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In this paper, we deal with the existence and uniqueness of the solutions of two-point boundary value problem of fourth-order
ordinary differential equation: 𝑢(4)(𝑡) = 𝑓(𝑡, 𝑢(𝑡), 𝑢󸀠(𝑡)), 𝑡 ∈ [0, 1], 𝑢(0) = 𝑢󸀠(0) = 𝑢󸀠󸀠(1) = 𝑢󸀠󸀠󸀠(1) = 0, where 𝑓 : [0, 1] × R2 → R

is a continuous function. The problem describes the static deformation of an elastic beam whose left end-point is fixed and right
is freed, which is called slanted cantilever beam. Under some weaker assumptions, we establish a new maximum principle by the
perturbation of positive operator and construct the monotone iterative sequence of the lower and upper solutions, and, based on
this, we obtain the existence and uniqueness results for the slanted cantilever beam.

1. Introduction

In mechanics, the two-point boundary value problems of
fourth-order ordinary differential equations are mainly used
to describe the static deformation of elastic beam under
external force, and especially a model to study travelling
waves in suspension bridges can be furnished by the fourth-
order equation of nonlinearity. Due to the different support
conditions of elastic beams, a variety of boundary value
problems are derived; see [1].

In this paper, we deal with the existence and uniqueness
results of solutions to the two-point boundary value problem
of fourth-order ordinary differential equation

𝑢(4) (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢󸀠 (𝑡)) , 𝑡 ∈ [0, 1] ,
𝑢 (0) = 𝑢󸀠 (0) = 𝑢󸀠󸀠 (1) = 𝑢󸀠󸀠󸀠 (1) = 0, (1)

where 𝑓 : [0, 1] × R2 → R is a continuous function. The
problem is called slanted cantilever beam which describes
the static deformation of an elastic beam whose left end-
point is fixed and right is freed. For the equation, the physical
meaning of the first-order derivative 𝑢󸀠(𝑡) of unknown
function is the slope, which reflects the curving degree of the
elastic beam; see [1–5].

There are many results on the cantilever beam equation;
see [4–17]. Specially, in [4, 14, 15], Agarwal et al. used the fixed
point theorems of cone mapping to research the special case
of BVP (1) that the nonlinear term 𝑓 does not contain the
derivative term 𝑢󸀠, namely,

𝑢(4) (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] ,
𝑢 (0) = 𝑢󸀠 (0) = 𝑢󸀠󸀠 (1) = 𝑢󸀠󸀠󸀠 (1) = 0. (2)

In these works, since there is no derivative term, the research
about the solutions is simple and feasible relatively.

In [6, 7, 10, 16, 17], for the fourth-order ordinary differ-
ential equation with the boundary value condition 𝑢(0) =𝑢󸀠(0) = 𝑢󸀠󸀠(1) = 0, 𝑢󸀠󸀠󸀠(1) = 𝜇𝑔(𝑢(1)), which means that
the left end of the beam is fixed and the right is attached to
a bearing device, the existence and multiplicity of solutions
have been discussed by using the variational methods and
critical point theory.

For the case of BVP (1), in [11], Yao constructed a suc-
cessively iterative sequence by using the monotone iterative
technique and applying the successively approximatemethod
to prove an existence theorem. Recently, in [5], by using the
fixed point index theory in cones, Li researched the existence
of positive solutions of cantilever beam equation in which
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the nonlinear term contains all order derivatives of unknown
function.

However, there are still many limitations in the study of
this problem in recent years. First of all, most conclusions
of the existences were obtained only by roughly estimating
the properties of the correspondingGreen function; secondly,
most of the conditions for nonlinear term 𝑓 are very harsh,
so the existence results of the solutions are not optimal.

For the solvability of elastic beam equations with other
types of boundary conditions, many results have been
obtained; see [18–24] and references therein. Specially, in
[23], Li dealt the fourth-order boundary value problem

𝑢(4) (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢󸀠󸀠 (𝑡)) , 𝑡 ∈ 𝐼,
𝑢 (0) = 𝑢 (1) = 𝑢󸀠󸀠 (0) = 𝑢󸀠󸀠 (1) = 0 (3)

and obtained the existence and uniqueness of solutions
by utilizing the perturbation of positive operator and the
monotone iterative technique of upper and lower solutions.
It is well known that the monotone iterative method of lower
and upper solutions has been widely used in solving the
boundary value problem of ordinary differential equations.
However, as far as we know, no researchers studied BVP (1)
by monotone iterative method of lower and upper solutions.

Motivated by the papersmentioned above, we will use the
monotone iterative technique of lower and upper solutions
to discuss the existence and uniqueness of BVP (1). It is well
known that the theoretical basis of the monotone iterative
technique is the maximum principle. It often requires two
aspect of works for this method. One is to construct the
iterative sequence and judge its monotonicity, and the other
is to verify the convergence of the constructed sequence.
Generally, For the case of BVP (2), the nonlinear item𝑓 = 𝑓(𝑡, 𝑢(𝑡)), if the linear differential operator at the left
satisfies the maximum principle, then the monotone iterative
technique is feasible; see [18–20]. However, in BVP (1), the
nonlinear term contains the derivative; the generalmaximum
principle cannot guarantee the monotonicity of the iterative
sequence. Therefore, in order to ensure the feasibility of
the monotone iterative technique, we should strengthen the
maximum principle.

The purpose of this paper is to construct a newmaximum
principle for fourth-order differential operator

𝐿4𝑢 = 𝑢(4) + 𝑁𝑢󸀠 + 𝑀𝑢, (4)

where 𝑀, 𝑁 are constants satisfying
𝑁
2 + 𝑀

3 ≤ 1, 𝑀,𝑁 ≥ 0 (5)

and establish the monotone iterative technique in the case of
the lower and upper solutions existing in BVP (1). To the best
of our knowledge, using this method to solve the problem of
the solvability of cantilever beam equation is rare. It means
that our conclusions are new and meaningful.

The paper is organized as follows. Section 2 provides the
preliminary results which are used in theorems stated and
proved in the article, and Section 3 presents the main results
and its proof of the article.

2. Preliminaries

In this section, we introduce some basic concepts and
preliminary facts which are used in this paper.

Let 𝐼 = [0, 1], 𝐶(𝐼), be a continuous function space
endowed the maximum norm ‖𝑢‖ = max𝑡∈𝐼|𝑢(𝑡)|, 𝐶𝑛(𝐼) (𝑛 =1, 2, 3, 4) are 𝑛-order continuous differentiable function
spaces which are defined in 𝐼, and 𝐶+(𝐼) denote a cone in the
form of all nonnegative functions in 𝐶(𝐼). Evidently, 𝐶+(𝐼) ={𝑢 ∈ 𝐶(𝐼) | 𝑢(𝑡) ≥ 0, 𝑡 ∈ 𝐼}.

Let constants𝑀, 𝑁 satisfy the expression (5). In order to
study the existence of solutions of the BVP (1), we establish a
new maximum principle for the differential operator (4). To
this end, we consider the corresponding fourth-order linear
boundary value problem (LBVP)

𝑢(4) (𝑡) + 𝑁𝑢󸀠 (𝑡) + 𝑀𝑢 (𝑡) = ℎ (𝑡) , 𝑡 ∈ 𝐼,
𝑢 (0) = 𝑢󸀠 (0) = 𝑢󸀠󸀠 (1) = 𝑢󸀠󸀠󸀠 (1) = 0. (6)

Assume that V(𝑡) = 𝑢󸀠(𝑡); then we have

𝑢 (𝑡) = ∫𝑡
0

V (𝑠) 𝑑𝑠 fl 𝑇0V (𝑡) . (7)

Evidently, ‖𝑇0‖ = 1. Therefore, the fourth-order LBVP (6)
is equivalent to the following third-order boundary value
problem:

V(3) (𝑡) + 𝑁V (𝑡) + 𝑀𝑇0V (𝑡) = ℎ (𝑡) , 𝑡 ∈ 𝐼,
V (0) = V󸀠 (1) = V󸀠󸀠 (1) = 0. (8)

We have known that, for any ℎ ∈ 𝐶(𝐼), the third-order
linear boundary value problem

V(3) (𝑡) = ℎ (𝑡) , 𝑡 ∈ 𝐼,
V (0) = V󸀠 (1) = V󸀠󸀠 (1) = 0 (9)

has a unique solution V ∈ 𝐶3(𝐼), which can be expressed as

V (𝑡) = ∫1
0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠 fl 𝑆ℎ (𝑡) , (10)

where 𝐺(𝑡, 𝑠) is the Green function of LBVP (9) given by the
following expressions:

𝐺 (𝑡, 𝑠) = {{{{{
𝑡𝑠 − 1

2𝑡2, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,
1
2𝑠2, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1. (11)

Clearly, 𝐺(𝑡, 𝑠) is continuous, and the following lemma is
established.

Lemma 1. 𝐺(𝑡, 𝑠) has the following properties:
(a) 𝐺(𝑡, 𝑠) > 0, for any 0 < 𝑡, 𝑠 < 1.
(b) 𝑡𝐺(𝑠, 𝑠) ≤ 𝐺(𝑡, 𝑠) ≤ max𝑡∈𝐼𝐺(𝑡, 𝑠) = 𝐺(𝑠, 𝑠), for any0 ≤ 𝑡, 𝑠 ≤ 1.
(c) 𝐺(𝑡, 𝑠) ≤ 𝑠𝑡, for any 0 ≤ 𝑡, 𝑠 ≤ 1.
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Proof. From the expression of (11), it follows that (a) holds.
(b) For 0 ≤ 𝑡 ≤ 𝑠 ≤ 1, we have

𝐺 (𝑡, 𝑠) − 𝐺 (𝑠, 𝑠) = −1
2 (𝑠 − 𝑡)2 ≤ 0,

𝐺 (𝑡, 𝑠) − 𝑡𝐺 (𝑠, 𝑠) = 𝑠𝑡 − 1
2𝑡2 − 1

2𝑡𝑠2

= 1
2𝑡 (𝑠 − 𝑡) + 1

2𝑠𝑡 (1 − 𝑠) ≥ 0.
(12)

For 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,
𝐺 (𝑡, 𝑠) = 1

2𝑠2 = 𝐺 (𝑠, 𝑠) ≥ 𝑡𝐺 (𝑠, 𝑠) . (13)

(c) From the expression (11), for any 𝑡, 𝑠 ∈ [0, 1], 𝐺(𝑡, 𝑠) ≤𝑠𝑡 holds obviously.
This completes the proof of Lemma 1.

From Lemma 1, we can obtain the following result which
is needed in the proof of our main results.

Lemma 2. The solution operator 𝑆 : 𝐶(𝐼) → 𝐶(𝐼) of LBVP
(9) is the completely continuous linear operator, and its norm
satisfies ‖𝑆‖ ≤ 1/6. Furthermore, if ℎ ∈ 𝐶+(𝐼), then 𝑆ℎ(𝑡) ≥𝑡‖𝑆ℎ‖, for every 𝑡 ∈ 𝐼.
Proof. From (10), we can easily obtain that the solution
operator 𝑆 : 𝐶(𝐼) → 𝐶(𝐼) of LBVP (9) is a completely
continuous linear operator.

For any ℎ ∈ 𝐶(𝐼), by (10) and (11), we obtain

|𝑆ℎ (𝑡)| ≤ ∫1
0

𝐺 (𝑡, 𝑠) 𝑑𝑠 ⋅ ‖ℎ‖ = 1
6 (𝑡3 − 3𝑡2 + 3𝑡) ‖ℎ‖

≤ 1
6 ‖ℎ‖ , 𝑡 ∈ 𝐼.

(14)

It is easy to see that ‖𝑆ℎ‖ ≤ (1/6)‖ℎ‖, which implies that ‖𝑆‖ ≤1/6 holds.
Furthermore, for ℎ ∈ 𝐶+(𝐼), from (10) and the second

inequality of Lemma 1(b), we get

|𝑆ℎ (𝑡)| ≤ ∫1
0

𝐺 (𝑠, 𝑠) ℎ (𝑠) 𝑑𝑠, 𝑡 ∈ 𝐼. (15)

It follows that

‖𝑆ℎ‖ ≤ ∫1
0

𝐺 (𝑠, 𝑠) ℎ (𝑠) 𝑑𝑠. (16)

From Lemma 1(b), we have

𝑆ℎ (𝑡) = ∫1
0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠 ≥ 𝑡 ∫1
0

𝐺 (𝑠, 𝑠) ℎ (𝑠) 𝑑𝑠
≥ 𝑡 ‖𝑆ℎ‖ .

(17)

This completes the proof of Lemma 2.

In order to establish the newmaximum principle, we also
need to prove the following lemma.

Lemma 3. Let there exist constants 𝑀 and 𝑁 satisfying the
assumption (5); then LBVP (6) has a unique solution 𝑢 = 𝑇ℎ ∈𝐶4(𝐼) for any ℎ ∈ 𝐶(𝐼), and the solution operator 𝑇 : 𝐶(𝐼) →𝐶1(𝐼) is completely continuous. Specifically, when ℎ ∈ 𝐶+(𝐼),
then the solution 𝑢 = 𝑇ℎ satisfies 𝑢(𝑡) ≥ 0, 𝑢󸀠(𝑡) ≥ 0, 𝑡 ∈ 𝐼.
Proof. According to the above analysis, if there exists the
unique solution V ∈ 𝐶3(𝐼) of LBVP (8), then 𝑢 = 𝑇0V ∈ 𝐶4(𝐼)
is the unique solution of LBVP (6). By the Lemma 2, LBVP
(8) is equivalent to the operator equation

(𝐽 + 𝑁𝑆 + 𝑀𝑆𝑇0) V (𝑡) = 𝑆ℎ (𝑡) , (18)

where 𝐽 is the unit operator in 𝐶(𝐼). By Lemma 2, it follows
that

󵄩󵄩󵄩󵄩𝑁𝑆 + 𝑀𝑆𝑇0󵄩󵄩󵄩󵄩 ≤ 𝑁 ‖𝑆‖ + 𝑀‖𝑆‖ ⋅ 󵄩󵄩󵄩󵄩𝑇0󵄩󵄩󵄩󵄩 ≤ 𝑁
6 + 𝑀

6
≤ 𝑁

4 + 𝑀
6 = 1

2 (𝑁
2 + 𝑀

3 ) ≤ 1
2 .

(19)

Therefore, 𝐽 + 𝑁𝑆 + 𝑀𝑆𝑇0 creates bounded inverse operator.
According to the Neumann expansion, we can obtain that

(𝐽 + 𝑁𝑆 + 𝑀𝑆𝑇0)−1 =
∞∑
𝑛=0

(−1)𝑛 (𝑁𝑆 + 𝑀𝑆𝑇0)𝑛

= ∞∑
𝑛=0

(−1)𝑛 (𝑁𝑆 + 𝑀𝑆𝑇0)2𝑛 (𝐽 − 𝑁𝑆 − 𝑀𝑆𝑇0) ;
(20)

its norm satisfies
󵄩󵄩󵄩󵄩󵄩(𝐽 + 𝑁𝑆 + 𝑀𝑆𝑇0)−1󵄩󵄩󵄩󵄩󵄩 ≤ 1

1 − 󵄩󵄩󵄩󵄩(𝑁𝑆 + 𝑀𝑆𝑇0)󵄩󵄩󵄩󵄩 ≤ 2. (21)

Therefore, the operator equation (18) has a uniqueness solu-
tion

V = (𝐽 + 𝑁𝑆 + 𝑀𝑆𝑇0)−1 𝑆ℎ fl 𝐵ℎ. (22)

Thus, LBVP (6) has the uniqueness solution 𝑢 = 𝑇0V =𝑇0𝐵ℎ fl 𝑇ℎ, where 𝐵 = (𝐽 + 𝑁𝑆 + 𝑀𝑆𝑇0)−1𝑆, 𝑇 = 𝑇0𝐵.
Since the operator 𝑆 : 𝐶(𝐼) → 𝐶(𝐼) is completely continuous
and (𝐽+𝑁𝑆+𝑀𝑆𝑇0)−1 is a bounded linear operator, then the
operator 𝐵 : 𝐶(𝐼) → 𝐶(𝐼) is completely continuous. Thus,
according to the boundedness of 𝑇0 : 𝐶(𝐼) → 𝐶1(𝐼), we
can get that 𝑇 : 𝐶(𝐼) → 𝐶1(𝐼) is a completely continuous
operator.

Now,we prove that, for anyℎ ∈ 𝐶+(𝐼), the solution𝑢 = 𝑇ℎ
of LBVP (6) satisfies 𝑢 ≥ 0, 𝑢󸀠 ≥ 0.

Since𝑇0 and 𝑆 are the positive operators in𝐶(𝐼), and 𝑆ℎ ≤‖𝑆ℎ‖, then from the definition of operator 𝑇0, we have 𝑇0𝑆ℎ ≤𝑡‖𝑆ℎ‖, and by Lemma 2(c), it is obvious that

(𝑁𝑆 + 𝑀𝑆𝑇0) 𝑆ℎ = (𝑁𝑆) 𝑆ℎ + (𝑀𝑆𝑇0) 𝑆ℎ
≤ (𝑁𝑆 (1) + 𝑀𝑆 (𝑠)) ‖𝑆ℎ‖
= (𝑁∫1

0

𝐻(𝑡, 𝑠) 𝑑𝑠 + 𝑀∫1
0

𝑠𝐻 (𝑡, 𝑠) 𝑑𝑠) ‖𝑆ℎ‖
≤ (𝑁

2 𝑡 + 𝑀
3 𝑡) ‖𝑆ℎ‖ = (𝑁

2 + 𝑀
3 ) ‖𝑆ℎ‖ 𝑡,

(23)
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for any 𝑡 ∈ 𝐼. By Lemma 2, we can obtain

(𝐽 − 𝑁𝑆 − 𝑀𝑆𝑇0) 𝑆ℎ = 𝑆ℎ − (𝑁𝑆 + 𝑀𝑆𝑇0) 𝑆ℎ
≥ ‖𝑆ℎ‖ 𝑡 − (𝑁

2 + 𝑀
3 ) ‖𝑆ℎ‖ 𝑡

= (1 − (𝑁
2 + 𝑀

3 )) ‖𝑆ℎ‖ 𝑡 ≥ 0,
(24)

for any 𝑡 ∈ 𝐼. Since𝑇0 and 𝑆 are the positive operators, we can
obtain that

𝐵ℎ = (𝐽 + 𝑁𝑆 + 𝑀𝑆𝑇0)−1 𝑆ℎ
= ∞∑
𝑛=0

(𝑁𝑆 + 𝑀𝑆𝑇0)2𝑛 (𝐽 − 𝑁𝑆 − 𝑀𝑆𝑇0) 𝑆ℎ ≥ 0. (25)

Therefore, the solution of LBVP (6) satisfies 𝑢 = 𝑇0𝐵ℎ ≥ 0,
and 𝑢󸀠 = 𝐵ℎ ≥ 0. This completes the proof of Lemma 3.

According to the conclusion of Lemma 3, the following
maximum principle can be obtained.

Lemma 4. Let there exist constants 𝑀 and 𝑁 satisfying the
assumption (5), if 𝑢 ∈ 𝐶4(𝐼) satisfies

𝑢(4) (𝑡) + 𝑁𝑢󸀠 (𝑡) + 𝑀𝑢 (𝑡) ≥ 0, 𝑡 ∈ 𝐼,
𝑢 (0) ≥ 0,
𝑢󸀠 (0) ≥ 0,
𝑢󸀠󸀠 (1) ≥ 0,
𝑢󸀠󸀠󸀠 (1) ≤ 0;

(26)

then 𝑢(𝑡) ≥ 0, 𝑢󸀠(𝑡) ≥ 0 for any 𝑡 ∈ 𝐼.
3. Main Results

Now, we are in the position to state and prove our main
results.Wewill applymonotone iterativemethod of the lower
and upper solutions to obtain the existence and uniqueness
of solutions for cantilever beam equation (1). To this end, we
define the lower and upper solutions of BVP (1).

Definition 5. If 𝛼(𝑡) ∈ 𝐶4(𝐼) satisfies
𝛼(4) (𝑡) ≤ 𝑓 (𝑡, 𝛼 (𝑡) , 𝛼󸀠 (𝑡)) , 𝑡 ∈ 𝐼,
𝛼 (0) ≤ 0,
𝛼󸀠 (0) ≤ 0,
𝛼󸀠󸀠 (1) ≤ 0,
𝛼󸀠󸀠󸀠 (1) ≥ 0,

(27)

then𝛼(𝑡) is called a lower solution of BVP (1). If the inequality
of (27) is inverse, then 𝛼(𝑡) is called an upper solution of BVP
(1).

Theorem 6. Let 𝑓 : 𝐼 × R × R → R be continuous, and there
are lower and upper solutions 𝛼 and 𝛽 for BVP (1), satisfying𝛼 ≤ 𝛽, 𝛼󸀠 ≤ 𝛽󸀠. If 𝑓 satisfies the following condition:

(F1) there exist positive constants 𝑀 and 𝑁 satisfying (5),
such that

𝑓 (𝑡, 𝑢2, V2) − 𝑓 (𝑡, 𝑢1, V1)
≥ −𝑀(𝑢2 − 𝑢1) − 𝑁 (V2 − V1) , (28)

for arbitrary 𝑡 ∈ 𝐼, 𝑢1, 𝑢2 ∈ [𝛼, 𝛽], V1, V2 ∈[𝛼󸀠, 𝛽󸀠], 𝑢2 ≥ 𝑢1, V2 ≥ V1,

then BVP (1) has onemaximal solution 𝑢 andminimal solution𝑢 between 𝛼 and 𝛽.
Proof. Let 𝐷 = {𝑢 ∈ 𝐶1(𝐼) | 𝛼 ≤ 𝑢 ≤ 𝛽, 𝛼󸀠 ≤ 𝑢󸀠 ≤ 𝛽󸀠},
Clearly,𝐷 is a bounded nonempty convex closed set in𝐶1(𝐼).

For any 𝑢 ∈ 𝐷, we define an operator 𝐹 : 𝐷 → 𝐶(𝐼) as
follows:

𝐹 (𝑢) (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢󸀠 (𝑡)) + 𝑁𝑢󸀠 (𝑡) + 𝑀𝑢 (𝑡) . (29)

According to the continuity of 𝑓, it is easy to see that 𝐹 is the
continuous bounded operator in 𝐶(𝐼). Let 𝑇 be the solution
operator of LBVP (6); then the solution of BVP (1) in 𝐷 is
equivalent to the fixed point of the composition operator𝑄 =𝑇 ∘ 𝐹 : 𝐷 → 𝐶1(𝐼). We can easily obtain that operator 𝑄 as
completely continuous by the complete continuity of 𝑇 and
the boundedness of𝐹. In the following, wewill take four steps
to prove the conclusion.

Step 1.We prove that 𝑄(𝐷) ⊂ 𝐷.
To this end, we let 𝑥 = 𝑄𝑢 for every 𝑢 ∈ 𝐷. And defineℎ = 𝐹(𝑢), and then 𝑥 = 𝑇ℎ is the solution of LBVP (6). Thus,𝑥 ∈ 𝐶4(𝐼) satisfy
𝑥(4) (𝑡) + 𝑁𝑥󸀠 (𝑡) + 𝑀𝑥 (𝑡)

= 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢󸀠 (𝑡)) + 𝑁𝑢󸀠 (𝑡) + 𝑀𝑢 (𝑡) , 𝑡 ∈ 𝐼,
𝑥 (0) = 𝑥󸀠 (0) = 𝑥󸀠󸀠 (1) = 𝑥󸀠󸀠󸀠 (1) = 0.

(30)

Then by the definition of the lower and upper solutions and
the assumption (F1), it is clear that

(𝑥 − 𝛼)(4) + 𝑁 (𝑥 − 𝛼)󸀠 + 𝑀(𝑥 − 𝛼)
≥ 𝑓 (𝑡, 𝑢, 𝑢󸀠) − 𝑓 (𝑡, 𝛼, 𝛼󸀠) + 𝑁 (𝑢 − 𝛼)󸀠

+ 𝑀(𝑢 − 𝛼)
≥ −𝑀(𝑢 − 𝛼) − 𝑁 (𝑢 − 𝛼)󸀠 + 𝑁 (𝑢 − 𝛼)󸀠

+ 𝑀(𝑢 − 𝛼) = 0, ∀𝑡 ∈ 𝐼,
(𝛽 − 𝑥)(4) + 𝑁 (𝛽 − 𝑥)󸀠 + 𝑀(𝛽 − 𝑥)

≥ 𝑓 (𝑡, 𝛽, 𝛽󸀠) − 𝑓 (𝑡, 𝑢, 𝑢󸀠) + 𝑁 (𝛽 − 𝑢)󸀠
+ 𝑀(𝛽 − 𝑢)
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≥ −𝑀(𝛽 − 𝑢) − 𝑁 (𝛽 − 𝑢)󸀠 + 𝑁 (𝛽 − 𝑢)󸀠
+ 𝑀(𝛽 − 𝑢) = 0, ∀𝑡 ∈ 𝐼.

(31)

By the boundary conditions, we can get that

(𝑥 − 𝛼) (0) ≥ 0,
(𝑥 − 𝛼)󸀠 (0) ≥ 0,
(𝑥 − 𝛼)󸀠󸀠 (1) ≥ 0,
(𝑥 − 𝛼)󸀠󸀠󸀠 (1) ≤ 0,
(𝛽 − 𝑥) (0) ≥ 0,
(𝑥 − 𝛼)󸀠 (0) ≥ 0,
(𝑥 − 𝛼)󸀠󸀠 (1) ≥ 0,
(𝑥 − 𝛼)󸀠󸀠󸀠 (1) ≤ 0.

(32)

Applying Lemma (10) to 𝑥 − 𝛼 and 𝛽 − 𝑥, we have
𝑥 − 𝛼 ≥ 0,

(𝑥 − 𝛼)󸀠 ≥ 0;
𝛽 − 𝑥 ≥ 0,

(𝛽 − 𝑥)󸀠 ≥ 0,
(33)

which means 𝛼 ≤ 𝑥 ≤ 𝛽, 𝛼󸀠 ≤ 𝑥󸀠 ≤ 𝛽󸀠 in 𝐼. Therefore, we can
conclude that 𝑄(𝐷) ⊂ 𝐷.
Step 2. We show that if 𝑢1, 𝑢2 ∈ 𝐷 satisfy 𝛼 ≤ 𝑢1 ≤ 𝑢2 ≤𝛽, 𝛼󸀠 ≤ 𝑢󸀠1 ≤ 𝑢󸀠2 ≤ 𝛽󸀠, then 𝑄𝑢1 ≤ 𝑄𝑢2, (𝑄𝑢1)󸀠 ≤ (𝑄𝑢2)󸀠
holds.

In fact, similar to the first step, let 𝑥1 = 𝑄𝑢1, 𝑥2 = 𝑄𝑢2,
and then by the assumption (F1), we can obtain

(𝑥2 − 𝑥1)4 + 𝑁 (𝑥2 − 𝑥1)󸀠 + 𝑀(𝑥2 − 𝑥1)
= 𝑓 (𝑡, 𝑢2, 𝑢󸀠2) − 𝑓 (𝑡, 𝑢1, 𝑢󸀠1) + 𝑁(𝑢󸀠2 − 𝑢󸀠1)

+ 𝑀(𝑢2 − 𝑢1)
≥ −𝑀(𝑢2 − 𝑢1) − 𝑁 (𝑢󸀠2 − 𝑢󸀠1) + 𝑁(𝑢󸀠2 − 𝑢󸀠1)

+ 𝑀(𝑢2 − 𝑢1) ≥ 0, ∀𝑡 ∈ 𝐼.

(34)

By the boundary conditions, we can get that

(𝑥2 − 𝑥1) (0) ≥ 0,
(𝑥2 − 𝑥1)󸀠 (0) ≥ 0,
(𝑥2 − 𝑥1)󸀠󸀠 (1) ≥ 0,
(𝑥2 − 𝑥1)󸀠󸀠󸀠 (1) ≤ 0;

(35)

then applying Lemma (10) to 𝑥2 − 𝑥1, we have
𝑥2 − 𝑥1 ≥ 0,

(𝑥2 − 𝑥1)󸀠 ≥ 0,
∀𝑡 ∈ 𝐼,

(36)

which means that 𝑄𝑢2 ≥ 𝐴𝑢1, (𝑄𝑢2)󸀠 ≥ (𝑄𝑢1)󸀠.
Step 3. We demonstrate that there exist solutions between 𝛼
and 𝛽.

We use 𝛼 and 𝛽 as the initial element for constructing
iterative sequence

𝛼𝑛 = 𝑄𝛼𝑛−1,
𝛽𝑛 = 𝑄𝛽𝑛−1,

𝑛 = 1, 2, . . .
(37)

According to the definition of the operator𝑄, Steps 1 and
2, we can easily see that

𝛼0 ≤ 𝛼1 ≤ ⋅ ⋅ ⋅ ≤ 𝛼𝑛 ≤ 𝛽𝑛 ≤ ⋅ ⋅ ⋅ ≤ 𝛽1 ≤ 𝛽0,
𝛼󸀠0 ≤ 𝛼󸀠1 ≤ ⋅ ⋅ ⋅ ≤ 𝛼󸀠𝑛 ≤ 𝛽󸀠𝑛 ≤ ⋅ ⋅ ⋅ ≤ 𝛽󸀠1 ≤ 𝛽󸀠0,

(38)

which means that {𝛼𝑛} and {𝛽𝑛} are monotone increasing and
decreasing in the order interval [𝛼, 𝛽], respectively; {𝛼󸀠𝑛} and{𝛽󸀠𝑛} are also monotonous in the order interval [𝛼󸀠, 𝛽󸀠].

By the compactness of 𝑄, we know that {𝛼𝑛}, {𝛽𝑛} ⊂𝑄(𝐷) are the relatively compact sets in 𝐶1(𝐼), and, therefore,
they have the uniformly convergent subsequence in 𝐶1(𝐼).
Then by (38), {𝛼𝑛}, {𝛽𝑛}, {𝛼󸀠𝑛}, {𝛽󸀠𝑛} are all uniformly conver-
gent in 𝐼; therefore, {𝛼𝑛} and {𝛽𝑛} are uniformly convergent
in 𝐶1(𝐼), which means there exist 𝑢 and 𝑢 ∈ 𝐶1(𝐼), such that𝛼𝑛 → 𝑢, 𝛽𝑛 → 𝑢. Since 𝐷 is a convex closed set in 𝐶1(𝐼),
it is obvious that 𝑢, 𝑢 ∈ 𝐷. In the expression (37), we let𝑛 → ∞, and then, from the continuity of 𝑄, we can easily
see 𝑢 = 𝑄𝑢, 𝑢 = 𝑄𝑢, for any 𝑡 ∈ 𝐼. Thus, 𝑢 and 𝑢 are the
solutions of BVP (1) between 𝛼 and 𝛽.
Step 4.We testify that 𝑢 and 𝑢 are the minimal and maximal
solutions of BVP (1) between 𝛼 and 𝛽, respectively.

Let 𝑢 ∈ 𝐷 be an arbitrary solution of LBVP (6); then 𝑢(𝑡)
satisfies

𝛼 ≤ 𝑢 ≤ 𝛽,
𝛼󸀠 ≤ 𝑢󸀠 ≤ 𝛽󸀠. (39)

By Step 2, using𝑄 acting 𝑛 times for the last expression, it can
be easily obtained that

𝛼𝑛 ≤ 𝑢 ≤ 𝛽𝑛,
𝛼󸀠𝑛 ≤ 𝑢󸀠 ≤ 𝛽󸀠𝑛,

𝑛 = 1, 2, . . . .
(40)
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Taking 𝑛 → ∞, we can see

𝑢 ≤ 𝑢 ≤ 𝑢,
𝑢󸀠 ≤ 𝑢󸀠 ≤ 𝑢󸀠. (41)

It can be easily obtained that 𝑢 and 𝑢 are the minimum and
maximum solutions of BVP (1) between 𝛼 and 𝛽, respectively.

This completes the proof of Theorem 6.

From the above proof process, the next corollary can be
easily obtained.

Corollary 7. Let 𝑓 : 𝐼 ×R ×R → R be continuous, and there
exist lower and upper solutions 𝛼 and 𝛽 for BVP (1), satisfying𝛼 ≤ 𝛽, 𝛼󸀠 ≤ 𝛽󸀠. If 𝑓 satisfies the assumption (F1), we use 𝛼
and 𝛽 as the initial elements to construct iterative sequences{𝛼𝑛} and {𝛽𝑛} by linear iterative equation
𝑢(4)𝑛 (𝑡) + 𝑁𝑢󸀠𝑛 + 𝑀𝑢𝑛

= 𝑓 (𝑡, 𝑢𝑛−1 (𝑡) , 𝑢󸀠𝑛−1 (𝑡)) + 𝑁𝑢󸀠𝑛−1 + 𝑀𝑢𝑛−1,
𝑡 ∈ 𝐼,

𝑢𝑛 (0) = 𝑢󸀠𝑛 (0) = 𝑢󸀠󸀠𝑛 (1) = 𝑢󸀠󸀠󸀠𝑛 (1) = 0;

(42)

then we can obtain that
lim
𝑛→∞

𝛼𝑛 (𝑡) = 𝑢 (𝑡) ,
lim
𝑛→∞

𝛽𝑛 (𝑡) = 𝑢 (𝑡) ,
lim
𝑛→∞

𝛼󸀠𝑛 (𝑡) = 𝑢󸀠 (𝑡) ,
lim
𝑛→∞

𝛽󸀠𝑛 (𝑡) = 𝑢 (𝑡)

(43)

uniformly hold for arbitrary 𝑡 ∈ 𝐼, where 𝑢 and 𝑢 are the
minimal and maximal solutions of BVP (1) in the set

𝐷 = {𝑢 ∈ 𝐶1 (𝐼) | 𝛼 ≤ 𝑢 ≤ 𝛽, 𝛼󸀠 ≤ 𝑢󸀠 ≤ 𝛽󸀠} , (44)

respectively.

Theorem 6 gives the existence of the solution of BVP (1).
Now, we can further discuss the uniqueness result of the
solutions by strengthening the assumption (F1).

Theorem 8. Let 𝑓 : 𝐼 × R × R → R be continuous, and there
exist lower and upper solutions 𝛼 and 𝛽 for BVP (1), satisfying𝛼 ≤ 𝛽, 𝛼󸀠 ≤ 𝛽󸀠. If 𝑓 satisfies the assumption (F1) and the
following condition:

(F2) there exist positive constants 𝐶1 and 𝐶2 satisfying
𝐶1 + 𝐶2 + 𝑀 + 𝑁 < 3, (45)

such that
𝑓 (𝑡, 𝑢2, V2) − 𝑓 (𝑡, 𝑢1, V1)

≤ 𝐶1 (𝑢2 − 𝑢1) + 𝐶2 (V2 − V1) , (46)

for every 𝑡 ∈ 𝐼, 𝑢1, 𝑢2 ∈ 𝐷, V1, V2 ∈ [𝛼󸀠, 𝛽󸀠], 𝑢2 ≥𝑢1, V2 ≥ V1,

then BVP (1) has a unique solution 𝑢∗ in 𝐷, and, for every𝑢0 ∈ 𝐷, themonotone iterative sequence 𝑢𝑛 constructed by (42)
uniformly converges to the unique solution 𝑢∗.
Proof. By the proof of Theorem 6, when the assumption (F1)
holds, then the BVP (1) has maximal solution 𝑢 and minimal
solution 𝑢 in 𝐷, and for every solution 𝑢 ∈ 𝐷, we have 𝑢 ≤𝑢 ≤ 𝑢, 𝑢󸀠 ≤ 𝑢󸀠 ≤ 𝑢󸀠. Next, we need to prove that 𝑢 = 𝑢.

According to the proof of Lemma (9), the operator 𝐵 :𝐶(𝐼) → 𝐶(𝐼) defined by (22) is a positive linear operator, and
its norm satisfies

‖𝐵‖ ≤ 󵄩󵄩󵄩󵄩󵄩(𝐽 + 𝑁𝑆 + 𝑀𝑆𝑇0)−1󵄩󵄩󵄩󵄩󵄩 ⋅ ‖𝑆‖ ≤ 2 × 1
6 = 1

3 . (47)

Since 𝑇 = 𝑇0𝐵, for any ℎ ∈ 𝐶(𝐼), we have (𝑇ℎ)󸀠 = 𝐵ℎ.
Assuming that {𝛼𝑛}, {𝛽𝑛} are the monotone iterative

sequences constructed inTheorem 6, by the assumptions (F1)
and (F2) and the positivity of operator 𝐵, we can see

𝛽󸀠𝑛 − 𝛼󸀠𝑛 = (𝑄𝛽𝑛−1)󸀠 − (𝑄𝛼𝑛−1)󸀠 = [𝑇 (𝐹 (𝛽𝑛−1))]󸀠
− [𝑇 (𝐹 (𝛼𝑛−1))]󸀠 = 𝐵 (𝐹 (𝛽𝑛−1)) − 𝐵 (𝐹 (𝛼𝑛−1))
= 𝐵 (𝐹 (𝛽𝑛−1) − 𝐹 (𝛼𝑛−1)) = 𝐵 [𝑓 (𝑡, 𝛽𝑛−1, 𝛽󸀠𝑛−1)
− 𝑓 (𝑡, 𝛼𝑛−1, 𝛼󸀠𝑛−1) + 𝑀(𝛽𝑛−1 − 𝛼𝑛−1)
+ 𝑁 (𝛽󸀠𝑛−1 − 𝛼󸀠𝑛−1)] ≤ 𝐵 [(𝐶1 + 𝑀) (𝛽𝑛−1 − 𝛼𝑛−1)
+ (𝐶2 + 𝑁) (𝛽󸀠𝑛−1 − 𝛼󸀠𝑛−1)] = (𝐶1 + 𝑀)𝐵𝑇0 (𝛽󸀠𝑛−1
− 𝛼󸀠𝑛−1) + (𝐶2 + 𝑁)𝐵 (𝛽󸀠𝑛−1 − 𝛼󸀠𝑛−1)
= ((𝐶1 + 𝑀)𝐵𝑇0 + (𝐶2 + 𝑁)𝐵) (𝛽󸀠𝑛−1 − 𝛼󸀠𝑛−1) ,

(48)

which implies that
󵄩󵄩󵄩󵄩󵄩𝛽󸀠𝑛 − 𝛼󸀠𝑛󵄩󵄩󵄩󵄩󵄩 ≤ ((𝐶1 + 𝑀) 󵄩󵄩󵄩󵄩𝑇0󵄩󵄩󵄩󵄩 + (𝐶2 + 𝑁)) ‖𝐵‖

⋅ 󵄩󵄩󵄩󵄩󵄩𝛽󸀠𝑛−1 − 𝛼󸀠𝑛−1󵄩󵄩󵄩󵄩󵄩
≤ (𝐶1 + 𝐶2 + 𝑀 + 𝑁) ‖𝐵‖ ⋅ 󵄩󵄩󵄩󵄩󵄩𝛽󸀠𝑛−1 − 𝛼󸀠𝑛−1󵄩󵄩󵄩󵄩󵄩 .

(49)

Therefore, we can get
󵄩󵄩󵄩󵄩󵄩𝛽󸀠𝑛 − 𝛼󸀠𝑛󵄩󵄩󵄩󵄩󵄩 ≤ (𝐶1 + 𝐶2 + 𝑀 + 𝑁) ‖𝐵‖ ⋅ 󵄩󵄩󵄩󵄩󵄩𝛽󸀠𝑛−1 − 𝛼󸀠𝑛−1󵄩󵄩󵄩󵄩󵄩

≤ (𝐶1 + 𝐶2 + 𝑀 + 𝑁)2 ‖𝐵‖2
⋅ 󵄩󵄩󵄩󵄩󵄩𝛽󸀠𝑛−2 − 𝛼󸀠𝑛−2󵄩󵄩󵄩󵄩󵄩 ≤ ⋅ ⋅ ⋅

≤ (𝐶1 + 𝐶2 + 𝑀 + 𝑁)𝑛 ‖𝐵‖𝑛 ⋅ 󵄩󵄩󵄩󵄩󵄩𝛽󸀠0 − 𝛼󸀠0󵄩󵄩󵄩󵄩󵄩 .

(50)

By (47) and the assumption (F2), we have
󵄩󵄩󵄩󵄩󵄩𝛽󸀠𝑛 − 𝛼󸀠𝑛󵄩󵄩󵄩󵄩󵄩 ≤ (𝐶1 + 𝐶2 + 𝑀 + 𝑁

3 )𝑛 ⋅ 󵄩󵄩󵄩󵄩󵄩𝛽󸀠0 − 𝛼󸀠0󵄩󵄩󵄩󵄩󵄩 󳨀→ 0
(𝑛 󳨀→ ∞) .

(51)



Mathematical Problems in Engineering 7

Thus, we have󵄩󵄩󵄩󵄩𝛽𝑛 − 𝛼𝑛󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩𝑇0 (𝛽󸀠𝑛 − 𝛼󸀠𝑛)󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑇0󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩𝛽󸀠𝑛 − 𝛼󸀠𝑛󵄩󵄩󵄩󵄩󵄩 󳨀→ 0
(𝑛 󳨀→ ∞) . (52)

Therefore, by the conclusions of Corollary 7, we can obtain
𝑢 = lim
𝑛→∞

𝛼𝑛 = lim
𝑛→∞

𝛽𝑛 = 𝑢. (53)

Consequently, 𝑢∗ = 𝑢 = 𝑢 is the unique solution of BVP (1).
Now, we need to testify that the monotone iterative

sequence 𝑢𝑛 constructed by (42) uniformly converges to the
unique solution 𝑢∗.

Assuming 𝑢0 ∈ 𝐷, then the monotone iterative sequence𝑢𝑛 used 𝑢0 as the initial element constructed by (42) satisfying𝑢𝑛 = 𝐴𝑢𝑛−1, 𝑛 = 1, 2, . . . . According to Step 2 of the proof
process of Theorem 6, it is easy to see that

𝛼𝑛 ≤ 𝑢𝑛 ≤ 𝛽𝑛,
𝛼󸀠𝑛 ≤ 𝑢󸀠𝑛 ≤ 𝛽󸀠𝑛,

𝑛 = 0, 1, 2, . . . .
(54)

Taking 𝑛 → ∞, it follows that 𝑢𝑛 → 𝑢∗ in 𝐶1(𝐼). Therefore,
the conclusion is established.

Finally, we give a numerical example to illustrate our
theoretical results.

Example 1. Consider the following nonlinear problem:

𝑢(4) (𝑡) = 1
3 sin 𝑡 ⋅ 𝑢 (𝑡) + 1

3 cos 𝑡 ⋅ 𝑢󸀠 (𝑡) + 1
2𝑒𝑡,

𝑡 ∈ [0, 1] ,
𝑢 (0) = 𝑢󸀠 (0) = 𝑢󸀠󸀠 (1) = 𝑢󸀠󸀠󸀠 (1) = 0.

(55)

Clearly, 𝛼(𝑡) ≡ 0 is a lower solution of problem (55).
Letting 𝛽(𝑡) = 𝑒𝑡, we can obtain that

1
3 sin 𝑡 ⋅ 𝛽 (𝑡) + 1

3 cos 𝑡 ⋅ 𝛽󸀠 (𝑡) + 1
2𝑒𝑡

≤ √2
3 sin(𝑡 + 𝜋

4 ) 𝑒𝑡 + 1
2𝑒𝑡 ≤ (√2

3 + 1
2) 𝑒𝑡 ≤ 𝑒𝑡

= 𝛽(4) (𝑡) ;

(56)

it is means that 𝛽(𝑡) = 𝑒𝑡 is a upper solution of problem (55).
On the other hand, for arbitrary 𝑡 ∈ [0, 1], when 𝑢1, 𝑢2 ∈[0, 𝑒𝑡], V1, V2 ∈ [0, 𝑒𝑡], and 𝑢2 ≥ 𝑢1, V2 ≥ V1, we can easily

obtain

(1
3 sin 𝑡 ⋅ 𝑢2 (𝑡) + 1

3 cos 𝑡 ⋅ V2 (𝑡))
− (1

3 sin 𝑡 ⋅ 𝑢1 (𝑡) + 1
3 cos 𝑡 ⋅ V1 (𝑡))

= 1
3 sin 𝑡 (𝑢2 (𝑡) − 𝑢1 (𝑡)) + 1

3 cos 𝑡 (V2 (𝑡) − V1 (𝑡))
≥ −1

3 (𝑢2 (𝑡) − 𝑢1 (𝑡)) − 1
3 (V2 (𝑡) − V1 (𝑡)) ,

(57)

which implies that

𝑓 (𝑡, 𝑢 (𝑡) , 𝑢󸀠 (𝑡)) = 1
3 sin 𝑡 ⋅ 𝑢 (𝑡) + 1

3 cos 𝑡 ⋅ 𝑢󸀠 (𝑡)
+ 1

2𝑒𝑡
(58)

satisfies the condition (F1) for 𝑀 = 𝑁 = 1/3. Then, by
Theorem 6, problem (55) has at least one maximal solution𝑢 and minimal solution 𝑢 between 0 and 𝑒𝑡.

Furthermore, it is obvious that
1
3 sin 𝑡 (𝑢2 (𝑡) − 𝑢1 (𝑡)) + 1

3 cos 𝑡 (V2 (𝑡) − V1 (𝑡))
≤ 1

3 (𝑢2 (𝑡) − 𝑢1 (𝑡)) + 1
3 (V2 (𝑡) − V1 (𝑡)) ,

(59)

which implies that 𝑓(𝑡, 𝑢(𝑡), 𝑢󸀠(𝑡)) satisfies the condition (F2)
for 𝐶1 = 𝐶2 = 𝑀 = 𝑁 = 1/3. Then, by Theorem 8,
the problem (55) has a unique solution 𝑢∗ which satisfies0 ≤ 𝑢∗ ≤ 𝑒𝑡, 0 ≤ (𝑢∗)󸀠 ≤ 𝑒𝑡.
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