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We study a controllable two-station tandem queueing system, where customers (jobs) must first be processed at upstream station
and then the downstream station. A manager dynamically allocates the service resource to each station to adjust the service rate,
leading to a tradeoff between the holding cost and resource cost. The goal of the manager is to find the optimal policy to minimize
the long-run average costs. The problem is constructed as a Markov decision process (MDP). In this paper, we consider the model
in which the resource cost and service rate functions are more general than linear. We derive the monotonicity of the optimal
allocation policy by the quasiconvexity properties of the value function. Furthermore, we obtain the relationship between the two
stations’ optimal policy and conditions under which the optimal policy is unique and has the bang-bang control property. Finally,
we provide some numerical experiments to illustrate these results.

1. Introduction

Queueing systems where customers must be processed at
each station in series from upstream station to downstream
station are called tandem queueing system. As we all know,
tandem queueing models have widespread applications in
both service organizations and production factory in the
sense that the system performance measures and optimiza-
tion are of primary concerns, such as the control of semi-
conductor fabrication processes and broadband wireless net-
works, appointment scheduling in hospital, and production
inventory system (see [1–3] and therein). Recently, this issue
has attracted much attention and vast literatures have been
studied, especially the dynamic resource allocation problems
of the tandem queueing system. Most of them are forced on
the models in two directions: admission control type and
server resource allocation type. The admission control of
the tandem queues have been widely studied (e.g., [4, 5]),
while little work has appeared concerning the structure of the
optimal resource allocation policy in the tandem queues.

For many systems, service consists of two or more phases
by one or more servers. A fundamental decision is how to

allocate the resource (servers orworkforces) owned by system
to each station. This problem is a classic topic, which roots
from Rosberg et al. [6] where the service rate in station 1
can be selected from a compact set and constant in station
2. Optimal control of a two-stage tandem queues system with
only two flexible servers was discussed in Ahn et al. [7]. Aru-
mugam et al. [8] considered inventory based allocation poli-
cies for flexible servers in serial systems. Smith and Barnes [9]
analyzed the optimal server allocation in closed finite queue-
ing networks.This question has been considered by the above
authors for different cost or reward criterion but without
considering the structure of the optimal policy. They just
make a numerical experiment to get the optimal policy. In
fact, it is more complex for themanager to obtain the detailed
optimal policy in the practical application. The managers
prefer more to make basal insight for the structure of the
optimal policy.While for the study of the structure of optimal
policy in single queue, many papers have investigated this
issue. Iravani et al. [10] studied the optimal service scheduling
in nonpreemptive finite-population queueing systems. The
single-queue systems of the optimal resource allocation
policy were considered by Yang et al. [11], who investigated
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the structural properties of the optimal resource allocation
policy. Yang et al. [12] studied optimal resource allocation for
parallel service facilities multiqueue systems with a shared
server pool.

For the optimal control of the tandem queueing system,
some relative works are discussed. Weber and Stidham [13]
considered a problem of optimal service rate control in
queueing networks where the optimal policy has a monotone
structure. Veatch and Wein [14] generalize the monotonicity
results of [13] where the control policies were studied under
the full information and service rate functions are linear in
the service resource. Mayorga et al. [15] studied the problem
of allocating flexible servers for a firm that operates a make-
to-order serial production system. The max-min optimality
of service rate control problem in closed queueing networks
was studied by Xia and Shihada [16] where the cost functions
are strictly convex (concave). Few studies, even among the
most recent, have considered the structure of the optimal
resource allocation policy in the tandem queues with nonlin-
ear service rate and cost functions. In many logistic environ-
ments, however, the assumption of the linear resource cost
and service rate is not appropriate. It is well known that if
the service cost is linear, these problems have all-or-nothing
(bang-bang) optimal policy (see [14]). Different from the
works quoted above, in our model, the service resource cost
and service rate are more general than linear in service
resource. Recently, Xia et al. [17] investigated the optimal
control of service rates of a tandem queue with power
constraints and general cost function. They mainly derived
some structures of the optimal policy, such as the bang-bang
control policy and 3-element set policy for some special cases,
while, in this paper, we study the structure of the optimal
control policy for the case with general cost and service
rate functions Moreover, some uninvestigated properties of
the optimal policy are obtained in this paper. Using the
theory of queueing system, we cast the optimal problem as a
MDP. The theory of Markov, semi-Markov, and regenerative
decision processes can be found in Morozov and Steyaert
[18]. We mainly analyze the properties of the optimal policy
under full information and partial information. Concretely,
we first derived the properties (monotonicity and convexity
property) of value function by the induction method and
queueing theory (see [19]). Second, we provide insights into
the optimal policy structure based on the properties of the
value function and dynamic programming method (see [20–
22]). Furthermore, we take Howard’s iteration procedure to
obtain numerical results.

The main contributions of this paper can be summarized
as follows. First, to the best of our knowledge, our paper is
the first to study the optimal resource allocation policy in the
tandemqueues with the general service rate and resource cost
functions. Second, we get themonotone results of the optimal
policy under the partial information based on the quasi-
convexity property of the value function. Third, we derive
the conditions under which the optimal policy is unique and
the bang-bang control policy is established.This conclusion is
totally new progress compared with all of the previous works
in the literature. Furthermore, we derive the relationship
between the two stations’ optimal policy. As far as we know,

these are the most general results for the optimality of
resource allocation in the tandem queueing system.

The rest of the paper is organized as follows. In Section 2,
we introduce the model formulation in detail based on the
controllable Markov decision problem.The characteristics of
the optimization problem and the optimality equation are
derived in Section 3. In Section 4, we present the structural
properties of the optimal policy andmain results of the paper.
In Section 5, we give some numerical examples to provide the
support for the results of the present model. Finally, some
further discussions and conclusions are given in Section 6.

2. Model Description

We consider a tandem queueing system with two stations.
Arrivals to the system at station 1 from outside follow a
Poisson process with parameter 𝜆 and have exponentially
distributed service requirement times at each station. After
receiving service at station 1, customers join immediately
to station 2 and receive service before leaving the system.
A decision-maker can assign a number of service resources
to each station. The service rate depends on the number of
service resources assigned to the stations precisely. When a
station has been allocated 𝑎 resources, the service duration of
the customer in station 𝑖 is exponentially distributed with rate
𝜇𝑖(𝑎), 𝑖 = 1, 2, which is strictly increasing in 𝑎. Without loss
of generality, we assume that 𝜇𝑖(0) = 0, 𝑖 = 1, 2. At any deci-
sion epoch, the decision-maker decides to choose the number
of service resources to station 1 from a set 𝐴 = [0, 𝑎max] and
to station 2 from a set 𝐵 = [0, 𝑏max] at the same time. Each
station has a single infinite-size FCFS queue. The interarrival
and service times are assumed to be mutually independent.
We assume that the stability condition 𝜆 < min{𝜇1(𝑎max),
𝜇2(𝑏max)} holds. Figure 1 gives an illustration of the sys-
tem.

We consider the following cost structure in the system.
Our objective is to obtain dynamic resource allocation policy
that minimizes the long-run average costs.

(1) Resources Cost. When station 𝑖 uses 𝑎 resources, a cost of
𝑐𝑖(𝑎), 𝑖 = 1, 2 is incurred by the system per unit time (𝑐𝑖(𝑎)
is a continuous function and strictly increasing in 𝑎. Without
loss of generality, we assume that 𝑐𝑖(0) = 0).

(2) Holding Cost. Holding costs are incurred at rates ℎ1 and
ℎ2 per unit time for each customer in stations 1 and 2,
respectively.

Let𝑋𝑖(𝑡) denote the number of customers at station 𝑖, 𝑖 =
1, 2. The state of the system at time 𝑡 can be described by
𝑋(𝑡) = (𝑋1(𝑡), 𝑋2(𝑡)). The system evolves as a continuous-
time Markov process 𝑋(𝑡) = {(𝑋1(𝑡), 𝑋2(𝑡)), 𝑡 ≥ 0}. We
define the notations 𝑥𝑖 to classify the certain components of
the vector state 𝑥 ∈ 𝐸. Clearly, the system state space is 𝐸 =
{(𝑥1, 𝑥2) | 𝑥1, 𝑥2 ∈ 𝑁} with 𝑁 = {0, 1, 2, . . .}. We consider
the stationaryMarkov policy under which the system evolves
as a continuous-time Markov chain. Moreover, in order to
study the optimal policy in the ergodic Markov process,
we assumed that the model is stable and conservative. The
transition rate under a control action (𝑎, 𝑏) is given by
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Figure 1: The controllable tandem queueing systems.

𝑞𝑥𝑦 (𝑎, 𝑏) =

{{{{{{{
{{{{{{{
{

𝜆 𝑦 = 𝑥 + 𝑒1;
𝜇1 (𝑎) 𝑦 = 𝑥 − 𝑒1 + 𝑒2, 𝑥1 > 0;
𝜇2 (𝑏) 𝑦 = 𝑥 − 𝑒2, 𝑥2 > 0;
0 else,

(1)

where

𝑞𝑥𝑦 (𝑎, 𝑏) ≥ 0, 𝑦 ̸= 𝑥,

𝑞𝑥𝑥 (𝑎, 𝑏) = −𝑞𝑥 (𝑎, 𝑏) = −∑
𝑦 ̸=𝑥

𝑞𝑥𝑦 (𝑎, 𝑏) ,

𝑞𝑥 (𝑎, 𝑏) < ∞.

(2)

Here 𝑒𝑖 is the 2-dimensional vectorwith 1 in the 𝑖th coordinate
and 0 elsewhere, 𝑖 = 1, 2.

The problem of the decision-maker is to choose an
optimal dynamic policy based on the number of customers
in each station that minimizes the long-run average costs.
We formulate the service resource management problem as
a Markov decision process. The set of decision epochs is
composed of the set of all arrivals and service completions.
The controllable system associated with a Markov process is
a five-tuple

{𝐸,𝐷 = (𝐴, 𝐵) , 𝑄 (𝑟) , 𝑐𝑖 (𝑎) , ℎ𝑖} (𝑖 = 1, 2) , (3)

in which 𝑄(𝑟) = (𝑞𝑥,𝑦(𝑟))𝑥,𝑦∈𝐸 is the infinitesimal generator
of the queueing system under the policy 𝑟. We consider the
stationary Markov policy 𝑟 : 𝐸 → 𝐷 with 𝑟 = (𝑎, 𝑏). Due
to the Markov property of the queueing system, we know
that the optimal policy depends only on the current state
regardless of 𝑡. In our model we consider two situations:
the decision with partial information and full information.
Concretely, when the system state is𝑥 = (𝑥1, 𝑥2), themanager
makes an action as follows:

(i) Partial information: the action for station 1 (2) is
𝑎(𝑥1) ∈ 𝐴 (𝑏(𝑥2) ∈ 𝐵, resp.). That is the action of
resource to station 𝑖 only depends on the number of
customers in station 𝑖.

(ii) Full information: the action for station 1 (2) is
𝑎(𝑥1, 𝑥2) ∈ 𝐴 (𝑏(𝑥1, 𝑥2) ∈ 𝐵, resp.). That is the action
of resource to station 𝑖 depends on the number of
customers in both stations.

3. Optimization Problem and
Optimality Equation

It is obvious that, under the stability condition 𝜆 <
min{𝜇1(𝑎max), 𝜇2(𝑏max)}, the two-dimensional stochastic pro-
cess 𝑋(𝑡) = {(𝑋1(𝑡), 𝑋2(𝑡)), 𝑡 ≥ 0} is an ergodic continuous-
time Markov chain for any fixed stationary policy 𝑟. As it is
known from Tijms [23], the long-run average cost per unit of
time for the policy 𝑟 in our ergodic Markov process can be
written in the following form:

𝑔 (𝑟) = lim
𝑡→∞

𝑢𝑟 (𝑥, 𝑡)
𝑡

= ∑
𝑖=1

∑
𝑗=1

[𝑐1 (𝑎) + 𝑐2 (𝑏) + ℎ1𝑖 + ℎ2𝑗] 𝜋𝑖𝑗 (𝑟) ,
(4)

in which 𝑢𝑟(𝑥, 𝑡) denotes the total expected costs up to time 𝑡
when the system starts in state 𝑥 = (𝑖, 𝑗) and 𝜋𝑖𝑗(𝑟) denotes a
stationary probability of the process under policy 𝑟 = (𝑎, 𝑏).
The goal is to find a policy 𝑟∗ that minimizes the long-term
average costs:

𝑔 (𝑟∗) = min
𝑟

𝑔 (𝑟) . (5)

Using the standard tools of uniformization and nor-
malization, we construct a discrete-time equivalent of our
original queueing system. Without loss of generality, we
assume that 𝜆 + 𝜇1(𝑎max) + 𝜇2(𝑏max) = 1. Now we consider
a real-valued function V(𝑥) which is defined on the state
space. The relative value function V(𝑥) can be regarded as the
asymptotic difference in total costs that results from starting
the process in state 𝑥 instead of some reference state. As is
shown in Puterman [24], the optimal policy 𝑟 and the optimal
average cost 𝑔 are the solutions of the optimality equation:

𝑇V (𝑥) = V (𝑥) + 𝑔, (6)

where 𝑇 is the dynamic programming operator acting on V
defined as follows:

𝑇V (𝑥) = 𝜆V (𝑥 + 𝑒1) + ∑
𝑖=1,2

𝑇𝑖V (𝑥) + ∑
𝑖=1,2

ℎ𝑖𝑥𝑖, (7)
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in which

𝑇1V (𝑥) = min
𝑎∈𝐴

{𝜇1 (𝑎) V (𝑥 − 𝑒1 + 𝑒2)

+ [𝜇1 (𝑎max) − 𝜇1 (𝑎)] V (𝑥) + 𝑐1 (𝑎)} ,

𝑇2V (𝑥) = min
𝑏∈𝐵

{𝜇2 (𝑏) V (𝑥 − 𝑒2)

+ [𝜇2 (𝑏max) − 𝜇2 (𝑏)] V (𝑥) + 𝑐2 (𝑏)} .

(8)

The first term in the expression 𝑇V(𝑥) models the arrivals of
customers to station 1 from outside the system and the last
one the customer holding cost. Similarly the first term in the
expression 𝑇1V(𝑥) corresponds to a customer who finished
his service in station 1 and into station 2 and the second one
the uniformization constant. The last one in 𝑇1V(𝑥) is the
resources cost in station 1. The first term in the expression
𝑇2V(𝑥) corresponds to a customer who finished his service in
station 2 and the second one the uniformization constant.The
last one in 𝑇2V(𝑥) is the resources cost in station 2.

According to (4), we can solve another optimization
problem: if 𝑐𝑖 ≡ 0, ℎ𝑖 = 1, 𝑖 = 1, 2, then (5) is equivalent to
minimization of the mean number of customers in the
queueing system. In this case, the optimal action would
be always (𝑎max, 𝑏max) by intuition, which also satisfies the
structure of the optimal policy in next section. In addition,
the analysis method and structure in this section are held for
both the partial and full information cases.

4. Structural Properties of the Optimal Policy

In this section, we focus on deriving the optimal policy. The
properties of the optimal policy will provide basal insight for
us, and this also helps one to find the optimal policy with less
computational effort due to a reduction of the solution search
space.

In order to study the optimal policy, intuitively, the
optimal equation𝑇V(𝑥) = V(𝑥)+𝑔 should be solved. However
it is hard to solve analytically in practice. It can be obtained
by recursively defining V𝑛+1 = 𝑇V𝑛 for arbitrary V0. We know
that the actions converge to the optimal policy as 𝑛 → ∞.
For existence and convergence of the solutions and optimal
policy, we can see more details in the works of Aviv and
Federgruen [25] and Sennott [26]. The backward recursion
equation in our model is given by

V𝑛+1 (𝑥) = 𝜆V𝑛 (𝑥 + 𝑒1) + ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥) + ∑
𝑖=1,2

ℎ𝑖𝑥𝑖. (9)

For ease of notation, let the arg𝑇𝑖V(𝑥), 𝑖 = 1, 2 denote the
set of optimal action for station 𝑖with state 𝑥 = (𝑥1, 𝑥2) in the
partial information case in which the action is (𝑎(𝑥1), 𝑏(𝑥2)),
where 𝑎(𝑥1) ∈ arg𝑇1V(𝑥), 𝑏(𝑥2) ∈ arg𝑇2V(𝑥).

Using the optimality equation and recursive method, we
can get some properties of the relative value function in
the following lemma which will be used in the proof of the
main results and the proofs of these properties are given in
Appendix A.

Lemma 1. For the optimal value function V(𝑥) in this model,
we have

(i) V(𝑥 + 𝑒𝑖) ≥ V(𝑥), 𝑖 = 1, 2 for all 𝑥 ∈ 𝐸;
(ii) if 2ℎ2 ≥ ℎ1, then V(𝑥−𝑒1+𝑒2) ≥ V(𝑥−𝑒2) for all 𝑥 ∈ 𝐸;
(iii) if ℎ1 ≥ ℎ2, then V(𝑥) ≥ V(𝑥 − 𝑒1 + 𝑒2) for all 𝑥 ∈ 𝐸.

As we know, at the decision epochs if the manager gets
the full information about the system, he will make a decision
based on the number of the customers in both stations.
Weber and Stidham [13] and Veatch and Wein [14] used
submodularity of the value function V(𝑥)−V(𝑥+𝑒2−𝑒1)−V(𝑥−
𝑒2) + V(𝑥 − 𝑒1) ≤ 0 to prove the main conclusion transition
monotonicity for the full information case 𝑎(𝑥) ≤ 𝑎(𝑥 − 𝑒2)
and 𝑏(𝑥) ≤ 𝑏(𝑥 + 𝑒2 − 𝑒1). The optimal resource allocation
policy has the switching function policy or region control
policy type for the full information case [17]. However, the
corresponding results for the partial information case are not
studied. In this paper, we study the property of the optimal
policy under partial information. Different from method in
the full information case, we get some structure properties
of the optimal policy by the quasiconvexity property of the
relative value function and present the structure properties
of the optimal policy in the following theorem.

Theorem 2. In our model under partial information, the
optimal policy has the monotonicity properties, that is, for all
𝑥 = (𝑥1, 𝑥2) ∈ 𝐸:

(i) If 𝑏(𝑥2 + 1) ∈ arg𝑇2V(𝑥 + 𝑒2) and 𝑏(𝑥2) ∈ arg𝑇2V(𝑥),
then 𝑏(𝑥2 + 1) ≥ 𝑏(𝑥2).

(ii) If 𝑎(𝑥1 + 1) ∈ arg𝑇1V(𝑥 + 𝑒1) and 𝑎(𝑥1) ∈ arg𝑇1V(𝑥),
then 𝑎(𝑥1 + 1) ≥ 𝑎(𝑥1).

The proof of the above theorem is based on the following
property which shows the quasiconvexity properties of the
relative value function. The proofs of Theorem 2 and the
following Lemma 3 are given in Appendix B.

Lemma 3. For the optimal value function V(𝑥1, 𝑥2) under
partial information, we have

(i) V(𝑥+𝑒2)−2V(𝑥)+V(𝑥−𝑒2) ≥ 0, for all 𝑥 = (𝑥1, 𝑥2) ∈ 𝐸;
(ii) V(𝑥 + 𝑒1 − 𝑒2) − 2V(𝑥) + V(𝑥 − 𝑒1 + 𝑒2) ≥ 0, for all

𝑥 = (𝑥1, 𝑥2) ∈ 𝐸.

Based on the above properties of the value functions, we
derive the relationship between the two stations’ optimal pol-
icy by analyzing the properties of the service rate and holding
cost functions. The following theorem shows the conditions
under which the optimal policy for station 1 is bigger than
that in station 2.

Theorem 4. Assume that 𝑎𝑚𝑎𝑥 = 𝑏𝑚𝑎𝑥 and 2ℎ2 ≥ ℎ1, if the
condition holds (𝑐1(𝑥)−𝑐1(𝑦))/(𝑐2(𝑥)−𝑐2(𝑦)) ≥ 1 and (𝜇2(𝑥)−
𝜇2(𝑦))/(𝜇1(𝑥) − 𝜇1(𝑦)) ≥ 1 when 𝑥 ≥ 𝑦. Then we have 𝑏 ≥ 𝑎
where 𝑎 ∈ arg𝑇1V(𝑥), 𝑏 ∈ arg𝑇2V(𝑥).

Proof. Let (𝑎 ∈ arg𝑇1V(𝑥), 𝑏 ∈ arg𝑇2V(𝑥)) be an arbitrary
optimal policy for stations 1 and 2 in state 𝑥, respectively.The
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proof is taken by contradiction method. Suppose that 𝑏 < 𝑎;
then we compare the policy (𝑎, 𝑏) with the policy (𝑏, 𝑎) (the
assumption 𝑎max = 𝑏max guarantees that we can always swap
𝑎 and 𝑏). Hence, we have

𝑇𝑎,𝑏V𝑛 (𝑥) − 𝑇𝑏,𝑎V𝑛 (𝑥) = [𝜇1 (𝑎) V (𝑥 − 𝑒1 + 𝑒2)

+ [𝜇1 (𝑎max) − 𝜇1 (𝑎)] V (𝑥) + 𝑐1 (𝑎)]

+ [𝜇2 (𝑏) V (𝑥 − 𝑒2) + [𝜇2 (𝑏max) − 𝜇2 (𝑏)] V (𝑥)

+ 𝑐2 (𝑏)] − [𝜇1 (𝑏) V (𝑥 − 𝑒1 + 𝑒2)

+ [𝜇1 (𝑏max) − 𝜇1 (𝑏)] V (𝑥) + 𝑐1 (𝑏)]

− [𝜇2 (𝑎) V (𝑥 − 𝑒2) + [𝜇2 (𝑎max) − 𝜇2 (𝑎)] V (𝑥)

+ 𝑐2 (𝑎)] = [𝜇1 (𝑎) − 𝜇1 (𝑏)] [V (𝑥 − 𝑒1 + 𝑒2)

− V (𝑥)] − [𝜇2 (𝑎) − 𝜇2 (𝑏)] [V (𝑥 − 𝑒2) − V (𝑥)]

+ 𝑐1 (𝑎) − 𝑐1 (𝑏) − 𝑐2 (𝑎) + 𝑐2 (𝑏) ≥ [𝜇1 (𝑎) − 𝜇1 (𝑏)]

⋅ [V (𝑥 − 𝑒1 + 𝑒2) − V (𝑥 − 𝑒2)] + 𝑐1 (𝑎) − 𝑐1 (𝑏)
− 𝑐2 (𝑎) + 𝑐2 (𝑏) ≥ 0.

(10)

The first equality is based on the definitions of operators
𝑇1 and 𝑇2. The second equality follows by rearranging the
terms. The first inequality follows the conditions (𝜇2(𝑎) −
𝜇2(𝑏))/(𝜇1(𝑎) − 𝜇1(𝑏)) ≥ 1 when 𝑎 ≥ 𝑏 and Lemma 1 (i). The
last inequality based on the conditions (𝑐1(𝑎)− 𝑐1(𝑏))/(𝑐2(𝑎)−
𝑐2(𝑏)) ≥ 1 when 𝑎 ≥ 𝑏 and Lemma 1 (ii). So that we obtain
𝑇𝑎,𝑏V𝑛(𝑥) − 𝑇𝑏,𝑎V𝑛(𝑥) ≥ 0, which implies that (𝑎, 𝑏) is not an
optimal policy for state 𝑥. Hence, we have 𝑏 ≥ 𝑎.

Remark 5. From the above theorem we can conclude that
under some conditions the optimal size of the service
resources allocated to station 1 is less than that to station 2.
We find that the optimal size of the resource allocated to each
station depends on the resource cost variation 𝑐(𝑎) − 𝑐(𝑏)
and the service rate variation 𝜇(𝑎) − 𝜇(𝑏) in each station.
This condition seems to imply that when the same service
resources are added to both station 1 and station 2, then the
performance of station 2 is improved more than station 1
while the higher cost is incurred in station 1 than in station 2.
So that it implies that the optimal policy satisfies the relation-
ship 𝑏 ≥ 𝑎.

It is well known that if the service resource cost function is
linear, then an all-or-nothing (bang-bang) control is optimal.
Weber and Stidham [13] and Veatch and Wein [14] give a
detailed conclusion for this issue. Actually it is not obvious
whether the bang-bang control is also optimal, when the
service resource cost and service rate functions are more
general than linear in service resource. We are interested in
the special structure of the optimal control policy in this
model. In contrast to existing studies, the results in the
following theorem are extension of the model with linear
case. We are now ready to give some conditions under which
the optimal policy is unique and has the bang-bang control
property.

Theorem 6. (i) The optimal policy is unique if the following
conditions hold: (1) 𝑚1(𝑎) = 𝑐󸀠1(𝑎)/𝜇󸀠1(𝑎) and 𝑚2(𝑏) =
𝑐󸀠2(𝑏)/𝜇󸀠2(𝑏) are monotonous on 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵. (2) ∃𝑎 ∈
(0, 𝑎𝑚𝑎𝑥) and 𝑏 ∈ (0, 𝑏𝑚𝑎𝑥) s.t., 𝑐1(𝑎)/𝜇1(𝑎) < 𝑐1(𝑎𝑚𝑎𝑥)/
𝜇1(𝑎𝑚𝑎𝑥) and 𝑐2(𝑏)/𝜇2(𝑏) < 𝑐2(𝑏𝑚𝑎𝑥)/𝜇2(𝑏𝑚𝑎𝑥).

(ii)The optimal policy is a bang-bang control policy; that is,
arg𝑇1V(𝑥) = {0, 𝑎𝑚𝑎𝑥}, arg𝑇2V(𝑥) = {0, 𝑏𝑚𝑎𝑥} if the functions
𝑐1(𝑎)/𝜇1(𝑎) and 𝑐2(𝑏)/𝜇2(𝑏) are strict decreasing for all 𝑎 ∈
(0, 𝑎𝑚𝑎𝑥), 𝑏 ∈ (0, 𝑏𝑚𝑎𝑥).

Proof. We prove only conclusion for station 1, and the same
proof can be applied to get conclusion for station 2. To prove
part (i), we consider the optimal policy 𝑎 in station 1 service
resource allocation. For the definition of the operator 𝑇1, we
have the following minimization problem:

𝑇1V (𝑥) = min
𝑎∈𝐴

{𝜇1 (𝑎) V (𝑥 − 𝑒1 + 𝑒2)

+ [𝜇1 (𝑎max) − 𝜇1 (𝑎)] V (𝑥) + 𝑐1 (𝑎)} .
(11)

Rearranging the terms of the first-order optimality condition
of the above problem, we obtain

𝑐󸀠1 (𝑎)
𝜇󸀠1 (𝑎)

= V (𝑥) − V (𝑥 − 𝑒1 + 𝑒2) . (12)

Because the allocation resource action 𝑎 ∈ 𝐴 = [0, 𝑎max],
the optimal policy 𝑎 in station 1 can be 0 or 𝑎max or satisfies
the above equation. Since the function𝑚1(𝑎) = 𝑐󸀠1(𝑎)/𝜇󸀠1(𝑎) is
monotonous on 𝑎 ∈ 𝐴, there is at most one solution 𝑎 solving
the above equation. Next if the optimal policy is 0 or 𝑎max,
we show that the action 0 and 𝑎max cannot be the optimal
policy simultaneous for station 1. We take the contradiction
method. Assume that the action 0 and 𝑎max be the optimal
policy simultaneous for station 1 at state 𝑥. Then we have
𝑇1V(𝑥) = 𝑇01 V(𝑥) = 𝜇1(𝑎max)V(𝑥) and 𝑇1V(𝑥) = 𝑇𝑎max

1 V(𝑥) =
𝜇1(𝑎max)V(𝑥 − 𝑒1 + 𝑒2) + 𝑐1(𝑎max); that is,

V (𝑥) − V (𝑥 − 𝑒1 + 𝑒2) = 𝑐1 (𝑎max)
𝜇1 (𝑎max)

. (13)

Because the action 0 is optimal policy, we have 𝑇𝑎1 V(𝑥) ≥
𝑇01 V(𝑥) for every action 𝑎 ∈ (0, 𝑎max), that is 𝜇1(𝑎)[V(𝑥) −
V(𝑥 − 𝑒1 + 𝑒2)] ≤ 𝑐1(𝑎). Taking the above equation into the
inequality, we can get 𝑐1(𝑎)/𝜇1(𝑎) ≥ 𝑐1(𝑎max)/𝜇1(𝑎max) for
all 𝑎 ∈ (0, 𝑎max) which is contradicted against condition (2).
Hence the optimal policy for station 1 is unique.

To prove part (ii), we consider the optimal policy 𝑎 in
station 1 service resource allocation.We use the contradiction
method and assume that there exists a state 𝑥 ∈ 𝐸 for which
the optimal policy 𝑎 ∈ arg𝑇1V(𝑥) in station 1 satisfies 𝑎 ∈
(0, 𝑎max). For any 𝜀 > 0, we have

𝑇𝑎+𝜀1 V (𝑥) − 𝑇𝑎1 V (𝑥)

= [𝜇1 (𝑎 + 𝜀) − 𝜇1 (𝑎)] [V (𝑥 − 𝑒1 + 𝑒2) − V (𝑥)]
+ 𝑐1 (𝑎 + 𝜀) − 𝑐1 (𝑎) ≥ 0,

(14)
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which implies that

V (𝑥) − V (𝑥 − 𝑒1 + 𝑒2) ≤ 𝑐1 (𝑎 + 𝜀) − 𝑐1 (𝑎)
𝜇1 (𝑎 + 𝜀) − 𝜇1 (𝑎)

. (15)

Since the function 𝑐1(𝑎)/𝜇1(𝑎) is strict decreasing, we get
(𝑐1(𝑎 + 𝜀) − 𝑐1(𝑎))/(𝜇1(𝑎 + 𝜀) − 𝜇1(𝑎)) < 𝑐1(𝑎)/𝜇1(𝑎) so that
V(𝑥) − V(𝑥 − 𝑒1 + 𝑒2) < 𝑐1(𝑎)/𝜇1(𝑎). Because the action 𝑎 is
the optimal policy for station 1 in state 𝑥, we have 𝑇𝑎1 V(𝑥) ≤
𝑇01 V(𝑥); that is,

𝜇1 (𝑎) V (𝑥 − 𝑒1 + 𝑒2) + [𝜇1 (𝑎max) − 𝜇1 (𝑎)] V (𝑥)

+ 𝑐1 (𝑎) ≤ 𝜇1 (𝑎max) V (𝑥) .
(16)

So we have V(𝑥) − V(𝑥 − 𝑒1 + 𝑒2) ≥ 𝑐1(𝑎)/𝜇1(𝑎) which
is a contradiction with the above result V(𝑥) − V(𝑥 − 𝑒1 +
𝑒2) < 𝑐1(𝑎)/𝜇1(𝑎). Hence the optimal policy for station 1 is
arg𝑇1V(𝑥) = {0, 𝑎max}; that is, the optimal policy is a bang-
bang control policy.

Remark 7. From the above theorem we can conclude that,
under some conditions, the optimal is a bang-bang control
policy. We try to give intuitive interpretations to these
conditions and results, which would help us to understand
the theorem intuitively. For the conditions inTheorem 4 (ii),
it is clear that 𝑐1(𝑎)/𝜇1(𝑎) represents the expected service
cost for one customer in station 1 under policy 𝑎. Since the
function 𝑐1(𝑎)/𝜇1(𝑎) is strict decreasing for all 𝑎 ∈ (0, 𝑎max)
which yields that the policy 𝑎 = 1 is optimal for every
customer service cost in station 1. For the total average cost
of the system, we can regard it as the average cost per unit
time since every customer must be processed in each station.
While for the state 𝑥 = (0, 0), it is obvious that no service
resource should be allocated in two stations.

Remark 8. By the proof of Theorem 6, we know that the
results in Theorem 6 are held for both partial and full infor-
mation cases. In addition, the conditions in Theorem 6 are a
bit complex. We give the corresponding looser conditions for
Theorem 6 (1) as follows. The optimal policy is unique if the
functions 𝑐󸀠1(𝑎)/𝜇󸀠1(𝑎) and 𝑐󸀠2(𝑏)/𝜇󸀠2(𝑏) are monotonous and
𝑐1(𝑎)/𝜇1(𝑎) and 𝑐2(𝑏)/𝜇2(𝑏) are nondecreasing on 𝑎 ∈ 𝐴, 𝑏 ∈
𝐵, such as the case 𝜇𝑖(𝑎) = 2𝑎2, 𝑐𝑖(𝑎) = 10𝑎3, 𝑖 = 1, 2.

5. Numerical Examples

For the full information case, the corresponding results
and numerical example have been investigated in [14, 17].
In this section, we conduct numerical experiments under
different parameter settings to demonstrate the main results
obtained in this paper for the partial information case. On
one hand, these examples provide direct insight into how
the change of the system state may impact the optimal
resource allocation parameters (𝑎∗, 𝑏∗). On the other hand,
the numerical experiments and Figures 2, 3, 4, and 5 provide
the direct support for the results about the structure of the
optimal resource allocation policy obtained in the above
section. The following experiments are made for the case of
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Figure 2: Optimal resource allocation policy (𝑎∗, 𝑏∗) versus 𝑥1 for
given 𝑥2 = 12.
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Figure 3: Optimal resource allocation policy (𝑎∗, 𝑏∗) versus 𝑥2 for
given 𝑥1 = 10.
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Figure 4: Optimal resource allocation policy (𝑎∗, 𝑏∗) versus 𝑥1 for
given 𝑥2 = 8.
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Figure 5: Optimal resource allocation policy (𝑎∗, 𝑏∗) versus 𝑥2 for
given 𝑥1 = 20.

𝐴 = 𝐵 = [0, 1]. As is shown in the figures, we can make the
following observations.

From Figures 2 and 3, we present numerical results of the
optimal policy for the case with 𝜆 = 1.3, ℎ1 = 1.5, ℎ2 = 2,
𝜇𝑖(𝑎) = 2𝑎2, 𝑐𝑖(𝑎) = 10𝑎3, 𝑖 = 1, 2. As can be seen from
Figure 2, the optimal resource allocation policy 𝑎∗ increases
as the number of customers in station 1 increases, which
shows a staircase-like increasing pattern. This phenomenon
is consistent with the results inTheorem 2, while the optimal
policy 𝑏∗ for station 2 remains constant for varied value
of 𝑥1. Meanwhile Figure 3 shows that the optimal resource
allocation policy 𝑎∗ remains constant and 𝑏∗ also shows
a staircase-like increasing pattern with the number of cus-
tomers in station 2 increasing. Moreover, it is noted in these
two figures that the line graph of the optimal policy 𝑎∗ for
station 1 is always under the line graph of the optimal policy
𝑏∗ for station 2. This is easy to explain from the results in
Theorem 4 that the conditions in this numerical experiment
satisfy Theorem 4.

In Figures 4 and 5, we describe the characteristics of the
optimal policy for the case with 𝜆 = 1.1, ℎ1 = ℎ2 = 1,
𝜇1(𝑎) = 2𝑎3, 𝑐1(𝑎) = 2𝑎2, 𝜇2(𝑏) = 3𝑏2, 𝑐2(𝑏) = 4𝑏3.
From Figure 4, we find that the optimal policy for station 1
is 𝑎∗ = 0 if 𝑥1 = 0 otherwise 𝑎∗ = 1, which shows that
the optimal policy for station 1 has a bang-bang control type,
while the optimal policy 𝑏∗ for station 2 remains constant. As
it is observed from Figure 5, the optimal policy 𝑎∗ for station
1 always equals 1, which also belongs to the bang-bang control
policy. The optimal policy 𝑏∗ for station 2 shows a staircase-
like increasing pattern with the number of customers in
station 2 increasing. These figures provide a direct support
for the results in Theorem 6 since the functions 𝜇1(𝑎) =
2𝑎3, 𝑐1(𝑎) = 2𝑎2 in this numerical experiment follow the
conditions inTheorem 6 (ii).

6. Conclusion

In this paper, we have analyzed the optimal resources allo-
cation control policy of a tandem queueing system with the

general service cost and service rate functions. Applying
the queueing system and MDP theories, we not only give
some traditional properties of the relative value function and
optimal policy but also derive the conditions under which the
optimal policy is unique and has a bang-bang control prop-
erty, which has not been studied before our work. In partic-
ular, we have provided the relationship between two stations’
optimal policies, which can give the manager basal insight
into the structure of optimal policy information to improve
decision-making of the system.

From the above results, there arise some interesting
extensions of the model which we may study in the near
future. One possible change is to consider the tandem queue-
ing system with retrial or feedback customers which will
make themodelmore useful in practical system.Anotherway
to extend themodel is to apply the semi-Markov decision pro-
cesses to consider the queueing system in which the service
time of a customer is a general distribution. Furthermore, in
practice, the production systems are often likely to be bur-
dened by mixed uncertainties of both randomness and fuzzi-
ness; the study of the optimal control of the tandem queueing
system with fuzziness may provide more precise information
to managers, which is also an interesting topic for future
research.

Appendix

A. Proof of Lemma 1

The Proof of Lemma 1

Proof. To prove Lemma 1 (i), the proof is done by induction
on 𝑛 in V𝑛. Define V0(𝑥) = 0 for all state 𝑥 ∈ 𝐸. This function
obviously satisfies (i). Now, we assume that (i) holds for the
function V𝑛(𝑥), 𝑥 ∈ 𝐸, and some 𝑛 ∈ 𝑁. We should prove that
V𝑛+1(𝑥) satisfies the nondecreasing property as well. Then for
𝑖 = 1, we can get

V𝑛+1 (𝑥 + 𝑒1) − V𝑛+1 (𝑥)

= 𝜆 [V𝑛 (𝑥 + 2𝑒1) − V𝑛 (𝑥 + 𝑒1)] + ℎ1

+ ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 + 𝑒1) − ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥) .

(A.1)

The second term of the right-hand side is obviously positive.
Let (𝑎 ∈ arg𝑇1V(𝑥 + 𝑒1), 𝑏 ∈ arg𝑇2V𝑛(𝑥 + 𝑒1)) be an

arbitrary optimal policy for two stations in state 𝑥 + 𝑒1. Then

∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 + 𝑒1) − ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥) ≥ 𝜇1 (𝑎)

⋅ [V𝑛 (𝑥 + 𝑒2) − V𝑛 (𝑥 + 𝑒2 − 𝑒1)] + 𝜇2 (𝑏)

⋅ [V𝑛 (𝑥 − 𝑒2 + 𝑒1) − V𝑛 (𝑥 − 𝑒2)]

+ [𝜇1 (𝑎max) − 𝜇1 (𝑎) + 𝜇2 (𝑏max) − 𝜇2 (𝑏)]

⋅ [V𝑛 (𝑥 + 𝑒1) − V𝑛 (𝑥)] ≥ 0.

(A.2)
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Therefore, Lemma 1 (i) holds by induction for any 𝑛, V(𝑥) is a
nondecreasing function. Lemma 1 (i) for 𝑖 = 2 can be proved
in a similar manner.

To prove Lemma 1 (ii), the proof is similar to the proof of
Lemma 1 (i).Define V0(𝑥) = 0 for all state𝑥 ∈ 𝐸.This function
obviously satisfies (ii). Now, we assume that (ii) holds for
function V𝑛(𝑥), 𝑥 ∈ 𝐸 and some 𝑛 ∈ 𝑁. We should prove
that V𝑛+1(𝑥) satisfies Lemma 1 (ii):

V𝑛+1 (𝑥 − 𝑒1 + 𝑒2) − V𝑛+1 (𝑥 − 𝑒2)

= 𝜆 [V𝑛 (𝑥 + 𝑒2) − V𝑛 (𝑥 + 𝑒1 − 𝑒2)] + 2ℎ2 − ℎ1
+ ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 − 𝑒1 + 𝑒2) − ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 − 𝑒2) .
(A.3)

Since condition 2ℎ2 ≥ ℎ1 holds, the second term of the right-
hand side is obviously positive.

Let (𝑎 ∈ arg𝑇1V(𝑥 − 𝑒1 + 𝑒2), 𝑏 ∈ arg𝑇2V(𝑥 − 𝑒1 + 𝑒2)) be
an arbitrary optimal policy for two stations in state 𝑥−𝑒1+𝑒2.
Then

∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 − 𝑒1 + 𝑒2) − ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 − 𝑒2) ≥ 𝜇1 (𝑎)

⋅ [V𝑛 (𝑥 − 2𝑒1 + 2𝑒2) − V𝑛 (𝑥 − 𝑒1)] + 𝜇2 (𝑏)

⋅ [V𝑛 (𝑥 − 𝑒1) − V𝑛 (𝑥 − 2𝑒2)]

+ [𝜇1 (𝑎max) − 𝜇1 (𝑎)]

⋅ [V𝑛 (𝑥 − 𝑒1 + 𝑒2) − V𝑛 (𝑥 − 𝑒2)]

+ [𝜇2 (𝑏max) − 𝜇2 (𝑏)]

⋅ [V𝑛 (𝑥 − 𝑒1 + 𝑒2) − V𝑛 (𝑥 − 𝑒2)] ≥ 0.

(A.4)

Therefore, Lemma 1 (ii) holds by induction for any 𝑛; we have
V(𝑥 − 𝑒1 + 𝑒2) ≥ V(𝑥 − 𝑒2) for all 𝑥 = (𝑥1, 𝑥2) ∈ 𝐸 and 𝑥1 ≥
1, 𝑥2 ≥ 1. Lemma 1 (iii) can be proved in a similar manner.

B. Proof of Lemma 3 and Theorem 2

The Proof of Lemma 3 (i) and Theorem 2 (i)

Proof. To prove Lemma 3 (i), we assume that Lemma 3 (i) for
function V𝑛(𝑥), 𝑥 ∈ 𝐸, and some 𝑛 ∈ 𝑁 holds. Then we need
to prove that Lemma 3 (i) for 𝑛 + 1 also holds. We have

V𝑛+1 (𝑥 + 𝑒2) − 2V𝑛+1 (𝑥) + V𝑛+1 (𝑥 − 𝑒2)

= 𝜆 [V𝑛 (𝑥 + 𝑒2 + 𝑒1) − 2V𝑛 (𝑥 + 𝑒1)

+ V𝑛 (𝑥 + 𝑒1 − 𝑒2)] + ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 + 𝑒2)

− 2 ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥) + ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 − 𝑒2)

≥ ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 + 𝑒2) − 2 ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥)

+ ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 − 𝑒2) .

(B.1)

The inequality holds by the induction hypothesis. The
optimal policy of station 1 is only dependent on the number of
customers in station 1 and the states 𝑥+𝑒2, 𝑥, 𝑥−𝑒2 have same
first entry 𝑥1. Hence, they have the same optimal policy in
station 1. We assume that 𝑎 ∈ arg𝑇1V(𝑥), 𝑏1 ∈ arg𝑇2V(𝑥 + 𝑒2),
𝑏2 ∈ arg𝑇2V(𝑥 − 𝑒2):

∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 + 𝑒2) − 2 ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥) + ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 − 𝑒2)

≥ 𝜇1 (𝑎) [V𝑛 (𝑥 − 𝑒1 + 2𝑒2) − 2V𝑛 (𝑥 − 𝑒1 + 𝑒2)

+ V𝑛 (𝑥 − 𝑒1)] + [𝜇1 (𝑎max) − 𝜇1 (𝑎)] [V𝑛 (𝑥 + 𝑒2)

− 2V𝑛 (𝑥) + V𝑛 (𝑥 − 𝑒2)] + [𝜇2 (𝑏1) − 𝜇2 (𝑏2)]

⋅ [V𝑛 (𝑥) − V𝑛 (𝑥 − 𝑒2)] + 𝜇2 (𝑏2) [V𝑛 (𝑥)

− 2V𝑛 (𝑥 − 𝑒2) + V𝑛 (𝑥 − 2𝑒2)] + [𝜇2 (𝑏max)

− 𝜇2 (𝑏1)] [V𝑛 (𝑥 + 𝑒2) − V𝑛 (𝑥)] + [𝜇2 (𝑏max)

− 𝜇2 (𝑏2)] [V𝑛 (𝑥 − 𝑒2) − V𝑛 (𝑥)] = 𝜇1 (𝑎)

⋅ [V𝑛 (𝑥 − 𝑒1 + 2𝑒2) − 2V𝑛 (𝑥 − 𝑒1 + 𝑒2)

+ V𝑛 (𝑥 − 𝑒1)] + [𝜇1 (𝑎max) − 𝜇1 (𝑎)] [V𝑛 (𝑥 + 𝑒2)

− 2V𝑛 (𝑥) + V𝑛 (𝑥 − 𝑒2)] + 𝜇2 (𝑏2) [V𝑛 (𝑥)

− 2V𝑛 (𝑥 − 𝑒2) + V𝑛 (𝑥 − 2𝑒2)] + [𝜇2 (𝑏max)

− 𝜇2 (𝑏1)] [V𝑛 (𝑥 + 𝑒2) − 2V𝑛 (𝑥) + V𝑛 (𝑥 − 𝑒2)]
≥ 0.

(B.2)

The first inequality follows by taking a potentially subop-
timal action in the second term of ∑𝑖=1,2 𝑇𝑖V𝑛(𝑥 + 𝑒2) −
2∑𝑖=1,2 𝑇𝑖V𝑛(𝑥) + ∑𝑖=1,2 𝑇𝑖V𝑛(𝑥 − 𝑒2). The equality follows
by rearranging the terms. The last inequality follows by the
induction hypothesis. Hence, we have V(𝑥+𝑒2)−2V(𝑥)+V(𝑥−
𝑒2) ≥ 0.

To prove Theorem 2 (i), let (𝑏1 ∈ arg𝑇2V(𝑥 + 𝑒2), 𝑏2 ∈
arg𝑇2V(𝑥)) be an optimal policy for station 2 in states 𝑥 + 𝑒2,
𝑥, respectively. The proof is done by contradiction. Suppose
that 𝑏1 < 𝑏2; then

𝑇𝑏12 V (𝑥) − 𝑇𝑏22 V (𝑥)

= [𝜇2 (𝑏2) − 𝜇2 (𝑏1)] [V (𝑥) − V (𝑥 − 𝑒2)]

− [𝑐2 (𝑏2) − 𝑐2 (𝑏1)] ≥ 0.

(B.3)

For Lemma 1 (i) and 𝜇2(𝑏2) − 𝜇2(𝑏1) > 0, we have

𝑇𝑏12 V (𝑥 + 𝑒2) − 𝑇𝑏22 V (𝑥 + 𝑒2)

= [𝜇2 (𝑏2) − 𝜇2 (𝑏1)] [V (𝑥 + 𝑒2) − V (𝑥)]

− [𝑐2 (𝑏2) − 𝑐2 (𝑏1)]

> [𝜇2 (𝑏2) − 𝜇2 (𝑏1)] [V (𝑥) − V (𝑥 − 𝑒2)]

− [𝑐2 (𝑏2) − 𝑐2 (𝑏1)] ≥ 0.

(B.4)
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However, this implies that 𝑏1 is not an optimal policy for
station 2 in state 𝑥 + 𝑒2. Hence 𝑏1 ≥ 𝑏2.

The Proof of Lemma 3 (ii) and Theorem 2 (ii)

Proof. To prove Lemma 3 (ii), we assume that Lemma 3 (ii)
holds for function V𝑛(𝑥), 𝑥 ∈ 𝐸, and some 𝑛 ∈ 𝑁. Then we
need to prove that Lemma 3 (ii) for 𝑛+1 also holds. Using the
optimality equation, we have

V𝑛+1 (𝑥 + 𝑒1 − 𝑒2) − 2V𝑛+1 (𝑥) + V𝑛+1 (𝑥 − 𝑒1 + 𝑒2)

= 𝜆 [V𝑛 (𝑥 + 2𝑒1 − 𝑒2) − 2V𝑛 (𝑥 + 𝑒1) + V𝑛 (𝑥 + 𝑒2)]

+ ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 + 𝑒1 − 𝑒2) − 2 ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥)

+ ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 − 𝑒1 + 𝑒2)

≥ ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 + 𝑒1 − 𝑒2) − 2 ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥)

+ ∑
𝑖=1,2

𝑇𝑖V𝑛 (𝑥 − 𝑒1 + 𝑒2)

= 𝑇1V𝑛 (𝑥 + 𝑒1 − 𝑒2) − 2𝑇1V𝑛 (𝑥)

+ 𝑇1V𝑛 (𝑥 − 𝑒1 + 𝑒2) + 𝑇2V𝑛 (𝑥 + 𝑒1 − 𝑒2)

− 2𝑇2V𝑛 (𝑥) + 𝑇2V𝑛 (𝑥 − 𝑒1 + 𝑒2) .

(B.5)

The inequality above holds by the induction hypothesis. Now,
we assume that 𝑎1 ∈ arg𝑇1V(𝑥+𝑒1−𝑒2), 𝑏1 ∈ arg𝑇2V(𝑥+𝑒1−
𝑒2), 𝑎2 ∈ arg𝑇1V(𝑥 − 𝑒1 + 𝑒2), 𝑏2 ∈ arg𝑇2V(𝑥 − 𝑒1 + 𝑒2). Then,
we get

𝑇1V𝑛 (𝑥 + 𝑒1 − 𝑒2) − 2𝑇1V𝑛 (𝑥) + 𝑇1V𝑛 (𝑥 − 𝑒1 + 𝑒2)

≥ 𝜇1 (𝑎1) [V𝑛 (𝑥) − V𝑛 (𝑥 − 𝑒1 + 𝑒2)] + 𝜇1 (𝑎2)

⋅ [V𝑛 (𝑥 − 2𝑒1 + 2𝑒2) − V𝑛 (𝑥 − 𝑒1 + 𝑒2)]

+ [𝜇1 (𝑎max) − 𝜇1 (𝑎1)] [V𝑛 (𝑥 + 𝑒1 − 𝑒2) − V𝑛 (𝑥)]

+ [𝜇1 (𝑎max) − 𝜇1 (𝑎2)] [V𝑛 (𝑥 − 𝑒1 + 𝑒2) − V𝑛 (𝑥)]

= 𝜇1 (𝑎2)

⋅ [V𝑛 (𝑥 − 2𝑒1 + 2𝑒2) − 2V𝑛 (𝑥 − 𝑒1 + 𝑒2) + V𝑛 (𝑥)]

+ [𝜇1 (𝑎max) − 𝜇1 (𝑎1)]

⋅ [V𝑛 (𝑥 + 𝑒1 − 𝑒2) − 2V𝑛 (𝑥) + V𝑛 (𝑥 − 𝑒1 + 𝑒2)]
≥ 0.

(B.6)

The first inequality follows by taking a potentially suboptimal
action in the second term of the operator 𝑇1V𝑛(𝑥 + 𝑒1 −
𝑒2) − 2𝑇1V𝑛(𝑥) + 𝑇1V𝑛(𝑥 − 𝑒1 + 𝑒2). The equality follows
by rearranging the terms. The last inequality follows by the
induction hypothesis:

𝑇2V𝑛 (𝑥 + 𝑒1 − 𝑒2) − 2𝑇2V𝑛 (𝑥) + 𝑇2V𝑛 (𝑥 − 𝑒1 + 𝑒2)

≥ 𝜇2 (𝑏1) [V𝑛 (𝑥 + 𝑒1 − 2𝑒2) − V𝑛 (𝑥 − 𝑒2)]

+ 𝜇2 (𝑏2) [V𝑛 (𝑥 − 𝑒1) − V𝑛 (𝑥 − 𝑒2)]

+ [𝜇2 (𝑏max) − 𝜇2 (𝑏1)] [V𝑛 (𝑥 + 𝑒1 + 𝑒2) − V𝑛 (𝑥)]

+ [𝜇2 (𝑏max) − 𝜇2 (𝑏2)] [V𝑛 (𝑥 − 𝑒1 + 𝑒2) − V𝑛 (𝑥)]

= 𝜇2 (𝑏2)

⋅ [V𝑛 (𝑥 + 𝑒1 − 2𝑒2) − 2V𝑛 (𝑥 − 𝑒2) + V𝑛 (𝑥 − 𝑒1)]

+ [𝜇2 (𝑏max) − 𝜇2 (𝑏2)]

⋅ [V𝑛 (𝑥 + 𝑒1 − 𝑒2) − 2V𝑛 (𝑥) + V𝑛 (𝑥 − 𝑒1 + 𝑒2)]

+ [𝜇2 (𝑏1) − 𝜇2 (𝑏2)]

⋅ [V𝑛 (𝑥 + 𝑒1 − 2𝑒2) − V𝑛 (𝑥 + 𝑒1 − 𝑒2)] ≥ 0.

(B.7)

The first inequality follows by taking a potentially suboptimal
action in the second term of the operator above. The equality
follows by rearranging the terms. The last one follows by the
induction hypothesis and, because ofTheorem 2 (i), we know
that 𝑏1 ≤ 𝑏2. So that we have 𝜇2(𝑏1) − 𝜇2(𝑏2) ≤ 0. From
Lemma 1, we know that V𝑛(𝑥 + 𝑒1 − 2𝑒2) − V𝑛(𝑥 + 𝑒1 − 𝑒2) ≤ 0.
Thus, we derive that [𝜇2(𝑏1) −𝜇2(𝑏2)][V𝑛(𝑥+ 𝑒1 −2𝑒2) − V𝑛(𝑥+
𝑒1 − 𝑒2)] ≥ 0. Therefore, the last inequality is taken.

To proveTheorem 2 (ii), let (𝑎1 ∈ arg𝑇1V(𝑥+𝑒1−𝑒2), 𝑎2 ∈
arg𝑇1V(𝑥)) be an optimal policy for station 2 in states 𝑥 +
𝑒1 − 𝑒2, 𝑥, respectively. The proof is done by contradiction.
Suppose that 𝑎1 < 𝑎2; then

𝑇𝑎11 V (𝑥) − 𝑇𝑎21 V (𝑥)

= [𝜇1 (𝑎2) − 𝜇1 (𝑎1)] [V (𝑥 − 𝑒1 + 𝑒2) − V (𝑥)]

− [𝑐1 (𝑎2) − 𝑐1 (𝑎1)] ≥ 0.

(B.8)

From Lemma 1 (ii) above and 𝜇1(𝑎2) − 𝜇1(𝑎1) > 0, we have

𝑇𝑎11 V (𝑥 + 𝑒1 − 𝑒2) − 𝑇𝑎21 V (𝑥 + 𝑒1 − 𝑒2)

= [𝜇1 (𝑎2) − 𝜇1 (𝑎1)] [V (𝑥) − V (𝑥 + 𝑒1 − 𝑒2)]

− [𝑐1 (𝑎2) − 𝑐1 (𝑎1)]

≥ [𝜇1 (𝑎2) − 𝜇1 (𝑎1)] [V (𝑥 − 𝑒1 + 𝑒2) − V (𝑥)]

− [𝑐1 (𝑎2) − 𝑐1 (𝑎1)] ≥ 0.

(B.9)

This implies that 𝑎1 is not an optimal policy for station 1 in
state 𝑥+𝑒1−𝑒2, which is with the assumption 𝑎1 ∈ arg𝑇1V(𝑥+
𝑒1 − 𝑒2). Hence 𝑎1 ≥ 𝑎2.

Since the optimal policy of station 1 is dependent only on
the number of customers in station 1, and the states 𝑥 + 𝑒1,
𝑥+𝑒1 −𝑒2 have the same first entry 𝑥1 +1, they have the same
optimal policy 𝑎1 in station 1, that is, 𝑎1 ∈ arg𝑇1V(𝑥 + 𝑒1).
Thus we get that if 𝑎1 ∈ arg𝑇1V(𝑥 + 𝑒1), 𝑎2 ∈ arg𝑇1V(𝑥) hold,
then we have 𝑎1 ≥ 𝑎2 for all 𝑥 = (𝑥1, 𝑥2) ∈ 𝐸.
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