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Buffer overflow vulnerability is a kind of consequence in which programmers’ intentions are not implemented correctly. In this
paper, a static analysis method based on machine learning is proposed to assist in auditing buffer overflow vulnerabilities. First,
an extended code property graph is constructed from the source code to extract seven kinds of static attributes, which are used to
describe buffer properties. After embedding these attributes into a vector space, five frequently used machine learning algorithms
are employed to classify the functions into suspicious vulnerable functions and secure ones. The five classifiers reached an average
recall of 83.5%, average true negative rate of 85.9%, a best recall of 96.6%, and a best true negative rate of 91.4%.Due to the imbalance
of the training samples, the average precision of the classifiers is 68.9% and the average 𝐹1 score is 75.2%. When the classifiers were
applied to a new program, our method could reduce the false positive to 1/12 compared to Flawfinder.

1. Introduction

Buffer overflow occurs when the bytes of data used exceed
the prepared allocated boundary on either the stack or
the heap. It has been one of the most popular exploitable
vulnerabilities since the 1980s. Its hazard to the target victim
system ranges from denial of service to executing arbitrary
code in administrator permission. Even though this type
of vulnerability is not fresh anymore, hundreds of buffer
overflow vulnerabilities are still reported every year.

From the perspective of source code, buffer write opera-
tions such as array write andmemorymanipulation provided
by programming language like C/C++ are the main causes of
buffer overflow. If not handled properly, even bounded func-
tions like strncpy lead to overflow. Generally, the occurrence
of buffer overflow relies on three main characteristics: user-
input data controlling the buffer, no validation statement that
enforces the use of data inside a safe scope, and the complexity
of buffer operations causing the programmer to fail to add
proper validation.

Primary methods of automatically detecting buffer over-
flow fall into two types: static analysis and dynamic test-
case generation. Static analysis leverages a pattern to find
vulnerabilities, whereas dynamic test-case generation tries to

uncover the unexpected behaviors by executing the program
with generated test cases. Some open-source static analysis
tools can generate too many false positives, which cannot be
completely reviewed [1]. Dynamic test generation generally
involves fuzzing and symbolic execution. To detect vulner-
abilities, fuzzing randomly generates a test case to trigger
program faults, while symbolic execution collects constraints
when walking through program paths and employs a con-
straint solver to generate related test cases. Fuzzing cannot
understand the program thoroughly and comprehensively,
while symbolic execution has problems in terms of path
explosion, constraint solving, andmemorymodeling [2]. As a
result, the main work of discovering vulnerabilities still relies
on code auditors, which requires an enormous amount of
manpower.

In this paper, a static method based on machine learning
is proposed to narrow down the search scope of auditing
buffer overflow vulnerabilities in source code.There are three
contributions in this paper. First, we design seven kinds of
static code attributes to represent buffer overflowaccording to
the 22 taxonomies of buffer overflow [3]. Second, we append
interprocedural sanitization graph (IPSG) and declaration-
spread-sink graph (DSSG) to code property graph (CPG) [4]

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 5452396, 13 pages
https://doi.org/10.1155/2017/5452396

https://doi.org/10.1155/2017/5452396


2 Mathematical Problems in Engineering

Classi�er
algorithms

Training

Classi�ers

Robust parser
Extended code
property graph
generation

Code
attributes
extraction

Suspicious
functions and
areas

Classi�cation

Labeled code

Test code Robust parser
Extended code
property graph
generation

Code
attributes
extraction

Figure 1: Overview of the proposed method.

to form extended property graph (ECPG), which is described
in Section 4 in detail, to extract static code attributes in source
code. We use ECPG to extract the static code attributes of
existing buffer overflow vulnerabilities obtained from com-
mon vulnerabilities and exposures (CVE) and map them to
vectors. Third, we apply several supervised machine learning
algorithms to train classifiers and we apply the classifiers to a
new source code base and review only the positive outcomes
to reduce manpower in code auditing.

2. Overview

The objective of our method is to utilize buffer overflow
vulnerabilities that have already been found to assist in audit-
ing vulnerabilities in new software efficiently. The overview
of our method is depicted in Figure 1. In this paper, the
term “buffer” means the variable that represents a memory
region or just a memory region such as swapbuff at line(15) in Algorithm 1, which is also the subject investigated
in Section 3. If not otherwise specified, vulnerability means
buffer overflow vulnerability.

The purpose of the method illustrated in Figure 1 is to
generate suspicious vulnerable functions (SVFs) and related
suspicious areas (SAs). SA, in the form of a line number and
file name, means the specific area in which buffer overflow
may take place, such as line (15) in Algorithm 1. To build
a classifier with good performance to distinguish vulnerable
buffers from others, the choice of code metrics as the
features affects the output significantly. To build a classifier
for source code, we extended the static code attributes in
[3] by summing up six observable crucial attributes and
introducing the sanitization attribute.The details of the static
code attribute extraction are described in Section 3.

A robust parser [5, 6] is employed to parse source code
to Abstract Syntax Tree (AST), which is directly or indirectly
used to generate multiple representations. The robust parser
allows analysis of code even when a build environment is not
configured, which saves a lot of work of compiling source
code to machine code. The parser takes advantage of the
ANTLR parser generator and C/C++ grammar definition to
extract an AST from individual source files. The AST is used
to generatemultiple representations consisting of the Control
Flow Graph (CFG), Program Dependence Graph (PDG),

Table 1: Description of three sink types.

Sink type Example Mapping
value

Pointer dereference ∗p++ = 1 1
Array write p[i] = 1 2

Dangerous function

strcpy(dst, src), strncpy(dst,
src, n)

strcat(dst, src), strncat(dst, src,
n)

memcpy(dst, src, n),
memmove(dst, src, n)
gets(str), fgets(str, n, fp)

3

interprocedural sanitization graph (IPSG), and declaration-
spread-sink graph (DSSG). Gathering all the representations,
we form an extended code property graph (ECPG). The
detailed definitions of IPSG, DSSG, and ECPG are described
in Section 4. From ECPG, the code attributes are extracted
and then embedded into a vector space.The vectors obtained
from labeled code are utilized to train classifiers using some
frequently used classifier algorithms. Finally, the vectors
obtained from the test code are fed to the classifiers to get
SVFs and SAs.

3. Static Code Attributes and Mapping

Buffer overflow can be classified into 22 taxonomies [3].
Based on these 22 taxonomies and investigation of many
real-world buffer overflow functions from the CVE database,
we summarized seven kinds of attributes to represent buffer
overflow. All the attributes together are mapped to a multidi-
mensional vector to be fed to a classification algorithm.

3.1. Sink Type. Three sink types are discussed in this subsec-
tion, namely, pointer dereference, array write, and dangerous
function, as listed in Table 1. If a statement falls into one of the
three sink types without proper buffer bound check, a buffer
overflowmay occur. InC/C++ language, an array element can
be accessed by either pointer dereference or array subscript,
but the operations of these two types are different, so we
consider them separately. A pointer dereference appears in
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(1) static int reverseSamplesBytes (uint16 spp, uint16 bps, uint32 width, uint8 ∗src, uint8 ∗dst)
(2) {
(3) int i;
(4) uint32 col, bytes per pixel, col offset;
(5) uint8 bytebuff1;
(6) unsigned char swapbuff[32];
(7) if ((src == NULL) || (dst == NULL)){
(8) TIFFError(“reverseSamplesBytes”, “Invalid input or output buffer”);
(9) return (1);
(10) }
(11) bytes per pixel = ((bps ∗ spp) + 7) / 8;
(12) switch (bps / 8){ . . .
(13) case 2: for (col = 0; col < (width / 2); col++){
(14) col offset = col ∗ bytes per pixel;
(15) TIFFmemcpy (swapbuff, src + col offset, bytes per pixel);
(16) TIFFmemcpy (src + col offset, dst - col offset - bytes per pixel, bytes per pixel);
(17) TIFFmemcpy (dst - col offset - bytes per pixel, swapbuff, bytes per pixel);
(18) }
(19) break;
(20) case 1: /∗ Use byte copy only for single byte per sample data ∗/
(21) for (col = 0; col < (width / 2); col++){
(22) for (i = 0; i < spp; i++){
(23) bytebuff1 = ∗src;
(24) ∗src++ = ∗(dst - spp + i);
(25) ∗(dst - spp + i) = bytebuff1;
(26) }
(27) dst -= spp;
(28) }
(29) . . . }

Algorithm 1: Sample code from CVE-2016-9537.

the left part or right part of an assignment statement, like
in lines (24) and (25) in Algorithm 1, which are classified
as pointer dereference sinks. Dangerous functions are the
standard-library or user-defined calls that copy or pad the
buffer. Formatted string output also could lead to potential
buffer overflow; however, it will not be discussed here.
Besides all the standard-library function calls, some user-
defined functions have the same effect. For example, CVE-
2016-9537 [7] in LibTIFF-4.0.6 [8] results from a user-defined
function (“ TIFFmemcpy”), shown in lines (15), (16), and(17) in Algorithm 1, which has the same effect as “memcpy”
in the standard C library. Thus, user-defined functions that
have a similar function name and exactly the same number
of parameters are classified into the dangerous function case.

3.2. Memory Location. The memory location attribute repre-
sents the location where the sink buffer resides. Five kinds of
memory areas that accommodate sink buffer are stack, heap,
data segment, BSS segment, and shared memory. These are
different from the programming perspective. A stack buffer
describes arrays that are defined locally and nonstatically; a
heap buffer describes the dynamic allocated memory used
to satisfy a large portion of the memory application; a data
segment describes static variables or global variables; a BSS
segment describes uninitialized global or static variables;

and shared memory describes a method of interprocess
communication (IPC). In this paper, only the stack, heap, and
data segment are considered.Wemap thememory location to
a three-dimensional vector as (stack, heap, and data segment);
if the memory location appears, the related entry is set to 1;
otherwise it is 0. For pointer swapbuff in Algorithm 1, the
vector representation is (1, 0, 0) because it is declared locally.

3.3. Container. Container describes the structure in which
the sink buffers are wrapped. Generally, the more complex
the container structure is, the more vulnerability-prone the
buffer will be. According to the investigation of Zitser et
al. [9], 7% of vulnerable buffers are contained in the Union
structure, and according to our research on recent CVEbuffer
overflow vulnerabilities, nearly 30% of vulnerabilities have
containers, so we consider the container of the buffer as
another static code attribute.The container attribute is shown
in Table 2. The Union and Struct structures are similar in
programming; therefore, wemap them to the same value.The
Others row represents the more complex structures such as
the double Union and Struct structures.

3.4. Index/Address/Length Type. Index type records various
accumulated operations of array index. The index type
attribute comes from the assumption that the more complex
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Table 2: Container attributes.

Instance Container type Mapping value
p[256] None 0
p[256][256] Array 1
struct.p[256] Struct 2
union.p[256] Union
Others Others 3

Table 3: Index type.

Operation type Instance
Constant p[256]
Addition p[i+8], p[i-8], (p+8)[i], (p-8)[i]
Multiplication p[i∗8], p[i/8], p[i>>8], p[i<<8], (buf+8∗n)[i]
Nonlinear p[i%8], p[pow(i, j)], p[sqrt(i)]
Function call p[f(i)], (p+f(n))[i], (getAdtres(n))[i]
Array access p[buf[i]], (p+buf[n])[i], (buf[n])[i]

array index operations are, themore error-prone buffer access
will be. Array index operations can be divided into six cate-
gories, namely, constant, addition, multiplication, nonlinear,
function call, and array access. Each category will be mapped
to one dimension to construct a six-dimensional vector.

Addition contains addition and subtraction operations.
Multiplication contains multiplication, division, bitwise left
shift, and bitwise right shift operations. Nonlinear contains
modulo and other functions such as pow() and sqrt() oper-
ations. Function call describes the situation that a function
(except the function call contained in nonlinear) returns
a value involved in a buffer index. Array access indicates
whether an array content read operation is involved in a
buffer index. Index type is described in Table 3. The six
operation types contribute, to different extents, to buffer
overflow. Despite the difficulty of exploiting vulnerabilities,
we find some buffer overflows that are caused by buffer access
with a constant index and we denote this type as the constant
type. Besides the constant type, each of the others has two
different forms, such as p[i-8] and (p-8)[i].

Figure 2 is the schematic depiction of the accumulating
index operation. In the case of p[i], we accumulate the
operation of 𝑖 along with the data flow. Finally, the index type
of 𝑖 is converted to a 6-dimensional vector (0, 1, 0, 0, 1, 1).

Address and length type attributes, which are described
in Tables 4 and 5, respectively, are akin to the index
type except for the difference in their sink types. We map
index/address/length type into a six-dimensional vector and
the corresponding value is increased by one when the
related operation is encountered. For pointer dereference sink
buffers src and dst at line (24) and line (25) in Algorithm 1, the
values of address type are (0, 1, 0, 0, 0, 0) and (0, 3, 0, 0, 0, 0),
respectively. For dangerous function sink buffers at lines (15),(16), and (17), the values of length type are the same, namely,(0, 1, 2, 0, 0, 0). Besides, index/address/length type takes buffer
aliasing into consideration and the operations of the alias
buffer should be accumulated, too.

i=0

i=i+1 i=f(n) i=buf[n]

p[i]=1

<0,1,0,0,1,1>

Figure 2: Accumulating the index type of 𝑖.
Table 4: Address type.

Operation type Instance
Constant not appliable
Addition ∗p(i+8), ∗p(i-8)
Multiplication ∗(p+i∗8), ∗p(i/8), ∗p(i>>8), ∗p(i<<8)
Nonlinear ∗(p+i%8), ∗(p+pow(i, j)), ∗(p+sqrt(i))
Function call ∗(p+f(i)), ∗(getAddress())
Array access ∗(p+buf[i])

Table 5: Length type.

Operation type Instance
Constant memcpy (dest, src, 256)
Addition memcpy (dest, src, i+256)
Multiplication memcpy (dest, src, i∗8)
Nonlinear memcpy (dest, src, i%8)
Function call memcpy (dest, src, f(n))
Array access memcpy (dest, src, buf[255])

3.5. Sanitization. Sanitization is the bound check operation
of buffers. Even though the existence and correctness of the
sanitization cannot be precisely obtained from static analysis,
the pattern of bound check can be summarized to estimate
them. If statements fall into several modes, we argue that
the programmer might have considered sanitization and the
more times the modes appear, the higher the possibility that
the programmer has added the sanitization. Sanitizations are
classified into three types:

(1) Direct sanitization: provided variable 𝑏 is a sink buffer
or sink buffer index; 𝑐 is a condition statement that
has a control flow to 𝑏 and 𝑏 is a subexpression of𝑐; we will increase the sanitization value by one. The
sink buffer swapbuff in Algorithm 2, line (1), and the
bound checks on array indexes fall into this scope

(2) Indirect sanitization: given a data flow from variable 𝑎
to variable 𝑏 (𝑏 is a sink buffer index or involved in a
buffer index expression), if 𝑎 is involved in a condition
statement 𝑐, we will increase the value of indirect
sanitization by one. Figure 3(a) is a code example,
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if(i<256)
{

buf[i+j] = 1;
}

(a)

if(arg1<256)
{

foo(arg1) ;
}

(b)

foo(param1)
{

buf[param1]=1;
}

· · ·

Figure 3: Code example of indirect sanitization and interprocedural sanitization.

(1) if(bytes per pixel > sizeof(swapbuff))(2) { TIFFError(“reverseSamplesBytes”,“bytes per pixel too large”);(3) return (1);(4) }
Algorithm 2: Patch of CVE-2016-9537 in Algorithm 1.

where the expression 𝑖 + 𝑗 is the buffer index of buf
and 𝑖 is involved in a condition statement

(3) Interprocedural sanitization: we found that many
buffer overflow vulnerabilities are patched by sink
function argument sanitization. Therefore, if there
is a data flow between arguments and sink buffer
index and also the arguments are involved in a
condition statement in the superior function, we will
increase sanitization value by one. Figure 3(b) is a
code example where param1 is a buffer index and
parameter of foo, and arg1 is involved in a condition
statement in the superior function

Additionally, we add some exceptions, where a condition
statement falls into the description of three kinds of sani-
tizations but does not count as a sanitization. For example,
the condition statement at line (7) in Algorithm 1 cannot
be regarded as a sanitization, because comparing src or dst
against NULL is not for bound checking of buffer src and dst.
We map the sanitization attribute into a three-dimensional
vector. When a type appears, the corresponding value of the
sanitization attribute will be increased by one.

3.6. Loop/Condition/Call Depth. Loop/condition/call depth
reflects the complexity of the program which leads to pro-
gram faults. Loop/condition depth describes the maximum
hierarchy of the loop/condition statement that wraps the
sink statement. Call depth describes the maximum number
of function calls from main to the current function, which
can be obtained by declaration-spread-sink graph, described
in Section 4 in detail. We map these three attributes into
a three-dimensional vector and the corresponding value is
increased by one when a related situation is encountered. For
sink variable src in Algorithm 1, the call chain is main →
createCroppedImage → mirrorImage → reverseSamplesBytes,
and we consider a switch statement as a condition statement,
so the vector is (2, 1, 4).
3.7. Taint. Taint indicates whether there exists a data flow
from source input to sink statement. Taint can be classified
into five types, namely, command line, environment variable,

file input, network transmission, and argument inflow.The for-
mer four types are usually characterized by standard-library
function calls such as scanf, getwd, fscanf, and recvfrom.
Argument inflow describes whether there is a data flow
between arguments and the sink statements. If a sink buffer
falls into any of the taint types, it is attacker-controlled and
we assign 1 to the attribute; otherwise, 0 is assigned.

Based on these seven kinds of static code attributes, we
can construct an 18-dimensional vector, which is then used
to train the classifiers.

4. Extended Code Property Graph

We extract static code attributes based on an extended code
property graph. The following content introduces the basic
theory of property graphs and extended property graphs and
then explains the fundamental traversals to get specific static
code attributes.

4.1. Property Graph Theory. A property graph [10] can be
formally defined as𝐺 = (𝑉, 𝐸, 𝜆, 𝜇), where𝑉 is a set of nodes,𝐸 ⊆ {𝑉 × 𝑉} is a multiset of directed edges, 𝜆 : 𝐸 → Σ is a
label function,Σ is a set of edge labels, and 𝜇 : (𝑉∪𝐸)×𝐾 → 𝑆
is a key-value mapping function that maps property keys of
nodes and edges to their values, where 𝐾 is a key set and 𝑆
is the set of property values. What makes a property graph
more expressive is that it contains multiple key-value maps
on every node and edge.

Graph traversal is a procedure to search for a proper
node or edge with certain preconditions. The fundamental
traversals are to search for the value of a node or edge
given the key and the in and out edges of nodes, which
are described in the equations below. Through traversal
composition, complex traversal can be performed to explore
an arbitrary node or edge.

𝜀: Ρ (𝑉 ∪ 𝐸) × 𝐾 󳨀→ Ρ (𝑆) ,
𝑒in: Ρ (𝑉) 󳨀→ Ρ (𝐸) ,
𝑒out: Ρ (𝑉) 󳨀→ Ρ (𝐸) ,
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void main(int argc, char ∗∗argv){
int b = atoi(argv[1]);
int buf[10];
if(b > 0){

buf[5∗b] = 1;
}

}

(a)

ARRAY 1

DECLARGSENTRY

buf

5 b

PREDDECL ASSIGNEXPR

=int buf[10]int b=atoi(argv[1]) >

b 0int ARRAYint =

b CALL

atoi argv[1]

argv

buf 10

argv[1]

b
b

true EXIT

argc

false

∗

ASSIGNEXPR: assignment expression

ARGS: arguments
DECL: declaration statement
PRED: condition statementCFG edge

PDG edge

AST edge

(b)

Figure 4: Schematic representation of CPG.

Vin: Ρ (𝐸) 󳨀→ Ρ (𝑉) ,
Vout: Ρ (𝐸) 󳨀→ Ρ (𝑉) .

(1)

4.2. Extended Code Property Graph. CPG (code property
graph) [4] is a joint representation of AST (Abstract Syntax
Tree), CFG (Control Flow Graph), and PDG (Program
Dependence Graph). Figure 4 is a schematic representation
of CPG, where Figure 4(a) is the related exemplary code. All
nodes are linked by different edges and we can search any
edges and nodes through the composition of traversals on
edges and nodes. There are three kinds of edges in Figure 4,
namely, the AST edge, CFG edge, and PDG edge. Every
operator and operand from the source code can be accessed
through traversal by AST edge, so the sink type and con-
tainer attribute can be easily obtained. Memory location and
taint require AST and PDG. Condition/loop depth requires
both AST and CFG. Direct and indirect sanitization and
index/address/length type need all three types of graphs.

However, code property graphs cannot handle inter-
procedural sanitization and call depth, because they need
interprocedural data flow and control flow. To solve this
problem, we append the interprocedural sanitization graph
(IPSG) and declaration-spread-sink graph (DSSG) to CPG to
form the extended code property graph (ECPG).

IPSG is a property graph: 𝐺 = (𝑉A, 𝐸IP, 𝜆IP, 𝜇IP). In the
formula,𝑉A is the AST node set; 𝐸IP links the predicate node
to the sink statement of the invocation function, where the
predicate actually sanitizes the invocation and the parameters
of the invocation function data control the sink statement;𝜆IP
is the labeling function,𝜆IP : 𝐸IP → ΣIP, whereΣIP = {IC, ID}
and IC corresponds to interprocedural control dependency.
We assign a property symbol to indicate ID and a property
condition to indicate IC. Figure 6(a) is the representation of

int main(int argc, char ∗∗argv){
int i = atoi(argv[1]);
char ∗p = argv[2];
woo(p, i);}

void woo(char∗ src, int size){
if(n<100){
foo(src, size);}}

void foo(char∗ src, int n){
char dst[200];
int count = n+100;
memcpy(dst, src, count);}

Algorithm 3: Example code for explanation of IPSG and DSSG.

IPSG of code fromAlgorithm 3 and Figure 5 is the CPG of the
code from Algorithm 3, which delete the detailed AST nodes
and edges. In order to generate IPSG edge, the predicate if
(size< 100)must control and sanitize foo. Also, the arguments
of memcpy src and count must be data-dependent on the
parameters of foo, src, and n.

DSSG is a property graph: 𝐺 = (𝑉A, 𝐸DS, 𝜆DS, 𝜇DS). In
the formula, 𝑉A is the AST node set; 𝐸DS links the functions𝑓1 and 𝑓2, if 𝑓1 invokes 𝑓2; 𝐸DS also links sink function
node to sink statement; 𝜆DS is the labeling function, 𝜆DS :𝐸DS → ΣDS, where ΣIP = {DS}. We also assign a property
symbol to indicate the symbols transmitted from function
node to function node and from function node to sink
statement. Figure 6(b) is the representation of DSSG of code
from Algorithm 3. DSSG not only helps collect call depth
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int woo(char ∗src, int size)

if(size<100)

exit foo(src,size)

void foo(char ∗src, int n)

char dst[200] int count=n+100

memcpy(dst,src,count)

int main(int agc, char ∗∗argv)

int i=atoi(argv[1]) char ∗p=argv[2]

woo(p,i)

argvargv

p
i

p,i
src,size

src,size n

count

src

dst
truefalse

PDG edge
CFG edge

Figure 5: Simplified CPG of code for Algorithm 3.

if(size<100) memcpy(dst,src,count)true

size

IPSG edge

(a)

memcpy(dst,src,count)

int woo(char ∗src, int size)

void foo(char ∗src, int n)

argv

src,size

src, n

DSSG edge

int main(int agc, char ∗∗；rgv)

(b)

Figure 6: Representations of (a) IPSG and (b) DSSG of code from Algorithm 3.

information but also conveys the original input source of sink
statement, which is very helpful to do further analysis.

Combining IPSG, DSSG, and CPG (containing AST,
CFG, and PDG), ECPG can be formally represented as 𝐺 =(𝑉, 𝐸, 𝜆, 𝜇), where

𝑉 = 𝑉A,
𝐸 = 𝐸A ∪ 𝐸C ∪ 𝐸P ∪ 𝐸IP ∪ 𝐸DS,
𝜆 = 𝜆A ∪ 𝜆C ∪ 𝜆P ∪ 𝜆IP ∪ 𝜆DS,
𝜇 = 𝜇A ∪ 𝜇C ∪ 𝜇P ∪ 𝜇IP ∪ 𝜇DS.

(2)

In the formula, 𝑉A is the AST node set. 𝐸A, 𝐸C, 𝐸P, 𝐸IP,
and 𝐸DS are edges of AST, CFG, PDG, IPSG, and DSSG; 𝜆A,𝜆C, 𝜆P, 𝜆IP, and 𝜆DS are label functions; 𝜇A, 𝜇C, 𝜇P, 𝜇IP, and𝜇DS are key-value mapping functions.

4.3. Extracting Static Code Attributes Using Traversals. After
building the ECPG, we shall design traversals to collect code
attributes. Here we introduce two fundamental traversals
OUT𝑘,𝑠
𝑙
(𝑋) and IN𝑘,𝑠

𝑙
(𝑋), which are formally defined below.

Given a node, OUT𝑘,𝑠
𝑙
(𝑋) finds the nodes that are reachable

through outgoing edge confined by label 𝑙 and property 𝑘 : 𝑠,
where 𝑋 denotes the complete node set of ECPG. Similarly,

IN𝑘,𝑠
𝑙
(𝑋) finds the nodes that are reachable through ingoing

edge.

OUT𝑘,𝑠𝑙 (𝑋)
= ⋃

V∈𝑋
{𝑢 : (V, 𝑢) ∈ 𝐸, 𝜆 ((V, 𝑢)) = 𝑙, 𝑢 ((V, 𝑢) , 𝑘) = 𝑠} ,

IN𝑘,𝑠𝑙 (𝑋)
= ⋃
𝑢∈𝑋

{V : (V, 𝑢) ∈ 𝐸, 𝜆 ((V, 𝑢)) = 𝑙, 𝑢 ((V, 𝑢) , 𝑘) = 𝑠} .
(3)

Furthermore, we also introduce TNodes(𝑋) to search the
set of AST nodes reachable from the AST root, which can be
formulated as follows. In the formula, V is a node from𝑋, and
OutA is the representation of the outgoing edge of V used to
find its child node V𝑐. TNodes(𝑋) indicates that all its AST
child nodes can be traversed given any node in𝑋.

TNodes (𝑋)
= ⋃

V∈𝑋
(V ∪ ( ⋃

V𝑐∈outΑ({V})
TNodes ({V𝑐}))) . (4)

Upon the three traversals, all the nodes and edges can
be explored in ECPG, so the compositional traversals can be
designed to extract static code attributes.
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Table 6: Confusion matrix.

Total population Predicted class
Predicted
positive

Predicted
negative

Actual class
Actual positive True positive

(TP)
False negative

(FN)

Actual negative False positive
(FP)

True negative
(TN)

5. Experiment

The experiment was conducted on a PC with Intel(R)
Xeon(R) CPU E3-1231 v3 @ 3.40GHz CPU and 16.0GB
memory, using Ubuntu 14.04.4 LTS. We use scikit-learn
to implement the machine learning algorithms [11], which
are built on python libraries such as Numpy, SciPy, and
matplotlib.

5.1. Evaluation Metrics. In the field of machine learning, the
confusion matrix [12] is a general applied metric to assist in
understanding the performance of a classifier, as described
in Table 6. The matrix describes the mixtures between actual
classes and predicted classes, namely, true positive (TP), false
negative (FN), false positive (FP), and true negative (TN). TP
represents the case when a vulnerable function is classified as
positive. FN represents the case when a vulnerable function
is classified as negative. FP represents the case when a
nonvulnerable function is classified as positive. TN represents
the case when a nonvulnerable function is classified as
negative. In a normal program, the number of vulnerable
functions is much less than that for nonvulnerable functions,
whichwouldmake the training data and test data unbalanced,
so we additionally leverage four other assessment metrics:
recall, true negative rate (TNR), precision, and 𝐹1 score.
Recall is also known as true positive rate (TPR) and precision
is also known as positive predictive value (PPV).The formula
is described as follows. Recall describes the proportion of
TPs to all buffer overflows; TNR represents the proportion of
TNs to all nonvulnerable functions. Precision represents the
proportion of TPs to all predicated positives. 𝐹1 is a measure
of test’s accuracy which considers both the precision and
recall.

recall = TP(TP + FN) ,
TNR = TN(FP + TN) ,

precision = TP(TP + FP) ,
𝐹1 = 2 × (recall × precision)(recall + precision) .

(5)

5.2. Experiment and Comparison. This section contains eval-
uations of the five classifiers. As shown in Table 7, we

investigated 58 vulnerable functions manually from the
official CVE database together with 174 functions that are
not vulnerable in recent years. For all the functions, we
select a buffer to represent each one to extract attributes.
Columns Vul-Num and Not-Vul-Num display vulnerable and
nonvulnerable function numbers. Vulnerable functions are
labeled 1, while nonvulnerable functions are labeled 0. The
samples originate from eight open-source programs of var-
ious versions, which are ffmpeg, HDF5, libtff, mupdf,
openssl, qemu, zziplib, and blueZ.

Different classifier algorithms are employed to train
classifiers because which algorithm is better is not predicable.
To evaluate our static analysis, five well-known supervised
machine learning algorithms, 𝐾-Nearest Neighbors (KNN),
Decision Tree (DT), Naive Bayes (NB), AdaBoost, and
Support Vector Machines (SVM), are used. 10-Fold cross-
validations are performed on the 232 labeled pieces of data
employing the five classifier algorithms. The parameter 𝑘
used in KNN is 7. The specific DT algorithm we use is C4.5.
The number of weak classifiers used in AdaBoost is 20. In
SVM, we use the RBF kernel; the parameter 𝐶 is 10 and 𝛾 is
0.01.

5.2.1. Evaluation on Test Suite. The performances of the five
classifier algorithms are listed in Table 8. The average recall
is 83.5%, which means that 48 out of 58 vulnerabilities are
detected through our method. The average TNR is 87.3%,
which means that nearly 152 out of 174 nonvulnerable func-
tions are classified correctly. The average precision is 68.9%
and the average 𝐹1 is 75.2%, which are not very high because
the number of nonvulnerable functions is three times asmany
as vulnerable functions. In the field of vulnerability detection,
finding the largest possible number of vulnerabilities is more
important. Therefore, we deem NB the best classifier, since it
outperforms the other algorithms to detect 56 vulnerabilities
with the highest recall of 96.6%.

5.2.2. Comparison to BOMiner. In [13], a tool, BOMiner,
is implemented to predict buffer overflows using machine
learning. However, it focuses too much on pointer reference
sinks and overfits the result of the classifiers. We try to
compare with BOMiner on features selection using the five
classifier algorithms. Table 9 shows the performance of
BOMiner on our test suite. The maximum number of vulner-
abilities correctly classified by BOMiner is 38, which is 4 less
than that by our worst classifier KNN and 18 less than that by
our best classifier, NB.Thehighest recall ofBOMiner is 65.5%,
which is also less than that for all our classifiers. Figure 7(a)
shows the comparison of average confusion matrix. On
average, our method classifies 14.8 more TPs and 10.4 more
TNs than BOMiner. Figure 7(b) shows the comparison of
recall, TNR, precision, and 𝐹1. The average recall is increased
by 25.6%, average TNR is increased by 6%, average precision
is increased by 17.5%, and the average𝐹1 is increased by 21.1%.
The main reason why our method outperforms BOMiner is
that, in [13], the array write sink is not considered in detail.
When it encounters an array write sink, BOMiner has too
little information to classify it correctly.
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Table 7: CVE list for attribute extraction.

Program CVE-ID Vul-Num Not-Vul-Num

ffmpeg

CVE-2016-7562, CVE-2016-6920,
CVE-2016-10192, CVE-2016-10191,
CVE-2016-10190, CVE-2016-8364,
CVE-2014-5271, CVE-2014-3157,
CVE-2014-2263, CVE-2013-0894,
CVE-2013-0868, CVE-2013-0863,
CVE-2012-0947, CVE-2012-0857,
CVE-2012-0856, CVE-2012-0855,
CVE-2012-0848, CVE-2012-0847

18 54

HDF5 CVE-2016-4333, CVE-2016-4330 2 6

LibTIFF

CVE-2017-5225, CVE-2016-9540,
CVE-2016-9537, CVE-2016-9536,
CVE-2016-9535, CVE-2016-9533,
CVE-2016-5652, CVE-2016-5319,
CVE-2016-5318, CVE-2016-5102,
CVE-2016-3991, CVE-2016-3990,
CVE-2016-3632, CVE-2016-3624,
CVE-2015-8784, CVE-2015-8782,
CVE-2013-4244, CVE-2013-4231,

18 54

mupdf CVE-2017-5869, CVE-2016-6525,
CVE-2014-2013, CVE-2011-0341 4 12

openssl CVE-2016-2182, CVE-2015-0235,
CVE-2014-3512 3 9

qemu
CVE-2016-7170, CVE-2016-5238,
CVE-2016-4439, CVE-2013-4151,

CVE-2013-4150
5 15

zziplib CVE-2017-5976, CVE-2017-5975,
CVE-2017-5974, CVE-2017-1614 4 12

BlueZ CVE-2016-9917, CVE-2016-9804,
CVE-2016-9803, CVE-2016-9800 4 12

Table 8: Performances of our five classifier algorithms.

TP FN FP TN Recall (%) TNR (%) Precision (%) 𝐹1 (%)
KNN 42 16 20 154 72.4 88.5 67.7 70
DT 44 14 31 143 75.9 82.2 58.7 66.2
NB 56 2 27 147 96.6 84.5 67.5 79.5
AdaBoost 46 12 15 159 79.3 91.4 75.4 77.3
SVM 54 4 18 156 93.1 89.7 75 83.1

Table 9: Performance of BOMiner for our test suite.

TP FN FP TN Recall (%) TNR (%) Precision (%) 𝐹1 (%)
KNN 29 29 21 153 50 87.9 58 53.7
DT 31 27 35 139 53.4 79.9 47 50
NB 38 20 46 128 65.5 73.6 45.2 53.5
AdaBoost 33 25 28 146 56.9 83.9 54.1 55.5
SVM 37 21 33 141 63.8 81 52.9 57.8

5.2.3. Comparison to Joern. Yamaguchi et al. [4] developed a
platform, Joern, which can detect buffer overflows with very
few FPs, based on code property graph. As reported in [4], six
buffer overflows in drivers directory of linux kernel3.11 source
code are detected through specific pattern. However, as we

investigated fromCVE database, there are 18 buffer overflows
and 179 nonvulnerable sink functions in drivers directory of
linux kernel3.11. We apply the proposed method to the code
base and the result is compared to Joern in Table 10. Using our
proposed method, the classifiers can detect at least 12 buffer
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Figure 7: Comparison between our method and BOMiner. (a) Comparison of average confusion matrix. (b) Comparison of average recall,
TNR, precision, and 𝐹1.

Table 10: The comparison between Joern and our proposed method.

TP FN FP TN Recall (%) TNR (%) Precision (%) 𝐹1
Joern 6 12 2 177 33.3 98.9 75 46.2
KNN 12 6 11 168 66.7 93.9 52.2 58.6
DT 14 4 14 165 77.8 92.2 50 60.9
NB 15 3 15 164 83.3 91.6 50 62.5
AdaBoost 14 4 12 167 77.8 93.3 53.8 63.6
SVM 16 2 17 162 88.9 90.5 48.5 62.8

overflows and the least recall of the five classifiers is 66.7%,
which are all better than Joern. The highest TNR is 93.9%, 6%
lower than Joern’s 98.9%. Figure 8(a) shows the comparison of
confusionmatrix between ourmethod and Joern. On average,
our method detects 8.2 more TPs than Joern but outputs 11.8
more FPs. Figure 8(b) shows the comparison of average recall,
TNR, precision, and 𝐹1. Our average recall is 78.9%, 45.6%
higher than Joern and only 6.6% lower at TNR. Our precision
is 24.1% lower than Joern, while our 𝐹1 is 15.5% higher than
Joern. Two reasons can explain the low TP of Joern: (1) Joern
only handles buffer overflows caused by dangerous function
memcpy; (2) Joern employs two sanitization rules, dynamic
allocation of the destination and relational expressions [4];
the rules fall into the region of our direct sanitization; the two
rules would reduce false positives, while contributing to low
TP.

5.3. Comparison to Flawfinder on Poppler 0.10.6. Poppler
is a widely used open-source PDF library from which
many buffer overflow vulnerabilities are detected. In this
subsection, Poppler 0.10.6 is experimented on to evaluate our
classifiers. As far as we are concerned, Poppler 0.10.6 has ten
proven CVEs: CVE-2015-8868, CVE-2013-1788, CVE-2010-
3704, CVE-2009-3938, CVE-2009-3608, CVE-2009-3607,

CVE-2009-3606, CVE-2009-3604, and CVE-2009-3603. We
use these CVEs and our trained classifier to describe how our
method assists in auditing buffer overflow vulnerabilities.

Poppler 0.10.6 source code is inputted and the output
is described in Table 11. The TP, FN, FP, TN, recall, TNR,
precision, and 𝐹1 columns describe the performances of the
five classifiers. We evaluate to what extent our method helps
in code auditing based on the number of functions needed
to be audited. The SVFs column contains the number of
suspect vulnerable functions that need to be audited and
the value of SVFs is the sum of TP and FP. Sink functions
displays the number of functions that have buffers that satisfy
one of the three sink types. All functions describes the total
number of functions from the Poppler 0.10.6 source code.The
average TP is 8.8, which means that we can find nearly 9 of 11
vulnerabilities.The reasonwhy 9 CVEs have 11 vulnerabilities
is that CVE-2013-1788 has 3 vulnerabilities.The average recall
is 80% and the average TNR is 94%. Because there are far
more nonvulnerable functions than vulnerable functions, the
precisions and 𝐹1 are low where the average 𝐹1 is 28.9% and
the average precision is 17.7%. Taking SVM as an example,
code auditors only need to review 45 functions to find 10 of
11 vulnerabilities using our method. However, without our
method, all 685 sink functions should be reviewed, which is
a very heavy workload.
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Figure 8: Comparison between our method and Joern. (a) Comparison of average confusion matrix. (b) Comparison of average recall, TNR,
precision, and 𝐹1.

Table 11: Performances of our five classifiers on Poppler 0.10.6.

Classifier TP FN FP TN Recall (%) TNR (%) Precision (%) 𝐹1 (%) SVFs Sink functions All functions
KNN 7 4 37 648 63.6 94.6 15.9 25.4 44

685 4876
DT 8 3 44 641 72.7 93.6 15.4 25.4 52
NB 10 1 52 633 90.9 92.4 16.1 27.4 62
AdaBoost 9 2 39 646 81.8 94.3 18.8 30.6 48
SVM 10 1 35 650 90.9 94.9 22.2 35.7 45

We also run Flawfinder 1.31 [14] on Poppler 0.10.6.
Flawfinder is a static analyzer that scans for various kinds of
vulnerabilities from source code. We identify all buffer over-
flow vulnerabilities from the output of Flawfinder. Flawfinder
detected 8 of 11 vulnerabilities, which is slightly lower than
the average performance of our method; however, it also
generated 500 false positives, which is 12 times as many as
ours. Thus, our method outperforms Flawfinder significantly
in reducing the number of false positives of buffer overflow
vulnerabilities, which definitely saves a lot of manual code
auditing work.

6. Related Work

Static analysis tools fall into two categories: lightweight rough
approaches and more thorough ones. Lightweight tools like
Flawfinder [14] and Rats [15] are based on lexical analysis.
Both translate source files to tokens and match them with
certain vulnerable constructs in a library. Splint [16] can
find abstract violations, unannouncedmodifications of global
variables, and so forth, with manual annotations. For more
thorough tools, Archer [17] symbolically computes buffer
usage and employs a constraint solver to evaluate illegal
memory accesses. Model checker [18] converts a buffer
violation to a path to an error statement and then, using a con-
straint solver, verifies whether the path is feasible. Coventry

[19], Fortify [20], and CodeSonar [21] are commercial tools
that require manual configuration work.

Dynamic test-case generation mainly involves two tech-
niques, namely, fuzzing and symbolic execution. Fuzzing
tools generate test cases to trigger program faults bymutating
input bytes randomly. Recently, many methods [22–24] have
been proposed to augment the fuzzing effect and [22] proved
that a good seed test case contributed greatly to the fuzzing
effect. Symbolic executionwas first put forward byClarke [25]
and underwent great development because of the improve-
ment of the constraint solver. Many tools were developed
by various academic and research labs such as DART [26],
CUTE [27], CREST [28], KLEE [29], SAGE [30], and S2E
[31]. All of these tools fork a state once a branch instruction
is encountered, which could lead to path explosion.

There are also many spot-on methods or tools that target
buffer overflow vulnerability exclusively. Rawat and Mounier
[32] implement an evolutionary computing approach to find
buffer overflow, but it can only detect superficial faults.
Another work from Rawat and Mounier [33] hunts buffer
overflow in binary executables through a pattern obtained
from “strcpy.” Li et al. [34] utilized symbolic analysis rep-
resentation to filter out irrelevant dependencies to scale to
a large-scale code base for buffer overflow. Haller et al. [35]
provided a guided fuzzing tool aimed only at array boundary
violations.
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Recently, machine learning algorithms have been applied
in the vulnerability detection field. Yamaguchi et al. [6]
proposed a vulnerability extrapolation method to assist code
auditors, using the similarity in AST structure of similar
functions. The effectiveness of this method depends on the
existence of a similar function of a known vulnerability.
Yamaguchi et al. also leveraged anomaly detection to identify
missing checks of buffers [36] and applied a clustering
algorithm to taint-style vulnerabilities [37]. Padmanabhuni
and Tan’s work [38] is the closest to our work, but it did not
provide the concept of complexity, which is very important in
modern software.

7. Conclusion

In this paper, amethod that assists in auditing buffer overflow
vulnerabilities usingmachine learning is proposed.We define
seven kinds of static code attributes according to the 22
taxonomies of buffer overflow vulnerabilities and also design
the extended code property graph to extract these attributes.
Then the digitalized attributes are used to train five classifiers.
In our experiment, the classifiers reached an average recall
of 83.5%, average true negative rate of 85.9%, a best recall
of 96.6%, and a best true negative rate of 91.4%. Due to the
imbalance of the training samples, the average precision of
the classifiers is 68.9% and the average 𝐹1 score is 75.2%.
We then applied the classifiers to a real program, Poppler
0.10.6. Our classifiers outperformed Flawfinder significantly
by reducing the false positive rate to 1/12. In conclusion, our
method can assist in auditing buffer overflow vulnerabilities
in source code.
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