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The rational solutions, semirational solutions, and their interactions to the (3 + 1)-dimensional Jimbo-Miwa equation are obtained
by the Hirota bilinear method and long wave limit. The hybrid solutions contain rogue wave, lump solution, and the breather
solution, in which the breathers which are manifested as growing and decaying periodic line waves show different dynamics in
different planes. Rogue waves are localized in time and are obtained theoretically as a long wave limit of breathers with indefinitely
larger periods; they arise from a constant background at 𝑡 ≪ 0 and then disappear in the constant background when time goes
on. More importantly, the interactions between some hybrid solutions are demonstrated in detail by the three-dimensional figures,
such as hybrid solution between the stripe soliton and breather and hybrid solution between stripe soliton and lump solution.

1. Introduction

In soliton theory, the study of integrability to nonlinear
evolution is always a hot topic of interest, which can be
regarded as a key step of their exact solvability. Many areas of
integrable systems are researched, such as Painlevé analysis
[1], Hamiltonian structure [2–5], Lax pair [6–8], Bäcklund
transformation (BT) [9–12], infinite conservation laws [13–
16], and bilinear integrability [17–20]. Based on the bilinear
methods, we have got many kinds of solutions, such as lump
solutions [21–24] and Pfaffian solution [25]. Recently, rogue
wave solutions of lots of nonlinear evolutional equations have
been gained, for example, the Boussinesq equation [26] and
KP equation [27, 28]. Rogue waves, which were originally
coined for vivid description of transient gigantic ocean waves
of extreme amplitudes that seem to appear out of nowhere
and disappear without a trace, have taken the responsibility
for numerousmarine disasters. In recent year, the rogue wave
phenomenon has appeared in a class of social and scien-
tific contexts, ranging from geophysics and hydrodynamics
[29] to oceanography, Bose-Einstein condensation, plasma
physics [30], nonlinear optics [31, 32], and financial markets
[33, 34]. Mathematically, rogue waves are a kind of rational
solutions which are localized in both space and time [35].
The first-order or fundamental rogue waves of the nonlinear
Schrödinger equation were first obtained by Peregrine in

1983 [36], and higher-order rogue waves of the NLS equation
are presented recently. In addition to the NLS equations, a
mass of complex systems possesses rogue wave solutions,
such as the Hirota equation [37], the Sasa-Satsuma equation
[38], multicomponent Yajima-Oikawa systems [39], and AB
system [40]. More interestingly, the research on rogue waves
varies from rational solutions to semirational solutions in the
relevant studies [41, 42].Whatever, the semirational solutions
exhibit a range of more interesting and more complicated
dynamic behavior, such as bright-dark roguewave pair, rogue
waves interacting with solitons [41], or breathers [42].

In this article, we focus on the (3+1)-dimensional Jimbo-
Miwa equation

𝑢𝑥𝑥𝑥𝑦 + 3𝑢𝑦𝑢𝑥𝑥 + 3𝑢𝑥𝑢𝑥𝑦 + 2𝑢𝑦𝑡 − 3𝑢𝑥𝑧 = 0, (1)

which is a second member in the entire Kadomtsev-
Petviashvili (KP) hierarchy [43]. Although (1) is noninte-
grable, many types of solutions have been given. In [44],
Zhang and Chen have gained one kind of rogue waves
by the interaction between positive quadratic function and
hyperbolic cosine function. However, in order to boost the
possible applications of the (3 + 1)-dimensional Jimbo-Miwa
equation in ocean studies and other fields, it is still necessary
to find analytical form of the rogue waves for this equation.
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The structure of the paper is as follows: In Section 2, we
present the evolution breather to (3 + 1)-dimensional Jimbo-
Miwa equation by the parameter perturbation method, and
their typical dynamics are analysed and illustrated. In Sec-
tion 3, lump solution and line rogue wave have been gained
by long wave limit which show different dynamics behaviors
in each plane by choosing different parameters. In Section 4,
we discuss the interaction between soliton and other localized
waves, which includes the soliton and breather, the soliton
and lump solution, and soliton and line rogue wave.

2. The Evolution Breather to (3 + 1)-
Dimensional Jimbo-Miwa Equation

Through the variable transformation

𝑢 = 2 (ln𝑓)𝑥 , (2)

(1) will be changed into its bilinear form as

((𝐷3𝑥 + 2𝐷𝑡)𝐷𝑦 − 3𝐷𝑥𝐷𝑧) 𝑓 ⋅ 𝑓 = 0, (3)

where 𝑓 is a real function with respect to 𝑥, 𝑦, 𝑧, and 𝑡 and
the operator 𝐷 is the classic Hirota bilinear operator defined
as

𝑃 (𝐷𝑥, 𝐷𝑦, 𝐷𝑡) 𝐹 (𝑥, 𝑦, 𝑡, . . .) 𝐺 (𝑥, 𝑦, 𝑡, . . .)
= 𝑃 (𝜕𝑥 − 𝜕𝑥, 𝜕𝑦 − 𝜕𝑦, 𝜕𝑡 − 𝜕𝑡 , . . .) 𝐹 (𝑥, 𝑦, 𝑡, . . .)
⋅ 𝐺 (𝑥, 𝑦, 𝑡, . . .)𝑥=𝑥,𝑦=𝑦𝑡=𝑡 ,

(4)

where 𝑃 is a polynomial of𝐷𝑥, 𝐷𝑦, 𝐷𝑡, . . ..
By the parameter perturbation method, the two-soliton

solution to the Jimbo-Miwa equation can be written as

𝑢 = 2 (ln𝑓)𝑥 , (5)

with

𝑓 = 1 + 𝑒𝜂1 + 𝑒𝜂2 + 𝐴12𝑒𝜂1+𝜂2 , (6)

where

𝐴12

= (𝑞1 − 𝑞2) (𝑚1𝑞2 − 𝑚2𝑞1) − 𝑞1𝑞2 (𝑝1𝑞1 − 𝑝2𝑞2) (𝑝1 − 𝑝2)
(𝑞1 − 𝑞2) (𝑚1𝑞2 − 𝑚2𝑞1) − 𝑞1𝑞2 (𝑝1𝑞1 + 𝑝2𝑞2) (𝑝1 + 𝑝2) ,

𝜂𝑖 = 𝑝𝑖 (𝑥 + 𝑞𝑖𝑦 + 𝑚𝑖𝑧 + 𝑘𝑖𝑡 + 𝜂0𝑖 ) , (𝑖 = 1, 2)

𝑘𝑖 = 3𝑚𝑖 − 𝑝2𝑖 𝑞𝑖
2𝑞𝑖 (𝑖 = 1, 2) .

(7)

As reported in the earlier work, the two-soliton solution will
be reduced to the breather under appropriate constraints to
the parameters, such as Davey-Stewartson (DS) equation and
(3 + 1)-dimensional Kadomtsev-Petviashvili (KP) equation
and the similar breather also existed in the Jimbo-Miwa
equation by choosing

𝑝1 = 𝑝∗2 = 𝑖𝑎1,
𝑞1 = 𝑞∗2 = 𝑎 + 𝑖𝑏,
𝑚1 = 𝑚2 = 𝑏1,
𝜂01 = 𝜂0∗2 ,

(8)

in (5), where ∗ indicates the conjugate operator. Without loss
of generality, taking

𝑝1 = 𝑖,
𝑝2 = −𝑖,
𝑞1 = 1 + 𝑖,
𝑞2 = 1 − 𝑖,
𝑚1 = 2,
𝑚2 = 2,
𝜂01 = 𝜂02 = 0,

(9)

the corresponding function 𝑓 can be written as

𝑓 = 1 + 2 (cosh (3𝑡2 − 𝑦) + sinh(3𝑡2 − 𝑦))

⋅ (cos (𝑥 + 𝑦 + 𝑧 + 2𝑡))
+ 2 (cosh (3𝑡 − 2𝑦) + sinh (3𝑡 − 2𝑦)) .

(10)

From the framework of function 𝑓, we know that the spatial
variable 𝑦 is different from the spatial variable 𝑥 and 𝑧 in
essence. When 𝑥 = 0 or 𝑧 = 0, the solution will be
changed into the breather and when 𝑦 = 0, the solution
will be transferred into the period line wave under a given
time 𝑡. Furthermore, the period line waves will go back to
the constant uniformly when 𝑡 → ±∞. So we can call
these period line waves as line breather. The corresponding
dynamics properties to solution 𝑢 are depicted in Figures 1
and 2.

Furthermore, we can get the two breathers by some
constraints to the four-soliton solutions. The four-soliton
solutions are

𝑓4 = 1 +
4

∑
𝑖=1

𝑒𝑝𝑖(𝑥+𝑞𝑖𝑦+𝑚𝑖𝑧+𝑘𝑖𝑡+𝜂0𝑖 ) +
4

∑
𝑖=2

𝐴1𝑖𝑒𝑝1(𝑥+𝑞1𝑦+𝑚1𝑧+𝑘1𝑡+𝜂
0

1
)+𝑝𝑖(𝑥+𝑞𝑖𝑦+𝑚𝑖𝑧+𝑘𝑖𝑡+𝜂

0

𝑖
)

+
4

∑
𝑖=3

𝐴2𝑖𝑒𝑝2(𝑥+𝑞2𝑦+𝑚2𝑧+𝑘2𝑡+𝜂
0

2
)+𝑝𝑖(𝑥+𝑞𝑖𝑦+𝑚𝑖𝑧+𝑘𝑖𝑡+𝜂

0

𝑖
) + 𝐴34𝑒𝑝3(𝑥+𝑞3𝑦+𝑚3𝑧+𝑘3𝑡+𝜂

0

3
)+𝑝4(𝑥+𝑞4𝑦+𝑚4𝑧+𝑘4𝑡+𝜂

0

4
)
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Figure 1: The evolution dynamics line period wave to (1): (a) 𝑡 = −10, (b) 𝑡 = −2, (c) 𝑡 = 0, and (d) 𝑡 = 10.

+ 𝐴12𝐴13𝐴23𝑒𝑝1(𝑥+𝑞1𝑦+𝑚1𝑧+𝑘1𝑡+𝜂
0

1
)+𝑝2(𝑥+𝑞2𝑦+𝑚2𝑧+𝑘2𝑡+𝜂

0

2
)+𝑝3(𝑥+𝑞3𝑦+𝑚3𝑧+𝑘3𝑡+𝜂

0

3
)

+ 𝐴12𝐴14𝐴24𝑒𝑝1(𝑥+𝑞1𝑦+𝑚1𝑧+𝑘1𝑡+𝜂
0

1
)+𝑝2(𝑥+𝑞2𝑦+𝑚2𝑧+𝑘2𝑡+𝜂

0

2
)+𝑝4(𝑥+𝑞4𝑦+𝑚4𝑧+𝑘4𝑡+𝜂

0

4
)

+ 𝐴13𝐴14𝐴34𝑒𝑝1(𝑥+𝑞1𝑦+𝑚1𝑧+𝑘1𝑡+𝜂
0

1
)+𝑝3(𝑥+𝑞3𝑦+𝑚3𝑧+𝑘3𝑡+𝜂

0

3
)+𝑝4(𝑥+𝑞4𝑦+𝑚4𝑧+𝑘4𝑡+𝜂

0

4
)

+ 𝐴23𝐴24𝐴34𝑒𝑝2(𝑥+𝑞2𝑦+𝑚2𝑧+𝑘2𝑡+𝜂
0

2
)+𝑝3(𝑥+𝑞3𝑦+𝑚3𝑧+𝑘3𝑡+𝜂

0

2
)+𝑝4(𝑥+𝑞4𝑦+𝑚4𝑧+𝑘4𝑡+𝜂

0

4
) + 𝐴12𝐴13𝐴14𝐴23𝐴24𝐴34𝑒𝐴,

(11)
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Figure 2: The breather to (1) in (𝑦, 𝑧)-plane and (𝑥, 𝑦)-plane.

where

𝐴 =
4

∑
𝑖=1

𝑝𝑖 (𝑥 + 𝑞𝑖𝑦 + 𝑚𝑖𝑧 + 𝑘𝑖𝑡 + 𝜂0𝑖 ) . (12)

Similar to the skills of one breather, we can deal with the
four-soliton solution by the following parameters choices:

𝑝1 = 𝑎2𝐼,
𝑝2 = −𝑎2𝐼,
𝑞1 = 𝑏2 + 𝑐2𝐼,
𝑞2 = 𝑏2 − 𝑐2𝐼,
𝑚1 = 𝑚2 = 𝑑2,
𝑝3 = 𝑎3𝐼,
𝑝4 = −𝑎3𝐼,
𝑞3 = 𝑏3 + 𝑐3𝐼,
𝑞4 = 𝑏3 − 𝑐3𝐼,
𝑚3 = 𝑚4 = 𝑑3,
𝜂01 = 𝜂02 = 𝜂03 = 𝜂04 = 0.

(13)

Without loss of generality, these parameters can be chosen as

𝑝1 = 𝐼,
𝑝2 = −𝐼,
𝑞1 = 1 + 𝐼,
𝑞2 = 1 − 𝐼,
𝑚1 = 𝑚2 = 1,

𝑝3 = 2𝐼,
𝑝4 = −2𝐼,
𝑞3 = 1 + 𝐼,
𝑞4 = 1 − 𝐼,
𝑚3 = 𝑚4 = 2;

(14)

then the function 𝑓 can be changed to

𝑓 = 1 + 2𝑒3𝑡/4−𝑦cos(𝑥 + 𝑦 + 𝑧 + 5𝑡
4 )

+ 2𝑒3𝑡−2𝑦cos (2𝑥 + 2𝑦 + 4𝑧 + 7𝑡)

+ 2
9𝑒
15𝑡/4−3𝑦cos(3𝑥 + 3𝑦 + 5𝑧 + 33𝑡

4 )

+ 2𝑒15𝑡/4−3𝑦sin(𝑥 + 𝑦 + 3𝑧 + 23𝑡
2 )

+ 4𝑒15𝑡/4−3𝑦cos(𝑥 + 𝑦 + 3𝑧 + 23𝑡
4 )

+ 4
3𝑒
9𝑡/2−4𝑦cos (2𝑥 + 2𝑦 + 4𝑧 + 7𝑡)

+ 2
3𝑒
9𝑡/2−4𝑦cos (2𝑥 + 2𝑦 + 4𝑧 + 7𝑡)

+ 20
9 𝑒27𝑡/4−5𝑦cos(𝑥 + 𝑦 + 𝑧 + 5𝑡

4 )

+ 10
9 𝑒27𝑡/4−5𝑦sin(𝑥 + 𝑦 + 𝑧 + 5𝑡

4 ) + 3𝑒
3𝑡/2−2𝑦

+ 25
27𝑒
15𝑡/2−6𝑦 + 5𝑒6𝑡−4𝑦.

(15)

The corresponding solutions 𝑢 in the (𝑥, 𝑦) are shown in
Figure 3. It can be seen that the two period line waves arise
from the constant background, and when time goes on, they
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Figure 3:The time evolution of two period line solitons of the 3D Jimbo-Miwa equation in the (𝑥, 𝑧)-plane for parameters 𝑞1 = 1+𝐼, 𝑞2 = 1−𝐼,
𝑚1 = 2, and𝑚2 = 2, and the time is (a) 𝑡 = −5, (b) 𝑡 = −1, (c) 𝑡 = 0, (d) 𝑡 = 1, and (e) 𝑡 = 5.

both return back to the constant background. In addition,
with similar parameters choices, these period solitons will
have different behaviors in other planes, which can be seen
in Figure 4.

3. Lump Solution and Line Rogue Wave

Based on the theory of long wave limit to the function 𝑓, we
can get the rogue wave to (1). Taking 𝑝1 = 𝑚1𝜖, 𝑝2 = 𝑚2𝜖, and



6 Mathematical Problems in Engineering

−30
−20

−10
01020

30

−4

−2

0
2

4

−2

−1

0

1

2

y

x

u

Figure 4: Two breathers to 3D Jimbo-Miwa equation by choosing 𝑝1 = 𝐼, 𝑝2 = −𝐼, 𝑞1 = 1 + 𝐼, 𝑞2 = 1 − 𝐼, 𝑚1 = 𝑚2 = 1, 𝑝3 = 2𝐼, 𝑝4 = −2𝐼,
𝑞3 = 2 + 𝐼, 𝑞4 = 2 − 𝐼, and𝑚3 = 𝑚4 = 4.

−10

0

10 −10

0

10
yx

−1

0

1

u

−0.5

0.5

(a)

−15
−10

−5
0

5
10

15

−15
−10

−5
0

5
10

15
z

x

−1

0

1
u

−0.5

0.5

(b)

Figure 5: Lump solution of the 3D Jimbo-Miwa equation by choosing 𝑞1 = 1+𝐼, 𝑞2 = 1−𝐼,𝑚1 = 2+𝐼, and𝑚2 = 2−𝐼 : (a) is the (𝑥, 𝑦)-plane
and (b) is the (𝑥, 𝑧)-plane.

𝜂01 = 𝜂0∗2 = 𝐼𝜋, in (6) and letting 𝜖 → 0 can get the solutions
of (6) as

𝑓 = (𝜃1𝜃2 + 𝜃0) 𝑎1𝑎2𝜖2 + 𝑂 (𝜖3) , (16)

where

𝜃𝑖 = 𝑥 + 𝑞𝑖𝑦 + 𝑚𝑖𝑧 + 3𝑚𝑖𝑡
2𝑞𝑖 , (𝑖 = 1, 2)

𝜃0 = 2𝑞1𝑞2 (𝑞1 + 𝑞2)
(𝑞1 − 𝑞2) (𝑚1𝑞2 − 𝑚2𝑞1) ;

(17)

then the corresponding solution 𝑢 to (1) can be expressed as

𝑢 = 2 𝜃1 + 𝜃2
𝜃1𝜃2 + 𝜃0 . (18)

Under some constraints to these parameters, such as 𝑞1 =𝑞∗2 , 𝑚1 = 𝑚∗2 , and 𝜃0 > 0, (18) is nonsingular. There will

be different dynamics behaviors in each plane by choosing
different parameters. For simplicity, we only concentrate on
the (𝑥, 𝑦)-plane as an example. Set 𝑞1 = 𝑎+𝑏𝐼 and𝑚1 = 𝑐+𝑑𝐼,
and 𝑎, 𝑏, 𝑐, 𝑑 are all real constants. Then we can get the lump
solution and rogue wave, respectively.

3.1. Lump Solution. It is obvious that (18) will be a constant
along a trajectory defined by

𝑥 + 𝑎𝑦 + 𝑐𝑧 + 3 (𝑎𝑐 + 𝑏𝑑)2
2 (𝑎2 + 𝑏2) = 0,

𝑏𝑦 + 𝑑𝑧 + 3 (𝑎𝑑 − 𝑏𝑐)
2 (𝑎2 + 𝑏2) = 0.

(19)

Furthermore, at any given 𝑡 and 𝑧, the solution 𝑢 will tend to
0 when (𝑥, 𝑦) tends to infinity. So this kind of solution keeps
moving on the constant background. Its dynamics properties
are demonstrated in Figure 5.
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Figure 6:The time evolution of kink line rogue wave of the 3D Jimbo-Miwa equation in the (𝑥, 𝑧)-plane for parameters 𝑞1 = 1+𝐼, 𝑞2 = 1−𝐼,
𝑚1 = 2, and𝑚2 = 2, and the time is (a) 𝑡 = −20, (b) 𝑡 = −3, (c) 𝑡 = 0, (d) 𝑡 = 1.5, (e) 𝑡 = 3, and (f) 𝑡 = 20.

3.2. RogueWave. Due to the constraint of 𝜃0, there only exists
one kind of rogue wave in (𝑥, 𝑧)-plane by choosing some
special parameters. When 𝑑 = 0, that is, 𝑚1 and 𝑚2 are real
constants, then the solution changes into the rogue wave in
the (𝑥, 𝑧)-plane. If 𝑡 → ±∞, it approaches 0, and as time

goes on, it will have a height peak wave and then disappear,
which is different from the general soliton, whose dynamics
behavior is depicted in Figure 6.

Moreover, we can present the interaction between lump
solution and line rogue wave by considering the four-soliton
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Figure 7: Two lump solution to 3D Jimbo-Miwa equation by choosing 𝑞1 = 1 + 𝐼, 𝑞2 = 1 − 𝐼,𝑚1 = 2 + 𝐼,𝑚2 = 2 − 𝐼, 𝑞3 = 1 + 2𝐼, 𝑞4 = 1 − 2𝐼,
𝑚3 = 3 + 𝐼, and𝑚4 = 3 − 𝐼 : (a) is the (𝑥, 𝑦)-plane under 𝑡 = 0 and 𝑧 = 0 and (b) is the (𝑥, 𝑧)-plane under 𝑡 = 0 and 𝑦 = 0.

solutions. Still, we use the long wave limit to the function 𝑓,
putting

𝑝1 = 𝑎1𝜖,
𝑝2 = 𝑎2𝜖,
𝑝3 = 𝑎3𝜖,
𝑝4 = 𝑎4𝜖,
𝜂1 = 𝜂3 = 𝜂∗2 = 𝜂∗4 = 𝐼𝜋,

(20)

and setting the limit 𝜖 = 0; then the corresponding solution
𝑓 can be written as

𝑓 = (𝜂1𝜂2𝜂3𝜂4 + 𝑎12𝜂3𝜂4 + 𝑎13𝜂2𝜂4 + 𝑎14𝜂2𝜂3
+ 𝑎23𝜂1𝜂4 + 𝑎24𝜂1𝜂3 + 𝑎34𝜂1𝜂2) 𝑎1𝑎2𝑎3𝑎4𝜖4

+ (𝑎12𝑎34 + 𝑎13𝑎24 + 𝑎14𝑎23) 𝑎1𝑎2𝑎3𝑎4𝜖4 + 𝑂 (𝜖5) ,
(21)

where

𝜂𝑖 = 𝑥 + 𝑞𝑖𝑦 + 𝑚𝑖𝑧 + 3𝑚𝑖𝑡
2𝑞1 , (𝑖 = 1, 2, 3, 4)

𝑎𝑖𝑗 = 2 𝑞𝑖𝑞𝑗 (𝑞𝑖 + 𝑞𝑗)
(𝑞𝑖 − 𝑞𝑗) (𝑚𝑖𝑞𝑗 − 𝑚𝑗𝑞𝑖)

(𝑖 = 1, 2, 3, 4) .
(22)

Similarly, taking 𝑞2 = 𝑞∗1 , 𝑞3 = 𝑞∗4 , 𝑚2 = 𝑚∗1 , and 𝑚3 =𝑚∗4 , we can obtain the lump solution and rogue wave of (1).
Suppose 𝑞1 = 𝑎 + 𝑏𝐼, 𝑞2 = 𝑎 − 𝑏𝐼, 𝑚1 = 𝑐 + 𝑑𝐼, 𝑚2 = 𝑐 − 𝑑𝐼,

𝑞3 = 𝑎1+𝑏1𝐼, 𝑞3 = 𝑎1−𝑏1𝐼,𝑚3 = 𝑐1+𝑑1𝐼, and𝑚4 = 𝑐1−𝑑1𝐼, and𝑎, 𝑏, 𝑐, 𝑑, 𝑎1, 𝑏1, 𝑐1, 𝑑1 are all real constants. Then we can get
three kinds of cases about the rogue wave and lump solution.

(i) Two Lump Solutions.When 𝑞1, 𝑞3,𝑚1,𝑚3 are all imaginary
numbers, two lump solutions will appear and are demon-
strated in Figure 7.

(ii) One Lump Solution and One Rogue Wave. Similar to the
one rogue wave, if the pair of𝑚1,𝑚2 are imaginary numbers
and 𝑚3, 𝑚4 are real numbers or the opposite, the exciting
interaction between lump solution and line rogue wave will
appear, which is shown in Figure 8.

(iii) Two RogueWaves. If𝑚1,𝑚2,𝑚3,𝑚4 are all real numbers,
that is, their imaginary parts are 0, the interaction between
two kink line rogue waves will appear and is depicted in
Figure 9.

4. The Interaction between Soliton and Other
Localized Waves

In this section, wewill discuss the interaction between soliton
and other localizedwaves, which includes three cases: the first
is the soliton and breather, the second is the soliton and lump
solution, and the third is soliton and line rogue wave.

Firstly, we study the interaction between soliton and
breather. As we all know, with some constraints to the
parameters for the two-soliton solution, we can get the
breather. As to the three-soliton solutions, we will obtain the
soliton and breather by using the same constraints, such as
the three-soliton solutions

𝑓 = 1 +
3

∑
𝑖=1

𝑒𝑝𝑖(𝑥+𝑞𝑖𝑦+𝑚𝑖𝑧+𝑘𝑖𝑡+𝜂0𝑖 ) +
3

∑
𝑖=2

𝐴1𝑖𝑒𝑝1(𝑥+𝑞1𝑦+𝑚1𝑧+𝑘1𝑡+𝜂
0

1
)+𝑝𝑖(𝑥+𝑞𝑖𝑦+𝑚𝑖𝑧+𝑘𝑖𝑡+𝜂

0

𝑖
)



Mathematical Problems in Engineering 9

−50

0

50 −50

0

50
zx

−1.5

−1

−0.5

0

0.5

1

1.5

u

(a)

−50

0

50 −60
−40

−20
0

20
40

60

zx

−1.5

−1

−0.5

0

0.5

1

1.5

u

(b)

−50

0

50

−60
−40

−20
0

20
40

60
z

x

0
−1.5

−1

−0.5

0

0.5

1

1.5

u

(c)
−50

0

50 −50

0

50
zx

−1.5

−1

−0.5

0

0.5

1

1.5

u

(d)

−50

0

50 −50

0

50
zx

−1.5

−1

−0.5

0

0.5

1

1.5

u

(e)

Figure 8: The time evolution interaction of kink line rogue wave and lump solution of the 3D Jimbo-Miwa equation in the (𝑥, 𝑧)-plane for
parameters 𝑞1 = 1 + 𝐼, 𝑞2 = 1 − 𝐼,𝑚1 = 2 + 𝐼,𝑚2 = 2 − 𝐼, 𝑞3 = 1 + 2𝐼, 𝑞4 = 1 − 2𝐼,𝑚3 = 1,𝑚4 = 1, and the time is (a) 𝑡 = −10, (b) 𝑡 = −5, (c)
𝑡 = 0, (d) 𝑡 = 5, and (e) 𝑡 = 10.

+ 𝐴23𝑒𝑝2(𝑥+𝑞2𝑦+𝑚2𝑧+𝑘2𝑡+𝜂
0

2
)+𝑝3(𝑥+𝑞3𝑦+𝑚3𝑧+𝑘3𝑡+𝜂

0

3
)

+ 𝐴12𝐴13𝐴23𝑒𝑝1(𝑥+𝑞1𝑦+𝑚1𝑧+𝑘1𝑡+𝜂
0

1
)+𝑝2(𝑥+𝑞2𝑦+𝑚2𝑧+𝑘2𝑡+𝜂

0

2
)+𝑝3(𝑥+𝑞3𝑦+𝑚3𝑧+𝑘3𝑡+𝜂

0

3
).

(23)
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Figure 9: The time evolution interaction of two kink line rogue waves of the 3D Jimbo-Miwa equation in the (𝑥, 𝑧)-plane for parameters
𝑞1 = 1 + 𝐼, 𝑞2 = 1 − 𝐼,𝑚1 = 2,𝑚2 = 2, 𝑞3 = 1 + 2𝐼, 𝑞4 = 1 − 2𝐼,𝑚3 = 1,𝑚4 = 1, and the time is (a) 𝑡 = −10, (b) 𝑡 = −5, (c) 𝑡 = 0, (d) 𝑡 = 5, and
(e) 𝑡 = 10.

Taking the skills described in Section 2, we still use these con-
straints for these parameters. For simplicity, these parameters
are chosen as

𝑝1 = 𝐼,
𝑝2 = −𝐼,

𝑞1 = 1 + 𝐼,
𝑞2 = 1 − 𝐼,
𝑚1 = 2,
𝑚2 = 2,
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Figure 10: The evolution period wave and one stripe soliton: the corresponding time is (a) 𝑡 = −4, (b) 𝑡 = −2, (c) 𝑡 = 0, (d) 𝑡 = 2, and (e)
𝑡 = 4.
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Figure 11: Lump solution of the 3D Jimbo-Miwa equation by choosing 𝑞1 = 1 + 𝐼, 𝑞2 = 1 − 𝐼,𝑚1 = 2 + 𝐼,𝑚2 = 2 − 𝐼, in the (𝑥, 𝑦)-plane.
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Figure 12: Lump solution of the 3D Jimbo-Miwa equation by choosing 𝑞1 = 1 + 𝐼, 𝑞2 = 1 − 𝐼,𝑚1 = 3 + 𝐼,𝑚2 = 3 − 𝐼, 𝑝3 = 1, 𝑞3 = 2,𝑚3 = 0.5:
(a) is the (𝑥, 𝑧)-plane and (b) is the (𝑥, 𝑦)-plane.

𝑝3 = 1,

𝑞3 = 3
10 ,

𝑚3 = 2,
𝜂01 = 𝜂02 = 𝜂03 = 0;

(24)

then the corresponding function 𝑓 will be written as

𝑓 = 1 + 2𝑒3𝑡/2−𝑦cos (𝑥 + 𝑦 + 2𝑧 + 2𝑡)

+ 14062
10361𝑒

𝑥−(7/10)𝑦+11𝑡+2𝑧cos (𝑥 + 𝑦 + 2𝑧 + 2𝑡)

+ 7482
10361𝑒

𝑥−(7/10)𝑦+11𝑡+2𝑧sin (𝑥 + 𝑦 + 2𝑧 + 2𝑡)

+ 2𝑒3𝑡−2𝑦 + 12244
10361𝑒

𝑥−(17/10)𝑦+2𝑧+(25/2)𝑡.

(25)

It is obvious that the expression of (1) contains one stripe
soliton and period wave, but, in different planes, the period
wavewill have different dynamics behaviors: one is the period
linewave and the other is the normal breather. So therewill be
two different interactions between soliton and period wave,
which are depicted in Figures 10 and 11.

What is more, based on the long wave limit, the three-
soliton solutions can also be transformed into the rogue wave
and one stripe soliton, lump solution, and stripe solution.
Putting

𝑝1 = 𝑎1𝜖,
𝑝2 = 𝑎2𝜖,
𝜂01 = 𝜂0∗2 = 𝐼𝜋,
𝜂03 = 0,
𝑞2 = 𝑞∗1 ,
𝑚2 = 𝑚∗1 ,

(26)
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Figure 13: The evolution rogue wave and stripe soliton with the parameters choices 𝑞1 = 1 + 𝐼, 𝑞2 = 1 − 𝐼,𝑚1 = 2,𝑚2 = 2, 𝑝3 = 1, 𝑞3 =0.5,𝑚3 = 0.5, and the time is (a) 𝑡 = −20, (b) 𝑡 = −3, (c) 𝑡 = 0, (d) 𝑡 = 1.5, (e) 𝑡 = 3, (f) 𝑡 = 8, and (g) 𝑡 = 20.
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and taking the limit 𝜖 → 0, we can get the mix soliton
solutions.

(i) Lump Solution and Stripe Soliton.When the imaginary part
of𝑚1 is nonzero, this kind of solutionwill be the combination
of stripe soliton and lump solution; it is shown in Figure 12.

(ii) RogueWave and Stripe. When the imaginary part of𝑚1 is
zero, this kind of solutionwill be changed into the rogue wave
and soliton. When 𝑡 → ±∞, there is only one stripe soliton.
As time goes on, the rogue wave appears gradually and
disappears soon afterwards, which affects the characteristics
of rogue wave; it is shown in Figure 13.

5. Conclusion

In summary, line breathers in the (3 + 1)-dimensional
Jimbo-Miwa equation (1) have been derived by the bilinear
transformation and been demonstrated by 3D figures. By a
long wave limit of breathers, localized analytical solutions
in rational form for the (3 + 1)-dimensional Jimbo-Miwa
equation are proposed and the explicit forms of rational and
semirational solutions have been presented. More impor-
tantly, we gain line rogue waves and lumps by modifying
the internal parameters from the rational solution. We have
shown that the line rogue waves possess a growing and
decaying line profile that arises from a constant background
and disappears in the initial constant background again.
Furthermore, the obtained semirational solutions composed
of solitons, breathers, lump solutions, and roguewaves exhibit
a range of interesting and complicated dynamic behaviors.
Our results are more comprehensive as more various rogue
waves and the complicated interaction between breathers,
lump solutions, rogue waves, and solitons are demonstrated
in this paper. The combination of rogue waves, solitons, and
breathers obtained in this paper is a new kind of solutions,
which reveals the potential rich dynamic behavior in rogue
wave solutions and helps to promote our understanding of
rogue wave phenomena. Hence, we will study the higher-
order line rogue waves and more new kinds of hybrid
solutions for the (3 + 1)-dimensional Jimbo-Miwa equation
in the future.
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