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A plane half-track model and a periodic track-substructure model are established. The spectral element method and spectral
transfer matrix method are developed and applied to investigate the track decay rate (TDR) and transmission rate (TR) of the
vertical rail vibrations, which can reflect the transmission characteristics in the longitudinal and downward directions, respectively.
Furthermore, the effects of different track parameters on TDR and TR are investigated. The results show that the antiresonance
frequency of the rail and the out-of-phase resonance frequency of the rail and sleeper form the boundary frequencies of the high-
attenuation zone for longwise vibration transmission, where the vibration absorption of the sleeper is significant. The downward
transmissibility of vertical rail vibrations is greatest around the antiresonance frequency of the rail. Vertical rail vibrations are
primarily transmitted in the downward direction at low frequencies, while they are mainly transmitted along the rail at high
frequencies. Stiffer rail pads can make more vibrations transmitted downwards to the sleeper above the antiresonance frequency of
the rail, while the changes of other track parameters have different effects on the transmission characteristics. Additionally, a field

measurement is performed for verification, and the simulations are well consistent with measurements.

1. Introduction

The ballast track has been widely used throughout the world
for years. In high-speed operation conditions, the ballast
track will face many problems, such as large noises and
ground-borne vibrations. They can greatly discomfort the
residents. Because the energy of noises and vibrations is
transmitted from the rail and vertical rail vibrations are
dominant vibration sources in the straight ballast track, it is
greatly significant to study the transmission characteristics of
vertical rail vibrations for solving these problems.

There are two transmission directions of vertical rail
vibrations: along the rail and downwards to the sleeper. TDR
[1], the attenuation of vibration transmitted along the rail,
reflects the transmission characteristics of rail vibrations in
the longitudinal direction and controls the effective sound
radiating length of the rail. TR, defined as the ratio between
accelerance amplitudes of the sleeper and the on-support rail
in the same section, reflects the transmission characteristics
of rail vibrations in the downward direction, and it is

associated with ground-borne vibrations and sleeper sound
radiation. With higher TDR and TR, more rail vibrations will
be transmitted downwards; with lower TDR and TR, more
rail vibrations will be transmitted along the rail.

Most of the studies on the transmission of vertical rail
vibrations in the ballast track only pay attention to one
transmission direction. As a result, they cannot explain
the interaction between vibration transmissions in different
directions. Jones et al. [1] compared TDRs of different track
structures according to simulations and measurements of
frequency response functions. Li et al. [2] calculated the
dispersion relation and TDRs of the ballast track with the
semi-analytical finite element method, but fasteners, sleepers,
and ballast were simplified as continuous supports in the
model. In order to study the effects of discrete supports and
section deformation on TDR, Betgen et al. [3] established
a finite element model of the ballast track with the length
of 34.8 m for the prediction. The above studies only focus
on the longwise transmission characteristic of vertical rail
vibrations. Knothe and Wu [4] investigated the receptance
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behaviors of a railway track and subgrade by a frequency-
domain analysis. Zhai et al. [5] established a five-parameter
model for an analysis of the ballast vibration and conducted a
full-scale field experiment to measure the ballast acceleration
excited by moving trains. Kaewunruen and Remennikov [6]
carried out a field hammer test to analyse the experimental
modals of the ballast track and evaluated the dynamic
parameters of the in situ railway track components. Chebli
et al. [7] built a periodic model for the soil-ballast track
system and performed an in situ measurement. Vertical
acceleration in several locations was obtained in the study.
Esmaeili et al. [8] investigated the response of railway track
to train loads while resting on an embankment. The effects
of embankment parameters on dynamic responses of the
rail and embankment were also studied. However, these
studies mainly focus on the dynamic responses and modal
characteristics of the ballast track, paying little attention
to downward transmission characteristics of vertical rail
vibrations.

The spectral element method (SEM) is a highly precise
and efficient frequency-domain solution method where the
spectral element equation is formulated in the frequency-
domain and solved by using the spectral analysis method
[9-11]. The procedure of the SEM is similar to that of
the conventional finite element method. However, the exact
dynamic stiffness matrix, known as the spectral element
stiffness matrix, is formulated by using the exact wave
solutions for the governing differential equations. The shape
functions of SEM are frequency-dependent while those of
the conventional finite element method are only determined
by coordinates. In the SEM, the geometrically and materially
uniform member can be replaced with only one spectral ele-
ment, which reduces the total number of degrees of freedom
and the calculation time [12]. The spectral transfer matrix
method (STMM) is a modified transfer matrix method
[13] that combines the transfer matrix method and SEM.
Having the advantages of these two methods, the STMM
can make a difference in studying the vibration transmission
characteristics of a one-dimensional periodic structure.

In this paper, a plane half-track model and a periodic
track-substructure model are established. The SEM and
STMM are developed and applied to investigate the TDR
and TR of the vertical rail vibrations, and the transmission
characteristics are studied in the longitudinal and downward
directions, simultaneously. Furthermore, the effects of differ-
ent track parameters on TDR and TR are investigated. Addi-
tionally, a field measurement is performed for verification.

2. Models and Methods

The straight ballast track structure is used for modeling.

2.1. Plane Half-Track Model. To investigate the downward
transmission characteristic of vertical rail vibrations, a plane
half-track model is established to obtain the TR, as shown in
Figure 1.

The model consists of a long straight rail, rail pads, sleep-
ers (of halflength), and ballast. The model length is 33 m, and
the sleeper spacing a obtained from the field measurement
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is 55 cm. The long rail is considered as a Timoshenko beam.
To decrease the influence of wave reflections on calculation
precision, nonreflecting boundary conditions are set at both
ends of the rail. The fastener and ballast are both considered
as a combination of a translational spring and a rotational
spring: the vertical stiffness of the rail pad is k,,, and the
rotational stiffness of the rail pad is k,,,; the vertical stiffness
of the ballast is ki, and the rotational stiffness of ballast is
kyyor- Considering the damping of rail pads and ballast, the
stiffness will be expressed in the form of complex stiffness:

Kepe = ki (1+11,) 5

kcbv = kbv (1 + lﬂb) >

)

where 7, is the damping loss factor of rail pads and 7, is the
damping loss factor of the ballast. Also, the vertical stiffness
and rotational stiffness satisfy the following relation [14]:

L.,
kcprot = Ebpkcpw
: (2)
2
kcbrot = Ebs kcbv’

where b, and b, are the lengths of the rail pad and sleeper
in the longitudinal direction, respectively. The sleeper is
considered as a mass block with the translational and rota-
tional degrees of freedom. As transmission characteristics of
vertical rail vibrations are inherent characteristics of the track
structure, only a unit harmonic force is needed to vertically
excite the rail at the middle of the model. By calculating the
accelerance amplitudes of the sleeper and on-support rail in
the same section, the TR can be obtained.

2.2. Spectral Element Method. The SEM is applied to solve the
plane half-track model. Due to the fact that the calculation
precision of SEM will not be affected by the element size, the
rail between two adjacent sleepers can be modeled as only one
SEM Timoshenko beam element, which will greatly reduce
the calculation time. To simulate the nonreflecting boundary
conditions, two Timoshenko beam throw-oft elements are
built at two ends of the long rail, respectively, as shown in
Figure 2. The sleeper is modeled as a one-node mass element,
and springs are modeled as two-node spring elements.

2.2.1. SEM Timoshenko Beam Element. The free vibration of
a uniform Timoshenko beam is represented by [15]

o*v  0¢ %y
Gak [ 22 %) a2 -,
<ax2 ax> T
, , (3)
e <av > ¢
El— AK | — — —pl— =0,
o TOAK 52 7¢) Pl

where G is the shear modulus, A is the cross-sectional area, K
is the shear correction factor, v is the transverse displacement
in the y direction, ¢ is the rotation, p is the mass density, E is
Young’s modulus, and I is the area moment of inertia about
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the neutral axis. The internal bending moment and transverse
shear force are given by

ov
=GAK | — - R
V-G (ax ¢>

o¢
M = El—,
ox

(4)

where V is the transverse shear force and M is the internal
bending moment.
The solutions of (4) can be given by the spectral form:

_ 1 NilA iw,t
v(x,t)—NZv(x,wn)e ,
n=0

LN '
¢ (x,t) = ﬁ;qb(x, w,) e,
(5)
PN '
V(x,t) = N;:;V(x, w,) e,

M _ 1 Nil’\ iw,t
(x,t)—NZM(x,wn)e ,
n=0

where 7, ¢, V, and M are the spectral displacements and
forces, N is the number of samples in the time domain, and
w,, is the angular frequency.

)
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FIGURE 3: Spectral nodal displacements and forces of SEM Timo-
shenko beam element.

Spectral nodal displacements and forces of two-node
SEM Timoshenko beam element are shown in Figure 3.
Substituting (5) into (3), one can obtain

v 0¢ 5
GAK(@ - a) +PA(,UnV =0,
. (6)
0°¢ o~ 2=
EI@ +GAK<& —¢> +PICU”¢ =0.
The general solutions to (6) are
V(% w,) = voe K
(7)

¢ (x0,) = goe ",



where v, and ¢, are coefficients and k(w,)) is the wavenumber.
Substituting (7) into (6) yields an eigenvalue problem (for
simplification the subscript # is omitted):

~iGAKk v
) ) =0. (8)
EIk” + GAK - plw” | \ ¢y

Equation (8) gives a dispersion relation as

GAKK* - pAw®
iGAKk

k*—ak*+a, =0,

1

- 2 2

a = (GAKplw® + EIpAw®), )
2

_ _PAw 2

a, = GAKEI (pr —GAK).
Solving (9) gives four roots as
a a;
ky=—-k; = ?1+ Zl a,,
(10)

From the first line of (8), one can obtain the amplitude
ratio as
R =0 _ _ 1GAKK (i=1,234). (1)
"¢y GAKK - pAw? 7T
By combining (7), (10), and (11), the solutions of (6) can
be expressed as

v = RlAe—iklx + RzBe—ikzx _ RICe_ikl(L_x)
_ RzDe_ikz(L—X)’ (12)
¢ = Ae™™% + Be ™% 4 Ce ) 4 peelY)

where A, B, C, and D are coeflicients determined from the
boundary conditions and L is the length of the beam element.
The first two terms of (12) present the waves travelling to the
right, and the latter two terms present the waves travelling to
the left.

The boundary conditions on the element are

(0, w) 2
¢ (0, w) _ ¢, 4, (13)
V(L, w) v,
$ (L, ) ‘52

where @, is the nodal displacement vector. Substituting (12)
into (13), one can obtain

7 (x, w) = NLGi,,
~ - (14)
¢ (x, w) = NGu,,
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where G is a [4 x 4] matrix:

Gy = —633 = (r, +Ar232)’

G = 634 = —R2 (rlA_ rzez),

Gy =-Gy = _(r1e2A+ rz)’

614 = 632 = R (rleAz — rZ),

G, =Gy = (n +Ar2‘31)’

é22 = é\44 = B (7’1A— rzel)’

Gy = _641 = W, (15)
624 = 642 = —W,

r = (R1 _Rz) (1 - e1ez)>

r, = (R +R,)(e; —e,),

2 2
A=r]-r5,
ik L
e =e R

—ik,L
e,=e R

N —ik —ik —ik, (L— —ik, (L—
N:(ellx elzx 611( X) elz( x)),

L =diag[R, R, -R, -R,].

From (14), we can obtain the shape functions of ¥ and (E
which are NLG and NG, respectively. Obviously, the shape
functions are frequency-dependent.

By combining (4), (5), and (14), one can obtain

M (x,w) = EIN'Gq,,
_ . L (16)
V (x,w) = —EIN" G, - plw’NGi,.

When x = 0 and x = L, the following can be obtained
from (16):

-V (0, w) 7
MOO a5l M-k 17)
V (L, w) V2
M (L, w) é,
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FIGURE 4: Spectral nodal displacements and forces of Timoshenko beam throw-off element.
where f, is the nodal displacement vector, and where
EIN" (0, w) + pIw*N (0, w) o 12— K o R,k — R v ool
_ ~EIN' (0, w) R, - R, R, - R,
H = U 2 : (18) Sg = . (23)
—~EIN" (L, w) - plo*N (L, w) EIi (k; - ky) Ii (Rik, — Ryk;)
EIN' (L, w) R, - R, R, -R,

Since the sign convention at the left end of the Timo-
shenko beam element in the SEM is different from that in
the strength of materials, there are minus (-) signs in front of
V(0, w) and M(0, w) in (17). The relation between the spectral
nodal forces and displacements is given by

f, = S, (@) @, (19)

where S,(w) = HG is the spectral element stiffness matrix of
the Timoshenko beam. Also, S,(w) is frequency-dependent.

2.2.2. Timoshenko Beam Throw-Off Element. In order to
reduce the impact of wave reflection on the calculation
precision, throw-off elements are set at two ends of the model.
In this section, we derive the spectral element stiffness matrix
of Timoshenko beam throw-off element which generates no
reflection waves travelling to the left. Figure 4 shows the
spectral nodal displacements and forces of this one-node
element.

By letting C = D = 0 in (12), the reflection components
in the solutions are removed. Therefore, the displacement
solutions of the element are expressed as

¥ = R,Ae ™* 4+ R,Be”**,
(20)
¢= Ae"®ix 4 peTikox

The boundary conditions (x = 0) on the element are

(?(0,(0)) <R1A+RZB> <$1>
~ = = .. (21)
¢ (0, w) A+B ¢,

From (4), (5), (20), and (21), one can obtain

(—V(o,w)> <v1>
— =Sgl| ~ |, (22)
-M (0’ (U) (/51

Sg is the spectral element stiffness matrix of the throw-off
element.

In this paper, the derivations of the spectral element
stiffness matrixes of the mass element and the spring element
[16] are omitted.

2.2.3. Assembling Process. In this section, the spectral struc-
tural stiffness matrix of the whole model will be assem-
bled. The spectral element stiffness matrix in the element
coordinate can be transformed for the global coordinate
using the same way as the finite element method [17]. Then,
it is assembled into a spectral structural stiffness matrix,
and meanwhile the constraint conditions are processed. The
relation between the spectral nodal forces and displacements
of the whole model can be expressed as

F=S(w)TU, (24)

where F is the spectral nodal force vector of the whole model,
U is the spectral nodal displacement vector of the whole
model, and S(w) is the spectral structural stiffness matrix. By
solving (24), one can yield a frequency-domain analysis of the
plane half-track model. The TR can be obtained through the
postprocessing of the responses.

2.3. Periodic Track-Substructure Model. To investigate the
transmission characteristics of vertical rail vibrations in the
longitudinal direction, a periodic track-substructure model
with the length of a is built to obtain the TDR, as shown in
Figure 5. The modeling way of track components is the same
as that of the plane half-track model. Bloch’s theorem [18] is
used at both rail sides.

2.4. Spectral Transfer Matrix Method. The periodic track-
substructure model is solved by using the STMM, and a five-
node calculation model is built, as shown in Figure 6.
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The spectral structural stiffness matrix of this model is
obtained by the SEM. The relation between spectral nodal
forces and displacements of the whole model is shown as

[S11 S12 S13 S14 S5 ﬁl Fl
S Sy Sy S Sy | [ U F,
S31 S35 S33 S34 S5 U, [=| & [, 9
S41 Sgz Suz Sus S4s U, F,
[ S51 S5z Ss3 Ssq Sss U, F

where U, is the spectral nodal displacement vector of node i
and F; is the spectral nodal force vector of node i. To build a
transmission relation between the left and right nodes of the
rail, the third row of the spectral structural stiffness matrix
is moved to become the last row and the third column is
moved to become the last column, with the corresponding
modification in forces and displacements vectors. Then, the
spectral structural stiffness matrix is divided to be a 3 x 3
matrix:

Sii Ssiz Si3 61 1A:I
Ss21 Ss22 Ssa3 IAjsz = IEsz > (26)
Ss1 Ssz2 S IAJ3 133
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where

Ss12 = [812 Sia SIS] >

T

Ssa1 = [SZI Su S51] >
S» Su Sy

Sszz = S42 S44 S45 >
Ss2 Sss Sss

(27)
T

>

Ssz3 = [st 543 553

Ss32 = [532 S34 S35

]
I,
— —_ o~ ~ 7T
Us, = [Uz U, Us] >
—~ —~ —~ ~ 1T

Fg, =[F, F, K| .

Since nodes 2, 4, and 5 are free from external loads, Fg, =
0. Therefore, the following can be obtained from (26):

U, -F,
T = _ |, (28)
U, +F;
where

T,, T
T= [ 11 12:|
T21 T22
[sn ~ 861585225521 S13 — ssusgz‘zsm]

-1 -1
S31 - SS32SSZZSSZI S33 - SS3ZSSZZSSZ3

(29)

Let us transform (28) to

=t _ |, (30)
F, F,

where t(w) is the spectral transfer matrix:
-1 -1
_le T11 _T12

. . (3D
T21 - T22T12T11 _T22T12

t(w)=[

For the one-dimensional periodic track structure, Bloch’s
theorem [19] can be used:

G
F3 Fl

where k, is the one-dimensional Bloch wave vector. A
standard 4 x 4 eigenvalue problem can be obtained from (30)
and (32):

|t (@) —e™1| = 0. (33)
Thus, the dispersion relation between the wave vector

k. and angular frequency w can be obtained by solving the
eigenvalue problem. For the bending problem of the rail, the
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TABLE 1: Model parameters.
Track component Parameter Symbol Value
Young’s modulus (GPa) E 210
Shear modulus (GPa) G 80.8
Rail Cross-sectional area (m?) A 7745 x 107
Mass density (kg/m®) P 7750
Shear correction factor K 0.5329
Area moment of inertia (m*) 1 3217 x107°
Vertical stiffness (kN/mm) kpv 225
Rail pad Damping loss factor N 0.25
Length (m) bp 0.17
Sleeper spacing (m) a 0.55
Sleeper Mass (half sleeper) (kg)2 m 170
Moment of inertia (kg-m®) ] 1.22
Length (m) b, 0.275
Ballast Vertical stiffness (per half sleeper) (kN/mm) Ky 20
Damping loss factor 1 1

solutions of Bloch wave vectors always appear in the form

of tk, as a pair, describing the same waves travelling in

opposite directions [20]. The solutions of the periodic track-

substructure model contain two pairs of Bloch wave vectors.
Finally, the TDR can be obtained by [21]:

A =-8.686Im(k,), (34)

where A stands for TDR and Im(k, ) is the imaginary part of
k..

The same parameters are adopted in the plane half-track
model and periodic track-substructure model, as shown in
Table 1. The stiffness and damping loss factors of the rail pad
and ballast are obtained by fitting the simulations to field
hammer test measurements.

Since the cross-sectional deformation of rails occurs
above 1500 Hz [22], the maximum simulating frequency
should not be over 1500 Hz. However, the rail is the dominant
noise source at frequencies lower than 1500 Hz, while the
noise of the sleeper becomes dominant below 400 Hz [1].
Additionally, under train load, the vertical vibration of
the sleeper above 800 Hz is negligible [23]. Therefore, the
concerned frequency range of the TDR is below 1500 Hz and
that of the TR is below 800 Hz in this paper.

3. Transmission Characteristics

In this section, the transmission characteristics of vertical rail
vibrations in ballast track are studied.

3.1. Field Measurement. A field measurement was carried out
for the verification. The measurement was conducted in an
existing railway line with CHN®60 rails and concrete sleepers.
The sleeper spacing is 55 cm. In addition, the ballast tamping
was just finished, and the track was in good conditions. The
section selected for the measurement was far away from rail
joints. The layout of the measurement is shown in Figure 7.

The sensor 1 and sensor 2 were accelerometers with the
operating frequency range of 1~15000 Hz, the nominal sen-
sitivity of 5mV/g, and the measurement range of 1000 g; the
sensor 3 was an accelerometer with the operating frequency
range of 0.2~2500 Hz, the nominal sensitivity of 500 mV/g,
and the measurement range of 10 g. The sensor 1 was placed
on the mid-span railhead. The sensor 2 was placed on the on-
support railhead. And the sensor 3 was placed on the sleeper.
The hammer had the measurement range of 125kN and the
sensitivity of 0.0417 mV/N. The sampling frequency of the
measurement was 12800 Hz.

By vertically exciting the middle of the mid-span railhead
and acquiring the signals of the sensor 1 and hammer,
the direct vertical accelerance of the mid-span rail can be
obtained; by vertically exciting the middle of the on-support
railhead and acquiring the signals of the sensor 2 and
hammer, the direct vertical accelerance of the on-support
rail can be obtained; by vertically exciting the middle of
the on-support railhead and acquiring the signals of the
sensor 3 and hammer, the transfer vertical accelerance of the
sleeper can be obtained. Thus, the TR can be calculated from
the measurements of the direct vertical accelerance of the
on-support rail and the transfer vertical accelerance of the
sleeper.

The TDR is measured according to the standard BS
EN15461:2008+A1:2010 [24]. By vertically exciting the middle
of the railheads at different distances from the sensor 1
along the rail and acquiring the signals of the sensor 1 and
hammer, the direct and transfer accelerances can be obtained.
Then, TDR will be calculated using these accelerance mea-
surements. The standard gives a detailed description of the
measurement procedure, exciting points, and calculation
formula.

Five effective impacts are made at each exciting point,
and the averages are taken for the results of each accelerance.
The lower limit of the effective frequency range of the
measurement depends on the coherent coefficient of the
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FIGURE 7: Layout of measurement sensors.
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accelerance, and the coherent coefficient is required to be
over 0.8 [25]; the upper limit of the effective frequency
range should meet the requirement that the decrease in the
autospectrum function of the force is less than 10 dB at this
frequency [14]. Based on these rules, the effective frequency
range of the field measurement is 20~2000 Hz.

3.2. Accelerance Behavior. The accelerance behaviors are of
great use to explain the trends of TDR and TR curves. The
accelerances of the rail and sleeper are shown in Figure 8.
Figure 8 shows that the simulations of the vertical
accelerances match measurements. The rail and sleeper have
the same accelerance in the low frequency range and they
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vibrate as a whole. The accelerance amplitude curves of the
on-support rail and the sleeper both reach their peaks at
80 Hz where the phases are the same. Thus, the in-phase
resonance of the rail and sleeper occurs at this frequency
(denoted by f,). At the antiresonance frequency of the on-
support rail (about 190 Hz, denoted by f,), the amplitude
curve of the on-support rail reaches its trough. The sleeper
resonates and acts as a dynamic vibration absorber of the rail.
Amplitude curves of the on-support rail and the sleeper both
reach their peaks at about 470 Hz where the phase difference
is about 7. Thus, the out-of-phase resonance of the rail and
sleeper occurs at this frequency (denoted by f,). It can also be
seen in the amplitude curves of the sleeper. A trough appears
in the amplitude curve of the on-support rail at f, = 1337 Hz
where the pinned-pinned antiresonance of the on-support
rail occurs. The modal shape corresponds to a standing
wave with nodes at the sleepers. The direct accelerances of
on-support and mid-span rails are similar, except the only
difference at f,, where the accelerance amplitude curve of the
mid-span rail reaches its peak.

3.3. Track Decay Rate. TDR of vertical rail vibrations is
shown in Figure 9. The results are expressed in the form of
one-third octave frequency spectrum.

As the solutions of the periodic track-substructure model
contain two pairs of Bloch wave vectors, two TDRs can be
obtained in the simulation. The first wave, known as the near-
filed wave, maintains a high decay rate in the whole frequency
range. The second wave, known as the propagating wave, has
a lower decay rate. Because the near-filed wave is attenuated
greatly, the longwise transmission characteristics are reflected
by the propagating wave. Figure 9 shows that the measured
and simulated TDRs have the same changing trends though
small value differences exist.

In the low frequency range, simulated TDR decreases
with the increase of the frequency, until it starts increasing
at 100 Hz. The antiresonance frequency f, and the resonance

TR (dB)

30 100 800
Frequency (Hz)

—— Simulated
rrrrrr Measured

F1GURE 10: TR of vertical rail vibration.

frequency f, form the boundary frequencies of the high-
attenuation zone. Within this frequency range, the sleeper
vibrates with high amplitude and absorbs much vibration
energy from the rail. Above f,, the TDR decreases again until
a small peak corresponding to the bandgap of the periodic
structure [26] occurs at 1260 Hz. TDRs at high frequencies
are relatively lower than those at low frequencies.

3.4. Transmission Rate. The transmission rate of vertical rail
vibration is shown in Figure 10. The results are expressed in
the logarithmic form (20 x IgTR).

In the low frequency range, the TR increases with the
increase of the frequency. At the antiresonance frequency f,
of the rail, the TR curve reaches its peak and the downward
vibration transmissibility is greatest. The sleeper resonates
while the rail vibrates with low amplitude. In the frequency
range of 150-250Hz, both TDR and TR are extremely
high and the vertical rail vibrations are mostly transmitted
downwards to the sleeper. Above f,, the TR decreases with
the increase of the frequency. At 800 Hz, the TR is only
—-25dB. In the high frequency range, both TDR and TR
are low and therefore the vertical rail vibrations are mainly
transmitted along the rail.

As simulations and measurements of the TDR and TR
coincide well with each other, the presented models and
methods in this paper are sufficient for studying the trans-
mission characteristics of vertical rail vibrations.

4. Parameter Study

In this section, influences of different parameters on TDR
and TR are investigated to further reveal the transmission
characteristics of vertical rail vibrations.

4.1. Vertical Rail Pad Stiffness. Vertical rail pad stiffness
determines the coupling degree between the rail and sleeper,
directly affecting TDR and TR. The simulation results are
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FIGURE 11: Influences of vertical rail pad stiffness on (a) TDR and (b) TR.

shown for vertical rail pad stiffness values of 60, 120, 220, and
320 kN/mm in Figure 11.

With the increase of vertical rail pad stiffness, the
coupling between the rail and sleeper is strengthened, and
both the antiresonance frequency f, and the out-of-phase
resonance frequency f, are increased, which moves the high-
attenuation zone into a higher frequency range. Additionally,
the decay rate value of the high-attenuation zone gets higher.
The rail pad stiffness has a little influence on the TDR below
the in-phase resonance frequency f;, because the rail and
sleeper vibrate as a whole at low frequencies. However, the
TDR increases with a stiffer rail pad above the antiresonance
frequency f,.

In the low frequency range, the TR is slightly influenced
by the vertical rail pad stiffness. With the increase of the
vertical rail pad stiffness, the frequency and value of the TR
curve peak both get higher, and the TR value significantly
increases at high frequencies.

It can be seen that the increase of vertical rail pad stiffness
has alittle effect on the transmission characteristics of vertical
rail vibration in the low frequency range, but it can make
more vibrations transmitted downwards to the sleeper above
the antiresonance frequency of the rail.

4.2. Vertical Ballast Stiffness. Vertical ballast stiffness reflects
the coupling degree between the sleeper and subgrade and
also affects the transmission characteristics of vertical rail
vibration. The simulation results are shown for vertical rail
pad stiffness values of 20, 40, 60, and 80 kN/mm in Figure 12.

Figure 12 shows that ballast stiffness only influences
the transmission characteristics below the antiresonance
frequency of the rail. With the increase of vertical ballast
stiffness, the TDR is significantly increased while the TR

is decreased. Consequently, more vertical rail vibrations are
transmitted to the subgrade and less ones are left on the
sleeper or transmitted along the rail.

4.3. Rail Pad Damping Loss Factor. The existence of damping
will dissipate the mechanical energy of the vibration system,
which directly influences the transmission of vibration. The
simulation results are shown for rail pad damping loss factor
values of 0.1, 0.25, 0.5, and 1 in Figure 13.

With the increase of the rail pad damping loss factor, the
resonance of the sleeper will be mitigated, and therefore it will
weaken the vibration absorption of the sleeper. As a result, the
TDR in the high-attenuation zone is decreased. However, the
TDR above the out-of-phase resonance frequency f, will be
increased due to more energy dissipation of rails caused by
rail pad damping.

The increase of the rail pad damping loss factor will
decrease the TR near the antiresonant frequency f,, which is
also due to the mitigation of the sleeper vibration. The influ-
ences on TR in other frequency ranges are not significant.

4.4. Ballast Damping Loss Factor. The simulation results are
shown for ballast damping loss factor values of 0.5, 1, and 2 in
Figure 14.

The ballast damping loss factor mainly affects the TDR
below the antiresonant frequency f,. At low frequencies, the
rail and sleeper vibrate as a whole. Therefore, the increase
of the loss factor leads to a higher TDR due to the energy
dissipation caused by ballast damping.

The ballast damping loss factor mainly affects TR near
the antiresonant frequency f,. With the increase of the loss
factor, the TR gets lower and less vertical rail vibration is
transmitted downwards to the sleeper.
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4.5. Sleeper Mass. The simulation results are shown for
sleeper mass values of 125, 150, and 170 kg in Figure 15.

The main influence of sleeper mass on the TDR and TR
consists in changing the characteristic frequencies, leading to
approximate transverse translations of TDR and TR curves.
With the increase of sleeper mass, the characteristic frequen-
cies f}, f,, and f, are decreased in different degrees, moving
the curves towards the low frequency.

5. Conclusion

This paper investigates the transmission characteristics of
vertical rail vibrations in the ballast track. The main conclu-
sions can be drawn as follows.

(1) Simulations are well consistent with measurements,
and the presented models and methods are sufficient for
studying the TDR and TR of the vertical rail vibrations.
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FIGURE 15: Influence of sleeper mass on (a) TDR and (b) TR.

(2) The antiresonance frequency of the rail and the
out-of-phase resonance frequency of the rail and sleeper
form the boundary frequencies of the high-attenuation zone
for longwise vibration transmission, where the vibration
absorption of the sleeper is significant. The TDR above the
out-of-phase resonance frequency is lower than that below
the antiresonance frequency.

(3) The TR curve reaches its peak at the antiresonance
frequency of the rail, where the downward transmissibility
of vertical rail vibrations is greatest. Above this frequency,
the TR decreases with the increase of the frequency. The

TR in the high frequency range is lower than that in the
low frequency range. Vertical rail vibrations are primarily
transmitted downwards at low frequencies, while they are
mainly transmitted along the rail at high frequencies.

(4) Stiffer rail pads can make more vibrations transmitted
downwards to the sleeper above the antiresonance frequency
of the rail, while stiffening of the ballast makes more vertical
rail vibrations transmitted to the subgrade and less ones
left on the sleeper or transmitted along the rail below the
antiresonance frequency. The rail pad damping will weaken
the vibration absorption of the sleeper, making more vertical
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rail vibrations transmitted along the rail within the high-
attenuation zone. The main influence of sleeper mass consists
in changing characteristic frequencies.

The work in this paper can be helpful to find the reasons
for problems of large noises and vibrations for the ballast
track.
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