝑡cr.
Thus, critical time step is calculated using (5) as suggested by
Rao and Yap [38].

Δ𝑡 ≤ Δ𝑡cr = 2
𝜔𝑛𝑛 (5)

in which 𝜔𝑛𝑛 is largest natural frequency of structure. Thus,
for this case, time step Δ𝑡 equal to 3𝐸 − 4 s is used to
solve motion equation (see (1)). It is noteworthy that, in a
steel structure, damping ratio (𝜁) considered for first and
second vibration modes is 0.7% of critical damping (𝑎 =
0.1493 and 𝑏 = 2.6523 × 10−4). The first six natural
frequencies of structure are 2.3609, 6.0399, 9.9620, 14.5769,
20.1192, and 26.1602Hz. As may be seen in Figure 3, there
are ten predefined possible positions (𝑛𝑝 = 10) for friction
dampers (𝑃1, 𝑃2, 𝑃3, . . . , 𝑃10). The dampers are assumed to
be installed between neighboring stories by braces. The
ten-storey building is subjected to generated Kanai-Tajimi
excitation for three kinds of soils. In the next section method
to simulate seismic loads is presented.

4.1.1. Simulation Seismic Loading. As was mentioned above,
part of motion equation is seismic acceleration 𝑥̈𝑔. As
a dynamic load a one-dimensional artificial earthquake
was implemented where acceleration is zero-mean normal
random processes simulated by superposition of harmonic
waves, as shown by Shinozuka and Jan [39]. The Spectral
Representation Method is best represented by

󳨀→̈𝑥 𝑔 (𝑡) =
𝑁∑
𝑗=1

√2𝑆𝜔 (𝑓𝑗) Δ𝑓𝑗 cos (2𝜋𝑓𝑗𝑡 + 𝜙𝑗) . (6)

In this method, frequency band of interest must be divided
into 𝑁 intervals, such that Δ𝑓𝑗 = 𝑓𝑗+1 + 𝑓𝑗 and 𝜙𝑗 is phase
angle, which is a random variable with a uniform probability
distribution function between 0 and 2𝜋. On the other hand,
power spectral density function 𝑆𝜔 (see (7) and Figure 4) used
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Table 2: Geometrical properties of the 10-storey building.

Member number W shape Area [m2] Inertia moment [m4]
1, 2 W 360 × 216 2.76𝐸 − 2 7.12𝐸 − 4
3, 4, 17, 18, 27, 28, 33, 34 W 360 × 162 2.06𝐸 − 2 5.16𝐸 − 4
5, 6 W 360 × 122 1.55𝐸 − 2 3.65𝐸 − 4
7, 8, 37, 38 W 360 × 91 1.16𝐸 − 2 2.67𝐸 − 4
9, 10, 39, 40 W 360 × 64 8.14𝐸 − 2 1.78𝐸 − 4
11, 12 W 360 × 314 3.99𝐸 − 2 1.10𝐸 − 4
13, 14 W 360 × 262 3.35𝐸 − 2 8.94𝐸 − 4
15, 16, 31, 32 W 360 × 196 2.50𝐸 − 2 6.36𝐸 − 4
19, 20, 29, 30 W 360 × 101 1.29𝐸 − 2 3.01𝐸 − 4
21, 22 W 360 × 287 3.66𝐸 − 2 9.97𝐸 − 4
23, 24 W 360 × 237 3.01𝐸 − 2 7.88𝐸 − 4
25, 26 W 360 × 179 2.28𝐸 − 2 5.75𝐸 − 4
35, 36 W 360 × 110 1.40𝐸 − 2 3.31𝐸 − 4
41, 42, 43 W 610 × 113 1.45𝐸 − 2 8.75𝐸 − 4
44, 45, 46 W 610 × 101 1.30𝐸 − 2 7.64𝐸 − 4
47, 48, 49 W 610 × 92 1.18𝐸 − 2 6.51𝐸 − 4
50, 51, 52, 53, 54, 55 W 530 × 85 1.08𝐸 − 2 4.85𝐸 − 4
56, 57, 58, 59, 60, 61 W 530 × 74 9.53𝐸 − 3 4.11𝐸 − 4
62, 63, 64, 65 W 530 × 66 8.38𝐸 − 3 3.51𝐸 − 4
66, 67, 68 W 460 × 52 6.63𝐸 − 3 2.12𝐸 − 4
69, 70 W 360 × 39 4.98𝐸 − 3 1.02𝐸 − 4

Table 3: Soil and earthquakes parameters.

Soil type 𝜔𝑔 (rad/s) 𝜁𝑔 Earthquake duration (s)
Rock 8𝜋 0.6 15
Stiff soil 5𝜋 0.6 20
Soft soil 2.4𝜋 0.85 25

in this paper is proposed byKanai [40] andTajimi [41] known
as Kanai-Tajimi filter technique

𝑆𝑔 (𝜔) = 𝑆0 [
[

1 + 4𝜁2𝑔 (𝜔2/𝜔2𝑔)
[1 − 𝜔2/𝜔2𝑔]2 + 4𝜁2𝑔 (𝜔2/𝜔2𝑔)

]
]

𝑆0 = 𝐴𝑃2
𝑃𝑔2 [𝜋𝜔𝑔 (1/2𝜁𝑔 + 2𝜁𝑔)]

(7)

in which 𝑆𝑔(𝜔) is earthquake power spectrum, 𝑆0 is intensity
of spectrum, 𝜔𝑔 is dominant ground frequency, and 𝜁𝑔 is
critical damping parameter. The parameter 𝑆0 is related to
peak ground acceleration (PGA), where 𝐴𝑃 is the PGA value
assumed as 35% of gravity and 𝑃𝑔 is peak factor taken as 3.
Three values of 𝜔𝑔 and 𝜁𝑔 are presented by Seya et al. [42]
as representative values of three kinds of soil: soft soil, stiff
soil, and rock.The parameters of Kanai-Tajimi power spectra
for three soil conditions and total duration of earthquake
acceleration are listed in Table 3.

The Kanai-Tajimi power spectrum for each soil scenario
and PGA of 0.35 g are shown in Figure 4(a). Given three

different power spectra, earthquake time histories can be
developed by using superposition of harmonic wavesmethod
as wasmentioned above and three accelerograms for each soil
scenario are also shown in Figures 4(b), 4(c), and 4(d).

4.1.2. Optimization Results of the Ten-Storey Building. In
order to illustrate the methodology, the ten-storey building is
studied taking into account the three kinds of soils presented
above. The constraints for three optimization problems are
the same.Thus, the number of predefine positions 𝑛𝑝 is equal
to ten and maximum number of dampers 𝑛𝑑 to be installed
in structure is equal to three. The allowable limit for friction
forces for each device is (64.489 kN ≤ 󳨀→𝐹𝑓𝑛 ≤ 78.819 kN).
The population size and number of generations of Firefly
Algorithm are 50 and 1000, respectively. It is important to
highlight that the sum of friction forces of optimal devices
does not exceed 50% of weight of structure, which is equal to
214.96 kN.

For rock soil, positions of friction dampers do not
change and friction forces are similar in two independent
runs for each objective functions. This is an advantage for
design engineers for design of friction dampers, because
there are two possible designs and both of them achieve a
significant reduction in the structural response. Table 4 shows
a comparison of two independent runs for each objective
function. It is worthy to highlight achieved reduction of 66%
for each one, preventing damage or collapse of structure.

Figures 5(a) and 5(c) illustrate a considerable reduction
on structural response in terms of displacement at Node
44 and interstorey drift between fourth and fifth storey
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Figure 4: (a) Kanai-Tajimi power spectra corresponding to three soil scenarios. (b) Rock soil accelerogram. (c) Stiff soil accelerogram. (d)
Soft soil accelerogram.

Table 4: Optimal force and placement of friction dampers for rock soil.

Run Optimal position 󳨀→𝑃 Optimal friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum displacement at Node 44 [m] Reduction (%)
- Without dampers Uncontrolled structure 0.0726 -
1 [1010100000] [76.808; 68.273; 65.325] 0.0243 66.5
2 [1010100000] [77.104; 64.833; 71.152] 0.0243 66.5
Run Optimal Position 󳨀→𝑃 Optimal friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum interstorey drift 𝑑max [m] Reduction (%)
- Without dampers Uncontrolled structure 0.0098 -
1 [1010100000] [70.958; 70.384; 67.919] 0.0033 66.32
2 [1010100000] [73.548; 71.912; 69.522] 0.0033 66.32

after installation of optimized friction damper on optimal
locations. Figures 5(b) and 5(d) illustrate maximum dis-
placement per storey and the maximum interstorey drift per
storey, respectively, thus allowing having an idea of structure’s
behavior before and after installation of optimized friction
dampers and thus showing the efficiency of said devices.

With the aim of demonstrating effectiveness of friction
damper optimization method in another way, optimal solu-
tion presented in Table 4 is compared with two alternative
methods for damper’s location. The first alternative method
is locating three optimized friction dampers, in a different
position from optimized one. The second one is installing a
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Figure 5: Structural response for rock soil scenario without control (red curve) and with three optimal friction dampers (blue curve). (a)
Displacement at Node 44. (b) Envelope diagrams of maximum displacement per storey. (c) Interstorey drift between fourth and fifth storey.
(d) Envelope diagrams of maximum interstorey drift.

friction damper on each storey (one damper on each prede-
fine possible positions (𝑛𝑝 = 10); see Figure 3) with equal
friction forces whose sum is equivalent to 50% of structure’s
weight. Table 5 shows these comparisons, demonstrating
optimization’s results presenting a better performance.

In the case of stiff soil, there are no changes in positions of
friction dampers for two independent runs for each objective
functions, giving two possible designs for design engineers
for carrying out design of friction dampers. Both of two pos-
sible designs achieve a significant reduction in the structural
response. Table 6 shows a comparison of two independent
runs for each objective function. As may be seen, reduction

achieves 66% for maximum displacement at Node 44 and
68% for maximum interstorey drift. Thus, passive control
through friction dampers preventing structural integrity is
compromised in a seismic event.

The reduction on structural response in terms of displace-
ment at Node 44 and interstorey drift between fourth and
fifth storey after installation of optimized friction damper
on optimal positions on structure can be seen in Figures
6(a) and 6(c), respectively. On the other hand, Figures 6(b)
and 6(d) illustrate maximum displacement per storey and
maximum interstorey drift per storey, respectively, for a
structure located on a stiff soil. As in previous case, optimal
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Table 5: Comparison between optimal solution and two alternative methods for rock soil.

Method Position 󳨀→𝑃 Friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum displacement at Node 44 [m]
Three optimized dampers [1010100000] [76.808; 68.273; 65.325] 0.0243
Alternative 1 [0001001001] [76.808; 68.273; 65.325] 0.0381
Alternative 2 [1111111111] 21.496 for each damper 0.0393
Method Position 󳨀→𝑃 Friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum interestorey drift 𝑑max [m]
Three optimized dampers [1010100000] [70.958; 70.384; 67.919] 0.0033
Alternative 1 [0001001001] [70.958; 70.384; 67.919] 0.0054
Alternative 2 [1111111111] 21.496 for each damper 0.0050

Table 6: Optimal force and placement of friction dampers for stiff soil.

Run Optimal position 󳨀→𝑃 Optimal friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum displacement at Node 44 [m] Reduction (%)
- Without dampers Uncontrolled structure 0.1311 -
1 [0011100000] [77.619; 77.606; 70.321] 0.0447 65.90
2 [0011100000] [77.167; 71.597; 76.854] 0.0446 65.98
Run Optimal position 󳨀→𝑃 Optimal friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum interstorey drift 𝑑max [m] Reduction (%)
- Without dampers Uncontrolled structure 0.0176 -
1 [1010100000] [78.055; 71.420; 76.501] 0.0055 68.75
2 [1010100000] [74.418; 74.794; 68.894] 0.0056 68.18

Table 7: Comparison between optimal solution and two alternative methods for stiff soil.

Method Position 󳨀→𝑃 Friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum displacement at Node 44 [m]
Three optimized dampers [0011100000] [77.619; 77.606; 70.321] 0.0447
Alternative 1 [0001001001] [77.619; 77.606; 70.321] 0.0697
Alternative 2 [1111111111] 21.496 for each damper 0.0955
Method Position 󳨀→𝑃 Friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum interstorey drift 𝑑max [m]
Three optimized dampers [1010100000] [78.055; 71.420; 76.501] 0.0055
Alternative 1 [0001001001] [78.055; 71.420; 76.501] 0.0130
Alternative 2 [1111111111] 21.496 for each damper 0.0128

Table 8: Optimal force and placement of friction dampers for soft soil.

Run Optimal position 󳨀→𝑃 Optimal friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum displacement at Node 44 [m] Reduction (%)
- Without dampers Uncontrolled structure 0.1161 -
1 [1010100000] [76.590; 70.145; 71.534] 0.0292 74.84
2 [1010100000] [77.051; 66.140; 74.230] 0.0285 75.45
Run Optimal position 󳨀→𝑃 Optimal friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum interstorey drift 𝑑max [m] Reduction (%)
- Without dampers Uncontrolled structure 0.0156 -
1 [1010100000] [72.616; 68.688; 67.258] 0.0037 76.28
2 [1010100000] [77.218; 67.538; 70.578] 0.0036 76.92

solution presented inTable 6 is comparedwith two alternative
methods for damper’s location. The comparisons shown at
Table 7 demonstrated that optimal solutions have a better
performance than solutions of both alternative methods.

Finally, for soft soil case, there are not changes on
positions of friction dampers for two independent runs for
each objective functions. The two possible designs presented
in Table 8 achieve a significant reduction in the structural

response for each objective function. As may be seen, reduc-
tion achieves 75% for maximum displacement at Node 44
and 76% formaximum interstorey drift.Thus, passive control
through friction dampers preventing structural integrity is
compromised in a seismic event on soft soil.

The reduction in structural response in terms of displace-
ment at Node 44 and interstorey drift between fourth and
fifth storey after installation of optimized friction damper on
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Figure 6: Structural response for stiff soil scenario without control (red curve) and with three optimal friction dampers (blue curve). (a)
Displacement at Node 44. (b) Envelope diagrams of maximum displacement per storey. (c) Interstorey drift between fourth and fifth storey.
(d) Envelope diagrams of maximum interstorey drift.

optimal positions on structure can be seen in Figures 7(a) and
7(c), respectively. Figures 7(b) and 7(d) illustrate maximum
displacement per storey and maximum interstorey drift per
storey, respectively, for a structure located on a soft soil.

As in previous cases, optimal solution presented inTable 8
is compared with two alternative methods for damper’s loca-
tion. The comparisons shown at Table 9 demonstrated that
optimal solutions have a better performance than solutions
of both alternative methods for soft soil scenario.

4.2. Six-Storey Concrete Building. The second structure ana-
lyzed is a concrete, three-bay, 6-storey building, 17.1m high,
16.55m wide, and 7m long, shown in Figure 8, in which
diagonal disposition of friction dampers is also shown. The
structure is modeled as a FE 3D frame structure consisting of
108 elements and 56 nodes, that is, 336 degrees of freedom.
The finite element is a 3D beam element with six degrees of
freedom per node.Themass and stiffnessmatrices of element
are presented below in (8) and (9), respectively.
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Figure 7: Structural response for soft soil scenario without control (red curve) and with three optimal friction dampers (blue curve). (a)
Displacement at Node 44. (b) Envelope diagrams of maximum displacement per storey. (c) Interstorey drift between fourth and fifth storey.
(d) Envelope diagrams of maximum interstorey drift.

Table 9: Comparison between optimal solution and two alternative methods for soft soil.

Method Position 󳨀→𝑃 Friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum displacement at Node 44 [m]
Three optimized dampers [1010100000] [76.590; 70.145; 71.534] 0.0292
Alternative 1 [0001001001] [76.590; 70.145; 71.534] 0.0400
Alternative 2 [1111111111] 21.496 for each damper 0.0549
Method Position 󳨀→𝑃 Friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum interstorey drift 𝑑max [m]
Three optimized dampers [1010100000] [72.616; 68.688; 67.258] 0.0037
Alternative 1 [0001001001] [72.616; 68.688; 67.258] 0.0056
Alternative 2 [1111111111] 21.496 for each damper 0.0076
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Figure 8: Six-storey concrete building.
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in which 𝜌 is specific mass, 𝐴 is cross-sectional area, 𝑙 is
element length, 𝐽 is torsional moment of inertia, 𝐸 is Young’s
modulus, 𝐼𝑉 is moment of inertia about vertical direction,𝐼𝐻 is moment of inertia about horizontal direction, and 𝐺
is shear modulus. The geometrical properties of members of
structure are presented in Table 10.

In this second case of study, time step Δ𝑡 was calculated
using (5) and is equal to 2𝐸−4 s. It is known that for concrete
structures damping ratio (𝜁) considered for first and second
vibration modes is 1% of critical damping (𝑎 = 0.1192 and
𝑏 = 8.3908×10−4).The first six natural frequencies are 1.8767,
1.9169, 2.2497, 4.2518, 5.1794, and 5.8208Hz.

As may be seen in Figure 8, there are twelve prede-
fined possible positions (𝑛𝑝 = 12) for friction dampers𝑃(1, 2, 3, . . . , 12). The dampers are assumed to be installed
between neighboring stories by braces. Since case of study is a
3D concrete building, a real three-component seismic record
corresponding to Cordoba earthquake was implemented,
which took place in Cordoba city, department of Quindı́o,
Colombia, in January 25 of 1999. Because of this earthquake
1185 people passed away and 8523 people were injured and
it caused serious damage in cities of Armenia and Pereira as
well as 28 nearby municipalities. The earthquake generated
losses of order of 1.591 USD million, corresponding to 1.88%
of the National GDP (Gross Domestic Product) of that year
[43].

Thus, in Figure 9 Cordoba seismic record with its three
components is illustrated. Besides, if the reader requires
three-component seismic record, the authors recommend
visiting the website of Colombian geological service.

4.2.1. Optimization Results of the Six-Storey Building. In order
to demonstrate friction dampers performance against real

earthquakes, such as Cordoba earthquake, which causes a
great destruction in many cities in Colombia, and illustrate
that the methodology of optimizing friction dampers is
reliable and flexible, simultaneous optimization is carried
out using three-component Cordoba seismic record. The
constraints for two optimization problems are same. Thus,
the number of predefined positions 𝑛𝑝 is equal to twelve
and maximum number of dampers 𝑛𝑑 to be installed in
structure is equal to four. On the other hand, allowable limit
for friction forces for each device is (249.732 kN ≤ 󳨀→𝐹𝑓𝑛 ≤305.228 kN). The population size and number of generations
of Firefly Algorithm are 50 and 1000, respectively, and results
are presented in Table 11. It is important to highlight that the
sum of friction forces of optimal devices does not exceed 70%
of structure’s weight which is equal to 158560 kN.

The results show that uncontrolled structural response
and controlled structural response (structure equipped with
friction dampers) vary considerably in this scenario. As could
be seen in results presented in Table 11, optimized dampers
achieved a reduction of structural response (in terms of
displacement at Node 56 and maximum interstorey drift)
greater than 80%. As may be seen in Figures 10(a) and 10(c)
there is a comparison between structural response in terms
of displacement at Node 56 and interstorey drift between first
and second storey, respectively, without control and with four
optimal dampers in their optimal positions.

Finally, with the aim of demonstrating effectiveness of
friction damper optimization method for spatial structures
in another way, optimal solution presented in Table 11 is
compared with two alternative methods for damper’s loca-
tion. The first alternative method is locating four optimized
friction dampers, in a different position from optimized
one. The second one is installing a friction damper on each
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Table 10: Geometrical properties of the 6-storey building.

Member number Area [m2] Inertia moment 𝐼𝑥𝑧 [m4] Inertia moment 𝐼𝑧𝑦 [m4]
1 to 12 0.18 54𝐸 − 4 13𝐸 − 4
13 to 36 0.15 31𝐸 − 4 11𝐸 − 4
37 to 42 0.12 16𝐸 − 4 9𝐸 − 4
43 to 48 0.15 31𝐸 − 4 11𝐸 − 4
85 to 96 0.12 9𝐸 − 4 16𝐸 − 4
97 to 102 0.16 21𝐸 − 4 21𝐸 − 4
103 to 108 0.12 9𝐸 − 4 16𝐸 − 4
67, 70, 73, 76, 79, 82 0.06 1𝐸 − 4 8𝐸 − 4
49 to 66 0.12 9𝐸 − 4 16𝐸 − 4
68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 84 0.12 9𝐸 − 4 16𝐸 − 4

Table 11: Optimal force and placement of friction dampers.

Run Optimal position 󳨀→𝑃 Optimal friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum displacement at Node 56 Reduction (%)
- Without dampers Uncontrolled structure 0.2606 -
1 [010000111000] [302.621; 304.719; 286.548; 302.900] 0.0303 88.37
2 [010000111000] [295.467; 303.425; 299.925; 300.450] 0.0302 88.39
Run Optimal position 󳨀→𝑃 Optimal friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum interstorey drift 𝑑max [m] Reduction (%)
- Without dampers Uncontrolled structure 0.0621 -
1 [110000011000] [284.482; 299.515; 252.360; 281.091] 0.0093 84.93
2 [110000011000] [271.482; 293.908; 305.228; 296.859] 0.0094 84.89

Table 12: Comparison between optimal solution and two alternative methods.

Method Position 󳨀→𝑃 Friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum displacement at Node 44 [m]
Four optimized dampers [010000111000] [302.621; 304.719; 286.548; 302.900] 0.0303
Alternative 1 [001010101000] [302.621; 304.719; 286.548; 302.900] 0.0562
Alternative 2 [111111111111] 92.493 for each damper 0.0559
Method Position 󳨀→𝑃 Friction forces 󳨀→𝐹𝑓𝑛 [kN] Maximum interstorey drift 𝑑max [m]
Four optimized dampers [110000011000] [271.482; 293.908; 305.228; 296.859] 0.0094
Alternative 1 [001010101000] [271.482; 293.908; 305.228; 296.859] 0.0145
Alternative 2 [111111111111] 92.493 for each damper 0.0147

storey (one damper on each predefined possible position(𝑛𝑝 = 12); see Figure 8) with equal friction forces and
whose sum is equivalent to seventy percent of structure’s
weight. Table 12 shows these comparisons, demonstrating
optimization’s results presenting a better performance.

5. Conclusions

As is well known, passive energy dissipation devices in struc-
tures have achieved notoriety in last years as an economic
alternative in control of vibration in structures subjected
to earthquakes. In the literature it is possible to find some
allusive works on damper optimization, especially TMD and
viscous and viscoelastic dampers in building structures. On
the other hand, allusive studies on friction dampers are
scarcer than other devices probably because of difficulties that
a system with friction dampers presents.

The main contribution of this works is the methodology
with well-known Firefly Algorithm optimization technique

to carry out simultaneous optimization of friction dampers
for two different objective functions: attenuate response in
terms of displacement at top of structure and minimize
interstorey drift for two kinds of structure: a ten-storey steel
building and a six-storey concrete building.Themethodology
works with well-known Firefly Algorithm and for purpose
of damper optimization the authors improve this algorithm
through programming a second stop criterion, giving a good
performance in terms of computational time.

The proposed methodology was used in computing the
optimal friction forces of a given maximum number of
friction dampers and their optimal placements in both of
the buildings with the aim of achieving a desired reduction
of structural response. It is noteworthy that methodology is
flexible, allowing user to change performance function.

Concerning the computational time, the proposed meth-
odology presents a good performance, achieving optimum
design with less iterations than the maximum number of
iterations set, taking around six hours.
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Figure 9: Three-component Cordoba seismic record. (a) North-South component. (b) Response spectra for North-South component. (c)
East-West component. (d) Response spectra for East-West component. (e) Up component. (f) Response spectra for Up component.
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Figure 10: Structural response for Cordoba earthquake without control (red curve) and with four optimal friction dampers (blue curve). (a)
Displacement at Node 56. (b) Envelope diagrams of maximum displacement per storey. (c) Interstorey drift between first and second storey.
(d) Maximum interstorey drift per storey.

It is important to highlight that the methodologies were
developed using a PC with an Intel Core i7-4700MQ 2.4GHz
CPU and 12GB RAM; thus the computational cost is satisfac-
tory for this sort of dynamic problem.

The proposed methodology can be recommended due
to its performance as an effective tool to carry out the
optimum design of friction damper for civil structures.Thus,
this work shows that the design of passive devices for the
vibration control as friction dampers can be accomplished in
an economic and safe way, reducing costs and optimizing the
resources.
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[19] S. P. Ontiveros-Pérez, L. F. F. Miguel, and L. F. F. Miguel,
“Optimization of location and forces of friction dampers,”REM-
International Engineering Journal, vol. 70, no. 3, pp. 273–279,
2017.

[20] L. F. F. Miguel, R. H. Lopez, and L. F. F. Miguel, “Multimodal
size, shape, and topology optimisation of truss structures using
the Firefly algorithm,”Advances in Engineering Software, vol. 56,
pp. 23–37, 2013.

[21] S. A. Mousavi and A. K. Ghorbani-Tanha, “Optimum place-
ment and characteristics of velocity-dependent dampers under
seismic excitation,” Earthquake Engineering and Engineering
Vibration, vol. 11, no. 3, pp. 403–414, 2012.
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