
Research Article
Dimensionless Analytical Solution and New Design Formula for
Lateral-Torsional Buckling of I-Beams under Linear Distributed
Moment via Linear Stability Theory

Wen-Fu Zhang,1,2 Ying-Chun Liu,2 Ke-Shan Chen,2 and Yun Deng2

1School of Architecture & Engineering, Nanjing Institute of Technology, Nanjing 211167, China
2Northeast Petroleum University, Daqing, Heilongjiang 163318, China

Correspondence should be addressed to Wen-Fu Zhang; zhang wenfu@126.com

Received 21 October 2016; Revised 27 December 2016; Accepted 18 January 2017; Published 31 December 2017

Academic Editor: R. Emre Erkmen

Copyright © 2017 Wen-Fu Zhang et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Even for the doubly symmetric I-beams under linear distributedmoment, the design formulas given by codes of different countries
are quite different. This paper will derive a dimensionless analytical solution via linear stability theory and propose a new design
formula of the critical moment of the lateral-torsional buckling (LTB) of the simply supported I-beams under linear distributed
moment. Firstly, the assumptions of linear stability theory are reviewed, the dispute concerning the LTB energy equation is
introduced, and then the thinking of Plate-Beam Theory, which can be used to fully resolve the challenge presented by Ojalvo,
is presented briefly; secondly, by introducing the new dimensionless coefficient of lateral deflection, the new dimensionless critical
moment and Wagner’s coefficient are derived naturally from the total potential energy. With these independent parameters, the
new dimensionless analytical buckling equation is obtained; thirdly, the convergence performance of the dimensionless analytical
solution is discussed by numerical solutions and its correctness is verified by the numerical results given by ANSYS; finally, a new
trilinearmathematical model is proposed as the benchmark of formulating the design formula and, with the help of 1stOpt software,
the four coefficients used in the proposed dimensionless design formula are determined.

1. Introduction

Structural stability has always been a key point in the design
of steel structures [1–6]. It is well known that an I-beam has
various buckling phenomena such as local buckling, distor-
tion buckling, and lateral-torsional buckling, in which the
lateral-torsional buckling (LTB) is also known as the global
buckling. This may occur if the applied service loads exceed
its LTB critical moment of the I-beam and hence, in practice
design, it is important for the designers to obtain the accurate
solution of the critical moment as the upper limit of buckling
strength of the steel I-beams.However, until now, even for the
simple-supported I-beams with doubly symmetric sections
subjected to unequal endmoments, the design formulas given
by the codes/specifications of different countries are quite
different (Figure 1) that makes the designers feel very con-
fused. In fact, such problems also confuse those involved in
the formulation of the codes/specifications. In order to avoid

greater controversy, there is a trend in the specification that is
the initiative to delete the relevant provisions, such as the new
version of the EC3 specification [7]. However, the deletion of
the relevant provisions does not mean that such problems do
not exist. Therefore, it is one of the objectives of this paper to
provide a more accurate design formula based on the dimen-
sionless analytic solution, which is also the main motivation
of this paper.

Due to the complexity of the LTB phenomenon of I-
beams under nonuniform distributed moment, so far only
approximate analytical solutions or numerical solutions have
been published.

Some approximate analytical solutions can be found in
the classical text books such as Chajes [2], Chen and Atsuta
[3], Trahair [4], Timoshenko and Gere [5], and Bleich [6].

The numerical solutions can be obtained from finite
difference method [2, 3, 6], finite integral method [4], and
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Figure 1: Discrepancies of EUMF for a simply supported beam under linear distributed moment.

finite element method (FEM) [8]. More recently, Suryoat-
mono and Ho [9] and Serna et al. [10] have reported the
results of elastic LTB load analysis using finite difference
technique to solve the governing differential equation; Lim
et al. [11] have conducted an extensive investigation into
the elastic LTB of I-beams using both the Bubnov-Galerkin
approach [1] and the finite element method [8]. In their
papers, Vlasov’s differential equation governing [1] for lateral-
torsional buckling of beams was used; Park et al. [12] use
the finite element program developed by Lim et al. [11] to
performparametric studies to investigate the lateral-torsional
buckling behavior of singly symmetric I-beams, in which I-
beams are modeled by the beam element with two nodes per
element and seven nodal degrees of freedom; Greiner and
Lindner [13], Greiner et al. [14], and Mohri et al. [15] also use
finite element method to present a quite complete numerical
study on lateral-torsional buckling of beams; Kim et al. [16]
adopt the variation of the total potential energy to derive the
stability equations for the lateral buckling analysis of an arbi-
trarily laminated thin-walled composite beam, and the exact
analytical stiffness matrix is presented based on power series
expansions.

It is noteworthy that, with the popularization and
widespread use of finite element software, since the 2000s,
some researchers have tried to use the general-purpose finite
element software to simulate the buckling behavior or to
assess the related design formula of the steel I-beams. For
example, Mohri et al. [17] adopt the beam elements (B31OS)
and shell elements (S8R5) of ABAQUS [18] to model the lat-
eral buckling phenomena. The authors have found that shell
elements could consider local buckling, section distortion,
and the local effects of concentrated loads and boundary
conditions, which were all ignored in the beam element
theory; Dolamune Kankanamge and Mahendran [19] use

ABAQUS [18] to investigate the LTB behavior of simply
supported cold-formed steel lipped channel beams subjected
to uniform bending. The authors have found that European
design rules are conservative, while Australian/North Amer-
ican design rules are unconservative; Tong [20] uses ANSYS
[21] to regress the design formula for the singly symmetric
I-beams under linear distributed moment; Sweedan [22]
adopts ANSYS to numerically investigate the lateral stability
of cellular steel beams subjected to equal end moments, mid-
span concentrated loads, and uniformly distributed loads;
Serna et al. [10] use Cosmos/M27 [23] to simulate the lateral-
torsional buckling of the I-beams.

In theory, FEM can be used not only to do research works
but also to formulate design formulas. However, when you
really try to formulate the design formulas through a lot of
FEM analysis, you will have to deal with some real trouble.
Firstly, the finite element analysis must be a dimensional
analysis [8, 18, 21, 23]; that is, the section size and span
(or slenderness) of the steel beams must be specified in
advance. Hence there is an enormous amount of workload
in the early stage, such as the design of hundreds of model
beams and the relevant data preparation in the finite element
modeling; secondly, one has to spend a lot of time and effort
in later stages to select from a large number of data outputs
and determine which results are useful LTB results; finally,
and most importantly, our experience shows that, because
the meshing of FEM model will greatly affect the accuracy
of finite element analysis, hence the corresponding FEM
analysis results lack of precision consistency and regularity.
This may be the reason why the design formulas of different
countries will be quite different.

On the contrary, not only does the dimensionless analytic
solution have the advantages of small input data amount
and fast calculation speed, but also the formula formulated
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from these dimensionless results is more general than those
obtained from FEM analysis. To the author’s knowledge,
research on the dimensionless analytical solution is scare
and began in 1970s with the Anderson and Trahair’s works
[24], followed by Kitipornchai et al. [25] and Kitipornchai
and Wang [26, 27] to simulate the buckling behavior of
singly symmetric I-beams and Tee beams under moment
gradient. However, the dimensionless Wagner’s coefficient
and beam parameter defined in their work lack definite
physical and geometricmeaning, andmore importantly, none
of the dimensionless parameters is independent; that is, they
are not independent variables and cannot be used to get a
reasonable design formula. Therefore, it is a very important
task to develop new dimensionless analytic solution and use
it for design purpose.

According to the theory and discussion in [28], it can
be proved that an exact dimensionless solution of the LTB
problem of the simply supported I-beam can be obtained by
the standard trigonometric series. Recently, based upon the
author’s work [29, 30], we have carried out a series of research
work on the dimensionless analytical solutions and design
formulas of the critical moment of the LTB of the I-beams
[31–34]. Recently, Zhang et al. [35] derived a dimensionless
analytical solution and design formula of the critical moment
of the LTB of the cantilever beam with tip lateral elastic brace
under uniform and concentrated load.

As a continuation of the work of the author, this study
shall present a dimensionless analytical solution via linear
stability theory and design formula of the critical moment
of the LTB of the simply supported I-beams under linear
distributed moment. In Section 2, the basic assumptions
of the traditional linear stability theory and the dispute
concerning the LTB energy equation are introduced, and
then the attempts to resolve the dispute and the Plate-
Beam Theory are described briefly; in Section 3, with the
modal trial function expressed by the trigonometric series,
the energy variation method is adopted in the derivation of
the dimensionless analytical solution of the critical moment.
Moreover, the definition of dimensionless critical moment
and its applicability is discussed; next, the 1st-order and 6th-
order approximate analytical solution are presented in Sec-
tion 4. In Section 5, the numerical solution and convergence
performance of the dimensionless analytical solution are
discussed and its correctness is verified by ANSYS software in
Section 6. This part also presents a new technique to satisfy
the rigid section hypothesis. Finally, a new mathematical
model of the design formula is presented and, with the help
of 1stOpt software, the four coefficients used in the proposed
dimensionless design formula are determined.

2. Theory Background of LTB Energy Equation
for I-Beams via Linear Stability Theory

As is known, for the slender (𝐿 ≥ 10𝑑), thin-walled (𝑑 ≥10𝑡) I-beams, the LTB (i.e., overall buckling) will generally
control the final design. In this case, the simplified mechan-
ical models, that is, differential equation model and energy
equation model, of the LTB problem of the thin-walled

beams can be established by introducing appropriate assump-
tions.

For the sake of completeness, a brief review and com-
ments of the basis of linear stability theory are presented
hereafter.

2.1. Basic Assumptions of Traditional Linear Stability Theory

(1) Rigid section hypothesis: that is, the cross section is
very rigid that its original shape is retained during
buckling.This is thewell-knownVlasov’s rigid section
hypothesis, which means that local and distortional
buckling are excluded in the LTB analysis.

(2) Euler-Bernoulli’s hypothesis: that is, there is no shear
deformation in the middle surface of the cross sec-
tion.This assumption is used to describe the in-plane
deformation of a shell/plate.

(3) Kirchhoff ’s hypothesis: that is, the shear deformation
in the planes normal to themiddle surface of the cross
section is small and can be neglected.This assumption
is used to describe the out-of-plane deformation of a
shell/plate.

(4) Thematerial is an ideal isotropic material and follows
Hooke’s law.

(5) Displacements and twist angle are assumed to be
small enough.

The first two hypotheses are first explicitly proposed
by Vlasov [1], and the last two are implicitly found in the
theoretical derivation of LTB problems [1, 20, 36–38].

Invoking assumption (1), the following transverse dis-
placements were proposed by Vlasov:𝑢 (𝑦, 𝑧) = 𝑢 (𝑧) − (𝑦 − 𝑦0) 𝜃 (𝑧) ;

V (𝑥, 𝑧) = V (𝑧) − (𝑥 − 𝑥0) 𝜃 (𝑧) , (1)

where 𝑢(𝑧), V(𝑧) are the transverse displacements of the shear
center, 𝜃(𝑧) is the twist angle of the cross section, and 𝑥0, 𝑦0
are the coordinates of the shear center.

Invoking assumption (2), that is, by setting the shear
strain of themiddle surface to zero, the following longitudinal
displacement was deduced:𝑤 (𝑥, 𝑧) = 𝑤 (𝑧) − 𝑥𝑢󸀠 (𝑧) − 𝑦V󸀠 (𝑧) − 𝜔𝜃󸀠 (𝑧) , (2)

where 𝜔 is the “warping function” [36, pg. 11], but Vlasov
called it the sectorial area [1, pg. 16].

In Vlasov’s monograph, (2) is called the law of sectorial
area. Obviously, since the condition about the shear strain
of the middle surface is used in his derivation, (2) is only
applicable to describing the longitudinal displacement of an
arbitrary point in the middle surface rather than that outside
the middle surface. As a result, the effect of St. Venant’s
torsion could not be deduced correctly by the law of sectorial
area. Therefore, in essence, (2) cannot be directly used to
derive the energy equation for LTB problem of thin-walled
structures.
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In short, even though Vlasov’s theory is such invaluable
that almost all the literature on the theory of thin-walled
bars will refer to his work, thus making him an outstanding
figure among the pioneers in the field [36–38], his theory
is incomplete, since in his work only the LTB differential
equations were established by the fictitious load method, and
no LTB energy equation was presented, since his proposed
displacement field could not be used to deduce correct energy
equation. This is precisely because of such basic defects and
the abuse of the law of sectorial area, leading to a lot of
controversy in future generations.

2.2. Dispute concerning the LTB Energy Equation. The first
correct LTB energy equation is proposed by Bleich [6] in
1952 (called traditional LTB energy equation). However,
his theoretical derivation was not rigorous. That is, it is
theoretically incomplete. The defects include the following:
(1) the longitudinal displacement of the cross section is not
clearly defined; (2) the strain energy corresponding to the
St. Venant torsion cannot be derived naturally at the same
time and thus should be additionally added by invoking
the St. Venant formula; (3) the Wagner effect caused by the
transverse load cannot be obtainednaturally, because only the
longitudinal potential energy is considered in his derivation.

In addition, bothVlasov andBleich’s theories do not apply
to the combined cross sections (e.g., open-closed/solid-open)
and composite cross sections (e.g., steel-concrete).

Because the LTB energy equation is the foundation of the
modern mechanics analysis, such as finite element method
and approximate analytic solution, extensive research has
been carried out since the 1960s. The related theoretical
derivation on the LTB energy equation for I-beams has
been detailed in [2–5, 20, 36–38]. It is found that since the
correctness of the LTB energy equation is often subject to
a variety of academic challenges, most of these efforts were
aimed at trying to explain the rationality of the following LTB
energy equation proposed by Bleich, that is,

Π = 12 ∫𝐿 [𝐸𝐼𝑦𝑢󸀠󸀠2 + 𝐸𝐼𝜔𝜃󸀠󸀠2 + (𝐺𝐽𝑘 + 2𝑀𝑥𝛽𝑥) 𝜃󸀠2+ 2𝑀𝑥𝑢󸀠󸀠𝜃 − 𝑞𝑎𝑞𝜃2] 𝑑𝑧, (3)

where 𝑢 is the lateral deflection of the shear center, 𝜃 is the
twist angle of the cross section, 𝐸𝐼𝑦 is the minor axis flexural
rigidity,𝐺𝐽𝑘 is the St. Venant torsion rigidity,𝐸𝐼𝜔 is theVlasov
warping torsion rigidity, 𝑀𝑥 is the moment function about
the major axis, 𝐿 is the length of the beam, 𝑞 is the distributed
load acting in the vertical plane of the I-beams, 𝑎𝑞 is the load
position parameter, which is obtained by subtracting the 𝑦-
coordinate of the load acting point from that of the shear
center, and 𝛽𝑥 is the Wagner coefficient, and it is defined
as 𝛽𝑥 = 12𝐼𝑥 ∫𝐴 𝑦 (𝑥2 + 𝑦2) 𝑑𝐴 − 𝑦0, (4)

where𝑥,𝑦 is the coordinates of an arbitrary pointwith respect
to the origin (the centroid of the cross section) and 𝑦0 is the
coordinate of the shear center of the cross section.

The most fatal challenge comes from the question of the
validity of the Wagner hypothesis, which is a part of the the-
oretical basis for the traditional LTB theory. Since 1981, this
problem has been continuously questioned and challenged
by Ojalvo [38–41] and considerable ongoing efforts [42–47]
have been made by some famous scholars, such as Trahair,
Chen, and Knag et al., to confirm the validity of the Wagner
hypothesis in the framework of Vlasov theory. Although
these in-depth series of discussions have led to a further
understanding of theWagner hypothesis and the related LTB
theory, the basis of the argument is still relatively inadequate
and did not get everyone’s recognition. Concerning this,
Ziemian in his book [48] concludes that “it should be noted
that a challenge to part of the theory of monosymmetric beams,
called the Wagner hypothesis, was presented by Ojalvo (1981).
At the present time (2009), this challenge still has not been fully
resolved.”

2.3. Attempts to Resolve the Dispute and the Plate-Beam
Theory. From the appearance point of view, the problem of
theWagner coefficient is only reflected in process of deriving
the load potential; hence some attempts have been made to
improve the Vlasov’s displacement filed in order to obtain the
correct Wagner coefficient. For example, based upon a more
complex geometric analysis, a longitudinal displacementwith
two additional nonlinear terms was proposed by Trahair (see
[4, pg. 384]):𝑤 (𝑥, 𝑧) = 𝑤 − 𝑥𝑢󸀠 − 𝑦V󸀠 − 𝜔𝜃󸀠 + (−𝑥V󸀠𝜃 + 𝑦𝑢󸀠𝜃) . (5)

In addition, even the concept of the rotation matrix,
which was suitable for the nonlinear analysis with large
rotation [49], was introduced into the linear LTB analysis, and
the transverse displacements with more additional nonlinear
terms were proposed by Pi et al. [50] as follows:

𝑢 (𝑦, 𝑧) = 𝑢 (𝑧) − 𝑦𝜃 (𝑧) − 𝑥 (𝑢󸀠2 + 𝜃2)2 − 𝑦𝑢󸀠V󸀠2− 𝜔𝑢󸀠𝜃󸀠,
V (𝑥, 𝑧) = V − 𝑥𝜃 (𝑧) − 𝑥𝑢󸀠V󸀠2 − 𝑦 (V󸀠2 + 𝜃2)2 − 𝜔V󸀠𝜃󸀠,
𝑤 (𝑥, 𝑧) = 𝑤 − 𝑥𝑢󸀠 − 𝑦V󸀠 − 𝜔𝜃󸀠 + (−𝑥V󸀠𝜃 + 𝑦𝑢󸀠𝜃) .

(6)

Obviously, incorrect linear strain energy will be obtained
if the above displacements of Trahair and Pi et al. were used.
Therefore, the above improvements are cumbersome and
unnecessary.

In fact, The LTB problem is similar to the vibration prob-
lem of the prestressed concrete beam, and hence this problem
belongs to the category of linear eigenvalue problem in
essence. In modern mechanics terms, this problem is a small
displacement finite strain problem, namely, in such analysis,
assumptions (3) and (4) hold, thus increasing the nonlinear
term contradiction with the above basic assumptions. In
addition, the second variation criterion was used in their
derivation, which has been discarded in modern variational
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Figure 2: Calculation diagram of simply supported beam under linear distributed moment.

principle [51–54]. These problems were also criticized by
Ojalvo [41] as follows: “... the underlying theorem on which the
derivation must be based (the theorem of stationary potential
energy) is misused: Components of a finite strain tensor are
used in the strain energy expression when infinitesimal strain
expressions are clearly called for by the theorem.”

In the author’s opinion, so far the problem of how to
derive the linear strain energy correctly based only upon
the commonly used engineering mechanics theory has not
been resolved in both the traditional theory and Ojalvo’s new
theory [38], since, in the whole process of the theoretical
debates, this problem has been deliberately avoided by both
sides of the debaters.

In fact, there is a common theoretical basis in bothBleich’s
theory and Ojalvo’s new theory; that is, they all tried to use
engineering theory (beam or rod) to derive their LTB energy
equation. For example, Navier’s plane section hypothesis is
used in Bleich’s derivation of the linear strain energy. But
these thoughts were rarely mentioned in the published LTB
literature.

This study considers a simply supported steel I-beam
under linear distributed moment as shown in Figure 2. Obvi-
ously, this I-beam is an open thin-walled beam composed
of three flat plates (i.e., two flanges and one web plate).
Therefore, how to more rationally describe in-plane and
the out-of-plane deformation of a flat plate by the classical
engineering mechanics is the essence of solving the debate
of the LTB problem reasonably. Based on such a basic
understanding, the author created the Plate-Beam Theory
[30, 55–58] recently.

In this new theory, Vlasov’s hypotheses are preserved,
but the warping function and the Vlasov’s longitudinal
displacement are discarded. The longitudinal displacement,
geometrical equation, strain energy, and initial stress poten-
tial energy of the in-plane bending and the out-plane bending
and torsion of each flat plate are described by the Euler beam
theory and Kirchhoff-Plate theory, respectively (Figure 3).
It is shown that this new theory combines the advantages
of Vlasov and Bleich’s theory and applies not only to open
[56]/closed cross sections [57] but also to open-closed/solid-
open cross sections [58].

In short, the Plate-Beam Theory provides a new way to
resolve the dispute concerning the Wagner hypothesis com-
pletely, in which the rational elements of Bleich’s, Vlasov’s,

and Ojalvo’s thoughts have been inherited and developed,
while the warping function of Vlasov was abandoned. Fur-
thermore, the correctness of the traditional LTB energy
equation, such as (3), is reaffirmed via the commonly used
plate and beam theory.

3. Dimensionless Analytical Solution

3.1. Moment Function and Modal Trial Functions. For the
simply supported I-beam shown in Figure 2, it is easy to
obtain the moment function as follows:𝑀𝑥 (𝑧) = 𝑘𝑀1 + (1 − 𝑘)𝑀1 𝑧𝐿 , 𝑘 ∈ [−1, +1] , (7)

where 𝑘 = 𝑀2/𝑀1 is the end moment ratio and𝑀2,𝑀1 are
the left and right end moment, respectively, and |𝑀2| ≤ |𝑀1|.

For the case of the simply supported I-beams, the fol-
lowing modal trial functions are proposed for the lateral
deflection 𝑢(𝑧) and twist angle 𝜃(𝑧) [29–35], which can
be expressed as the sum of trigonometric series as fol-
lows:

𝑢 (𝑧) = ℎ∞∑
𝑛=1

𝐴𝑚 sin [𝑚𝜋𝑧𝐿 ] ; (𝑚 = 1, 2, 3, . . . ,∞) , (8)

𝜃 (𝑧) = ∞∑
𝑛=1

𝐵𝑛 sin [𝑛𝜋𝑧𝐿 ] ; (𝑛 = 1, 2, 3, . . . ,∞) , (9)

where 𝐴𝑚 and 𝐵𝑛 are the undetermined dimensionless
coefficients for the lateral deflection 𝑢(𝑧) and twist angle 𝜃(𝑧),
respectively; ℎ is the distance between the centroid of top and
bottom flange.

From the perspective of structural dynamics, 𝐴𝑚 and 𝐵𝑛
can be regarded as the generalized coordinates or generalized
degrees of freedom. However, their dimensions are different,
so in order to remove the dimension of 𝐴𝑚 so that 𝐴𝑚
and 𝐵𝑛 are both undetermined dimensionless coefficients, we
introduce ℎ into the expression of 𝑢(𝑧) in this work.This idea
is proposed by the author, which is completely different from
other previous research [25–27] as discussed in Section 3.4,
and it has been used in LTB analysis of various steel beams
[29–35].
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Figure 3: Illustration of section deformation assumption and plate deformation analogy.

Obviously, the above trial functions are orthogonal and
satisfy the following geometric boundary conditions of the
simply supported beams; that is,𝑢 (0) = 𝑢󸀠󸀠 (0) = 0;𝑢 (𝐿) = 𝑢󸀠󸀠 (𝐿) = 0,𝜃 (0) = 𝜃󸀠󸀠 (0) = 0;𝜃 (𝐿) = 𝜃󸀠󸀠 (𝐿) = 0.

(10)

Moreover, according to the theory and discussions given
by literature [28], it can be proved that trigonometric series is
the exact solution of the modal trial function for the problem
shown in Figure 2, and hence the exact analytical expressions
of the total potential energy and the one for buckling equation
can be derived directly.

3.2. Dimensionless Total Potential Energy. Substituting the
moment function (7) and the modal trial functions (8)-(9)
into the potential energy functional (3) and integrating over

the beam length 𝐿, one can get the integration results of the
total potential energy.

Without loss of generality, the following new dimension-
less parameters [29–35] are introduced:

𝑀̃0 = 𝑀1(𝜋2𝐸𝐼𝑦/𝐿2) ℎ ;
𝛽𝑥 = 𝛽𝑥ℎ ;𝜂 = 𝐼1𝐼2 ;
𝐾 = √𝜋2𝐸𝐼𝜔𝐺𝐽𝑘𝐿2 ,

(11)

where 𝑀̃0 is the dimensionless endmoment; ℎ is the distance
between the centroid of the top and bottom flange; 𝐾 is the
dimensionless torsional stiffness parameters; 𝜂 is the ratio of
the moment inertia about minor axes of the top flange to that
of the bottom flange; 𝐼1, 𝐼2 are the 2nd moment of inertia
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about minor axes of the top and bottom flange, respectively;𝛽𝑥 is the dimensionless Wagner’s coefficient.
In the following derivation, the energy equation of (3) is

first multiplied by a common factor 𝐿3/(ℎ2𝐸𝐼𝑦), and then the
substitution relationships of (11) are introduced. For the sake
of clarity, the final integration results are listed as follows in
three parts:Π1 = 12 ∫𝐿0 [𝐸𝐼𝑦𝑢󸀠󸀠2 + 𝐸𝐼𝜔𝜃󸀠2 + 𝐺𝐽𝑘𝜃󸀠2] 𝑑𝑧

= ∞∑
𝑚=1

𝐴2𝑚𝑚4𝜋44 + ∞∑
𝑛=1

𝐵2𝑛 (1 + 𝑛2𝐾2) 𝑛2𝜋4𝜂4𝐾2 (1 + 𝜂)2 ,
Π2 = 12 ∫𝐿 2𝑀𝑥𝛽𝑥𝜃󸀠2𝑑𝑧

= 𝑀̃0 ∞∑
𝑛=1

𝐵2𝑛 (1 + 𝑘)𝑚2𝜋4𝛽𝑥4
+ 𝑀̃0 ∞∑
𝑠=1

∞∑
𝑟=1
𝑟 ̸=𝑠

𝐵𝑠𝐵𝑟 4 (−1 + 𝑘) 𝜋2𝑟𝑠 (𝑟2 + 𝑠2) 𝛽𝑥(𝑟2 − 𝑠2)2 ;
|𝑠 ± 𝑟| = even,

Π3 = 12 ∫𝐿 [2𝑀𝑥𝑢󸀠󸀠𝜃󸀠] 𝑑𝑧= −𝑀̃0 ∞∑
𝑚=1

𝐴𝑚𝐵𝑚 (1 + 𝑘)𝑚2𝜋44
− 𝑀̃0 ∞∑
𝑠=1

∞∑
𝑟=1
𝑟 ̸=𝑠

𝐴 𝑠𝐵𝑟 4 (−1 + 𝑘) 𝜋2𝑟𝑠3(𝑟2 − 𝑠2)2 ;
|𝑠 ± 𝑟| = even.

(12)

The total potential energy of this problem is the sum of
the above equations; that is,

Π = 3∑
𝑖=1

Π𝑖. (13)

3.3. Dimensionless Analytical Solution of Buckling Equation.
According to the principle of energy variation method,
the following stationary conditions that minimize the total
potential energy are required:𝜕Π𝜕𝐴𝑚 = 0, 𝑚 = 1, 2, 3, . . . ,∞;𝜕Π𝜕𝐵𝑛 = 0, 𝑛 = 1, 2, 3, . . . ,∞. (14)

Note that, in the above equations, 𝑚 and 𝑛 are arbitrary and
independent.

From the condition 𝜕Π/𝜕𝐴𝑚 = 0, we can get the
equilibrium equation with respect to the lateral deflection as
follows:

∞∑
𝑚=1

𝐴𝑚𝑚4𝜋42 − 𝑀̃0 ∞∑
𝑚=1

𝐵𝑚 (1 + 𝑘)𝑚2𝜋44

− 𝑀̃0 ∞∑
𝑚=1

∞∑
𝑟=1
𝑟 ̸=𝑚
|𝑚±𝑟|=even

𝐵𝑟 4 (−1 + 𝑘) 𝜋2𝑟𝑚3(𝑟2 − 𝑚2)2 = 0.
(15)

For each fixed 𝑚 (corresponding to Line 𝑚), herein, one
homogeneous equation corresponding to𝐴𝑚,𝐵𝑚, and𝐵𝑟 will
be obtained.

With the knowledge of the internal data structure of the
above infinite series equation and using the following the
notations listed as follows:{𝐴} = [𝐴1 𝐴2 𝐴3 ⋅ ⋅ ⋅]𝑇 ;{𝐵} = [𝐵1 𝐵2 𝐵3 ⋅ ⋅ ⋅]𝑇 , (16)

we can rewrite (15) in the following matrix form:[0𝑅] {𝐴} + [0𝑆] {𝐵} = 𝑀̃0 ([1𝑅] {𝐴} + [1𝑆] {𝐵}) , (17)

0𝑅𝑚,𝑚 = 𝑚4𝜋42 , 𝑚 = 1, 2, . . . ,∞,
0𝑅𝑠,𝑟 = 0, 𝑟 ̸= 𝑠, 𝑠 = 1, 2, . . . ,∞, 𝑟 = 1, 2, . . . ,∞, (18)

0𝑆𝑠,𝑟 = 0, 𝑠 = 1, 2, . . . ,∞, 𝑟 = 1, 2, . . . ,∞, (19)

1𝑅𝑠,𝑟 = 0; 𝑠 = 1, 2, . . . ,∞, 𝑟 = 1, 2, . . . ,∞, (20)

1𝑆𝑚,𝑚 = (1 + 𝑘)𝑚2𝜋44 , 𝑚 = 1, 2, . . . ,∞,
1𝑆𝑠,𝑟 = 4 (−1 + 𝑘) 𝜋2𝑟𝑠3(𝑟2 − 𝑠2)2 ,
𝑠 ̸= 𝑟, |𝑠 ± 𝑟| = even, 𝑠 = 1, 2, . . . ,∞, 𝑟 = 1, 2, . . . ,∞,

(21)

where {𝐴} and {𝐵} are the column vectors constituted by all
undetermined coefficients𝐴𝑚 and 𝐵𝑚, respectively; [0𝑅] and[1𝑅] are the coefficient matrixes for {𝐴} in the left and right
handof the above equilibriumequation, respectively; [0𝑆] and[1𝑆] are the coefficient matrixes for {𝐵} in the left and right
hand of the above equilibrium equation, respectively.

Similarly, from the condition 𝜕Π/𝜕𝐵𝑛 = 0, we can get
the equilibrium equation with respect to the twist rotation as
follows:

− 𝑀̃0 ∞∑
𝑛=1

𝐴𝑛 (1 + 𝑘) 𝑛2𝜋44
− 𝑀̃0 ∞∑
𝑛=1

∞∑
𝑟=1
𝑟 ̸=𝑛
|𝑛±𝑟|=even

𝐴𝑟 4 (−1 + 𝑘) 𝜋2𝑛𝑟3(𝑛2 − 𝑟2)2
+ 𝑀̃0 ∞∑
𝑛=1

𝐵𝑛 (1 + 𝑘) 𝑛2𝜋4𝛽𝑥2
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+ ∞∑
𝑛=1

𝐵𝑛 (1 + 𝑛2𝐾2) 𝑛2𝜋4𝜂2𝐾2 (1 + 𝜂)2
+ 𝑀̃0 ∞∑
𝑛=1

∞∑
𝑟=1
𝑟 ̸=𝑛
|𝑛±𝑟|=even

𝐵𝑟 4 (−1 + 𝑘) 𝜋2𝑟𝑛 (𝑟2 + 𝑛2) 𝛽𝑥(𝑟2 − 𝑛2)2
= 0.

(22)

With the notations in (16), the above equation can also be
arranged in the following matrix form:[0𝑇] {𝐴} + [0𝑄] {𝐵} = 𝑀̃0 ([1𝑇] {𝐴} + [1𝑄] {𝐵}) , (23)

0𝑇𝑠,𝑟 = 0, 𝑠 = 1, 2, . . . ,∞, 𝑟 = 1, 2, . . . ,∞, (24)

1𝑇𝑠,𝑟 = 1𝑆𝑟,𝑠, 𝑠 = 1, 2, . . . ,∞, 𝑟 = 1, 2, . . . ,∞, (25)

0𝑄𝑚,𝑚 = (1 + 𝑚2𝐾2)𝑚2𝜋4𝜂2𝐾2 (1 + 𝜂)2 , 𝑚 = 1, 2, . . . ,∞,
0𝑄𝑠,𝑟 = 0, 𝑟 ̸= 𝑠, 𝑠 = 1, 2, . . . ,∞, 𝑟 = 1, 2, . . . ,∞, (26)

1𝑄𝑚,𝑚 = −(1 + 𝑘)𝑚2𝜋4𝛽𝑥2 , 𝑚 = 1, 2, . . . ,∞,
1𝑄𝑠,𝑟 = −4 (−1 + 𝑘) 𝜋2𝑟𝑠 (𝑟2 + 𝑠2) 𝛽𝑥(𝑟2 − 𝑠2)2 ,
𝑟 ̸= 𝑠, |𝑠 ± 𝑟| = even, 𝑠 = 1, 2, . . . ,∞, 𝑟 = 1, 2, . . . ,∞,

(27)

where [0𝑇] and [1𝑇] are the coefficient matrixes for {𝐴} in
the left and right hand of the above equilibrium equation,
respectively; [0𝑄] and [1𝑄] are the coefficientmatrixes for {𝐵}
in the left and right hand of the above equilibrium equation,
respectively.

If (17) and (23) are combined together, the buckling
equation can be expressed as follows in the form of block
matrix:

[0𝑅 0𝑆
0𝑇 0𝑄]{𝐴𝐵} = 𝑀̃0 [1𝑅 1𝑆1𝑇 1𝑄]{𝐴𝐵} , (28)

where 𝑀̃0 is the dimensionless critical moment, that is, the
dimensionless buckling strength; 𝑅, 𝑆, 𝑇, and 𝑄 are the
subblock coefficient matrixes constructed from analytical
expressions included in (18)–(21) and (24)–(27), respectively.

Equation (28) is the dimensionless analytical buckling
equation of the LTBproblemof a simply supported steel beam
under linear distributed moment obtained in the present
work.

Obviously, from the mechanical point of view, the matrix
at the left-hand side of the equation represents the linear
stiffness matrix of the steel girder and is independent of

the load, while the matrix on the left side of the equation
depends on the load pattern, which in the present case can be
considered as a geometric stiffness matrix due to the linear
distribution of moments.

It is noted that the dimensionless analytical solution of
the buckling equation presented in the paper not only has a
clear data structure and but also is easy to program and solve.
In addition, unlike the FEM solutions published in literature,
this solution can easily be verified by anyone.

3.4. Remarks on Definition of Dimensionless Critical Moment.
There are different ways to define the dimensionless critical
moment, in which the well-known definition is the one
proposed by Kitipornchai et al. [25] and Kitipornchai and
Wang [26, 27] and can be expressed as follows:

𝑀̃cr = 𝑀cr𝐿√𝐸𝐼𝑦𝐺𝐽𝑘 . (29)

Corresponding to this definition, the following dimen-
sionless Wagner’s coefficient, the load position parameter,
and the beam parameter are defined by Kitipornchai:

𝛿 = 𝛽𝑥𝐿 √(𝐸𝐼𝑦𝐺𝐽𝑘);
𝜀 = 𝑎𝐿√(𝐸𝐼𝑦𝐺𝐽𝑘);
𝐾̃ = √𝜋2𝐸𝐼𝑦ℎ2𝐺𝐽𝑘𝐿2 = 𝜋ℎ𝐿 √𝐸𝐼𝑦𝐺𝐽𝑘 .

(30)

Obviously, all these parameters lack clear physical and
geometric meanings. More importantly, since there is a com-
mon factor√𝐸𝐼𝑦/𝐺𝐽𝑘 in (30), none of the parameters defined
in (30) is independent; that is, they are not independent
variables; thus it is difficult to use them to regress a rational
design formula.

Instead, the following dimensionless critical moment is
used in this paper:

𝑀̃cr = 𝑀cr(𝜋2𝐸𝐼𝑦/𝐿2) ℎ = 𝑀crℎ𝑃𝐸𝑦 . (31)

This definition is first proposed by Professor Zhang [29]
since 2008 and later used in the LTB analysis of various steel
beams [30–35].

It is the first finding in this paper that this definition can
be derived naturally from the total potential energy based
upon the new definition of displacement function, that is, (8);
secondly, it has a clear physical meaning as shown in the last
term in (31); that is, the product of Euler’s bending buckling
load around the minor axis and the distance between the
centroid of the top and bottom flange is used to normalize
the actual critical moment.
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In addition, in the case of the LTB of a doubly symmetric
beam under pure bending, the definition of (31) also has a
definite geometric meaning; that is,

𝑀̃cr = 𝑀crℎ𝑃𝐸𝑦 = 𝑢𝜃 = 12√1 + 𝐾−2. (32)

That is, the dimensionless critical moment is the dimen-
sionless distance between the fixed axis of rotation and the
shear center for a cross section. It is clear that, for the doubly
symmetric beams, the fixed axis of rotation always lies beyond
the tension flange due to 𝐾 > 0.

Finally, and most importantly, the other dimensionless
parameters defined in (11) also have definite physical mean-
ings and are independent of each other and are therefore
suitable for the formulation of a new design formula.

4. Approximate Analytical Solution

4.1. First-Order Approximation. If 𝑚 = 𝑛 = 1, the following
simple expression can be obtained from (28):

[[[[[
𝜋42 0
0 (1 + 𝐾2) 𝜋4𝜂2𝐾2 (1 + 𝜂)2

]]]]]{
𝐴1𝐵1}

= 𝑀̃0 [[[[
0 (1 + 𝑘) 𝜋44(1 + 𝑘) 𝜋44 −(1 + 𝑘) 𝜋4𝛽𝑥2

]]]]{
𝐴1𝐵1} .

(33)

Under the conditions that the coefficient determinant is
zero, then the first-order approximation of the dimensionless
critical moment of the I-beams under linear distributed
moment can be written in a compact form:

𝑀̃cr = 𝐶1 [[(−𝐶2𝑎 + 𝐶3𝛽𝑥)
+ √(−𝐶2𝑎 + 𝐶3𝛽𝑥)2 + 𝜂(1 + 𝜂)2 (1 + 𝐾−2)]] ,

(34)

where

𝐶1 = 21 + 𝑘 ;𝐶2 = 0;𝐶3 = 1
(35)

or

𝑀̃cr = 21 + 𝑘 [[𝛽𝑥 + √(𝛽𝑥)2 + 𝜂(1 + 𝜂)2 (1 + 𝐾−2)]] . (36)

Obviously, this 1st-order approximation only applies to
cases where 𝑘 is greater than zero, and, at 𝑘 = −1, the critical
moment is infinite, which is unreasonable.

If 𝑘 = 1 which means that the two end moments are
equal, that is, the beam is under pure bending, then its
dimensionless critical moment can be expressed in terms of
(36) as follows:

𝑀̃cr = 𝛽𝑥 + √(𝛽𝑥)2 + 𝜂(1 + 𝜂)2 (1 + 𝐾−2). (37)

It is easy to find that this expression is identical to the
exact analytical solution in the textbook [1–6]. This con-
clusion indicates that the solution of the buckling equation
presented in the paper is indeed an accurate solution in this
special case.

4.2. Sixth-Order Approximation. If 𝑚 = 𝑛 = 6, the following
analytical expression can be obtained from (28):

[0𝑅 0𝑆
0𝑇 0𝑄]

6×6

{𝐴𝐵}
6×1

= 𝑀̃0 [1𝑅 1𝑆1𝑇 1𝑄]
6×6

{𝐴𝐵}
6×1

, (38)

where

0𝑆 = 0𝑇 = 1𝑅 = 0,

0𝑅 =
(((((((((((((
(

𝜋42 0 0 0 0 00 8𝜋4 0 0 0 0
0 0 81𝜋42 0 0 00 0 0 128𝜋4 0 0
0 0 0 0 625𝜋42 00 0 0 0 0 648𝜋4

)))))))))))))
)

,
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0𝑄 =
((((((((((((((((((((
(

(1 + 𝐾2) 𝜋4𝜂2𝐾2 (1 + 𝜂)2 0 0 0 0 0
0 (4 + 16𝐾2) 𝜋4𝜂2𝐾2 (1 + 𝜂)2 0 0 0 0
0 0 (9 + 81𝐾2) 𝜋4𝜂2𝐾2 (1 + 𝜂)2 0 0 0
0 0 0 (16 + 256𝐾2) 𝜋4𝜂2𝐾2 (1 + 𝜂)2 0 0
0 0 0 0 (25 + 625𝐾2) 𝜋4𝜂2𝐾2 (1 + 𝜂)2 0
0 0 0 0 0 (36 + 1296𝐾2) 𝜋4𝜂2𝐾2 (1 + 𝜂)2

))))))))))))))))))))
)

,

1𝑇𝑠,𝑟 = 1𝑆𝑟,𝑠 =
((((((((((((((((
(

14 (1 + 𝑘) 𝜋4 89 (−1 + 𝑘) 𝜋2 0 16225 (−1 + 𝑘) 𝜋2 0 24 (−1 + 𝑘) 𝜋21225329 (−1 + 𝑘) 𝜋2 (1 + 𝑘) 𝜋4 9625 (−1 + 𝑘) 𝜋2 0 160441 (−1 + 𝑘) 𝜋2 0
0 21625 (−1 + 𝑘) 𝜋2 94 (1 + 𝑘) 𝜋4 43249 (−1 + 𝑘) 𝜋2 0 89 (−1 + 𝑘) 𝜋2256225 (−1 + 𝑘) 𝜋2 0 76849 (−1 + 𝑘) 𝜋2 4 (1 + 𝑘) 𝜋4 128081 (−1 + 𝑘) 𝜋2 0
0 1000441 (−1 + 𝑘) 𝜋2 0 200081 (−1 + 𝑘) 𝜋2 254 (1 + 𝑘) 𝜋4 3000121 (−1 + 𝑘) 𝜋2864 (−1 + 𝑘) 𝜋21225 0 329 (−1 + 𝑘) 𝜋2 0 4320121 (−1 + 𝑘) 𝜋2 9 (1 + 𝑘) 𝜋4

))))))))))))))))
)

,

1𝑄

=
((((((((((((((((
(

−12 (1 + 𝑘) 𝜋4𝛽𝑥 −409 (−1 + 𝑘) 𝜋2𝛽𝑥 0 −272225 (−1 + 𝑘) 𝜋2𝛽𝑥 0 −888 (−1 + 𝑘) 𝜋2𝛽𝑥1225−409 (−1 + 𝑘) 𝜋2𝛽𝑥 −2 (1 + 𝑘) 𝜋4𝛽𝑥 −31225 (−1 + 𝑘) 𝜋2𝛽𝑥 0 −1160441 (−1 + 𝑘) 𝜋2𝛽𝑥 0
0 −31225 (−1 + 𝑘) 𝜋2𝛽𝑥 −92 (1 + 𝑘) 𝜋4𝛽𝑥 −120049 (−1 + 𝑘) 𝜋2𝛽𝑥 0 −409 (−1 + 𝑘) 𝜋2𝛽𝑥−272225 (−1 + 𝑘) 𝜋2𝛽𝑥 0 −120049 (−1 + 𝑘) 𝜋2𝛽𝑥 −8 (1 + 𝑘) 𝜋4𝛽𝑥 −328081 (−1 + 𝑘) 𝜋2𝛽𝑥 0
0 −1160441 (−1 + 𝑘) 𝜋2𝛽𝑥 0 −328081 (−1 + 𝑘) 𝜋2𝛽𝑥 −252 (1 + 𝑘) 𝜋4𝛽𝑥 −7320121 (−1 + 𝑘) 𝜋2𝛽𝑥

−888 (−1 + 𝑘) 𝜋2𝛽𝑥1225 0 −409 (−1 + 𝑘) 𝜋2𝛽𝑥 0 −7320121 (−1 + 𝑘) 𝜋2𝛽𝑥 −18 (1 + 𝑘) 𝜋4𝛽𝑥

))))))))))))))))
)

.

(39)

Equation (38) gives the sixth-order approximation of the
dimensionless critical moment of a steel beam under the
linear distributed moment.

It can be proved that the above result is exactly the
same as that obtained by using trigonometric series with six
terms as the modal function. This shows that the infinite
series solution, that is, the exact analytical solution derived
in previous section, is correct.

Our research results [34, 35] have shown that, in most
cases, the sixth-order approximation can achieve satisfactory
results. However, if one wants to obtain more accurate results
of the dimensionless critical moment, then more terms
should be included in the numerical computations. Hence
we shall present the numerical algorithm to solve the dimen-
sionless analytical buckling equation, and the convergence
performance is discussed in the next section.

5. Numerical Solution and
Convergence Performance

5.1. Matrix Expression of Eigenvalue Problem. In order to
obtain a numerical solution to the dimensionless analytical
solution, we shall take the number of trigonometric series in
(8) and (9) as a finite number, such as𝑚 = 𝑛 = 𝑁.

If the common-used symbols used in traditional finite
elementmethod [8] are adopted, then (28) can be abbreviated
as follows:[𝐾0]2𝑁×2𝑁 {𝑈}2𝑁 = 𝑀̃0 [𝐾𝐺]2𝑁×2𝑁 {𝑈}2𝑁 , (40)
where {𝑈}2𝑁 = [𝐴 𝐵]𝑇 ,

[𝐾0]2𝑁×2𝑁 = [ 0𝑅0𝑇 0𝑆
0𝑄 ] ;
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(d) 𝑘 = 1

Figure 4: Convergence performance.

[𝐾𝐺]2𝑁×2𝑁 = [ 1𝑅1𝑇 1𝑆
1𝑄 ] ,

(41)

where {𝑈}2𝑁 is the buckling mode which is consisted of
dimensionless undetermined coefficients (generalized coor-
dinates); [𝐾0]2𝑁×2𝑁 is the linear stiffness matrix of the steel
beam; [𝐾𝐺]2𝑁×2𝑁 is the geometric stiffness matrix of the
steel beam under the linear distributed moment; 𝑀̃0 is the
dimensionless critical moment.

Mathematically, the problem of solving 𝑀̃0 can ultimately
be attributed to solving the generalized eigenvalue problem
of (38), where 𝑀̃0 is the smallest eigenvalue and {𝑈}2𝑁 is the
corresponding eigenvector (i.e., buckling mode).

Obviously, the final form of the dimensionless buckling
equation (see (38)) has not only a clear data structure that is
easy to program but also a well-known form of the traditional
finite element method and therefore has a definite physical
meaning, while that given by Kitipornchai et al. [25–27]
and McCann et al. [59] is a Hessian matrix, in which the

dimensionless critical moment is implicit in that matrix.
Therefore, their expressions lack clear physical meaning and
are not easily solved by the existing mathematical software.

5.2. Convergence Performance and Numerical Algorithm.
First, the convergence performance of the trigonometric
series is presented. Typical graphs of the relationship between
the dimensionless bucklingmoment and the number of terms
of trigonometric series used in the modal trial functions
are shown in Figure 4. It can be seen that, in general,
the trigonometric series is basically monotone convergence;
the convergence rate for the negative end moment ratio is
obviously lower than that for the positive end moment ratio.

When 𝑘 changes from −1 to 1, the convergence rate is
gradually accelerated, and the number of terms needed to
obtain accurate numerical solutions is gradually reduced.
Moreover, the results show that when 𝑘 = −1, the conver-
gence rate is the slowest, and more than six terms are needed
to obtain accurate numerical solutions. However, when
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Figure 5: Simulation of rigid section hypothesis by “CERIG” command.

𝑘 = 1, the convergence rate is the fastest, and only one term
is needed to get the exact solution.

Next, the numerical algorithm is discussed. In fact, any
method used to solve the generalized eigenvalue problem is
applicable to LTB problem of this paper, because it is different
from the large-scale finite element analysis program, and the
number of degrees of freedom involved in this paper is not
large.

It is noted that the eig(∗, ∗) function provided in the
MATLAB [60] can be used to obtain the eigenvalue and
eigenvector of a given matrix. Even for matrixes with large
dimensions, very high accuracy results can be obtained
effectively. Therefore, this paper uses the eig(∗, ∗) function
to develop the developed MATLAB program.

In order to automatically obtain a numerical solution of
any desired accuracy, it is necessary to perform an iterative
process in the developed MATLAB program in which the
following convergence criteria are used:󵄨󵄨󵄨󵄨󵄨𝑀̃(𝑖+1)0 − 𝑀̃(𝑖)0 󵄨󵄨󵄨󵄨󵄨𝑀̃(𝑖)0 ≤ tol, (42)

where tol is the iteration tolerance. When the eigenvalue 𝑀̃0
is required to 2𝑠-digit accuracy [8], then tol = 10−2𝑠 is used in
the subsequent analysis.

In order to facilitate the dimensionless parameter analysis
and to perform the comparative study between the numerical
solution from the exact dimensionless analytical solution
and the ANSYS finite element analysis, a MATLAB program
is developed according to the aforementioned numerical
algorithm.

6. Verification by FEM Software

In this section, the general-purpose finite element software
ANSYS is used to verify the correctness of the exact solution
and 6th-order approximations given previously.

6.1. Description of FEM Model. It is well known that the
BEAM189 in ANSYS software cannot correctly simulate the

critical moment of LTB for the singly symmetric beams.
Therefore, the SHELL63 element is used in this paper to
simulate the buckling problem of the steel beams.

The second reason is that since a typical steel I-beam is
composed of three thin plates, it is theoretically correct using
the SHELL elements to simulate the buckling problem of the
I-beams.This is in accordance with Vlasov’s work [1] because
his theory was established on the simplification of the shell
theory and the concept of “reducedmodulus” was used in his
monograph (see equation (5.5) in [1]).

It is shown that only in this way all kinds of buckling
phenomena such as local buckling, distortion buckling,
and lateral-torsional buckling (LTB) can be simulated and
captured. However, only the LTB phenomena is concerned in
this investigation. Consequently, when the SHELL63 element
is used to simulate the desired lateral-torsional buckling of a
steel beam, there is a problem; that is, for beams simulated
by SHELL63 element, the Vlasov’s rigid section hypothesis
cannot be automatically satisfied as the BEAM elements.
Therefore, special measures have to be taken in the FEM
simulation to ensure that the overall buckling; that is, LTB
rather than the local buckling or the distortional buckling
appears first.

Some approaches have been proposed, such as the
method of adding stiffeners or the method of treating the
stiffeners as membrane elements [20] to approximate the
rigid section hypothesis. However, it is found that, for 𝑘 =−1, no matter how many stiffeners are added, no satisfactory
results can be obtained. In order to overcome this difficulty,
this paper presents an innovative simulation technique for the
ANSYS software to satisfy the rigid section hypothesis.

After exploration and modeling practice, we found that,
in the ANSYS finite element model, the “CRIG” command
is such a very effective command that you can be more
confident to simulate the rigid section features of the buckled
beams, without worrying about the failure of FEM numerical
simulation. Figure 5 shows the ANSYS finite element model
after the CERIG command is used. Moreover, each end of the
steel beam is simulated as the fork support as usual (Figure 6),
and the end moment is simulated by applying a concentrated
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Figure 6: Simulation of boundary conditions (fork supports).

Figure 7: Simulation of end moments.

torque at the centroid of the cross section at each end of the
steel beam (Figure 7).

The material properties are taken as follows: Young’s
modulus 𝐸 = 206GPa, Poison’s ratio 𝜐 = 0.3, and the shear
modulus of elasticity is given by 𝐺 = 𝐸/[2(1 + 𝜐)].
6.2. Verification of FEM Model. Although the analytical and
numerical solutions given in the previous section are dimen-
sionless, the finite element analysis must be a dimensional
analysis in which the section size and span (or slenderness)
of the steel I-beams must be specified in advance.

Considering that the finite element analysis here is of
a verification nature, only three typical cross sections are
selected for the study purpose. Section A is a doubly sym-
metric section, and both Section B and Section C are singly
symmetric sections, in which Section B has a larger tension
flange, whereas Section C has a larger compression flange. All
pictures of the selected sections along with their geometrical
properties are shown in Table 1.

The beam spans are chosen such that the span-to-depth
ratios lie between 15 and 30. Table 2 lists the dimensionless
parameters associated with the calculation of the LTB critical
moments.

The above-mentioned FEM model is used to calculate
the critical moment of the I-beams. Since, for a steel I-beam
under pure bending, the critical moment has exact solution,
that is, (37), then the FEM model of the beam with the
sections listed in Table 1 is verified by this exact solution.

Furthermore, the sixth-order approximate analytical solution
and numerical solution of the critical moments are also
calculated. All the results are listed in Table 2.

It is observed that (1) for all caseswhere doubly symmetric
I-beams are studied, the deviations from the FEM results
are within 0.91%; (2) for all cases where singly symmetric I-
beams are studied, the deviations from the FEM results are
higher than those of the doubly symmetric beams, but the
largest deviation is not more than 1.85%; (3) if three decimal
places are retained, the results of the 6th-order approximate
analytical solution and the numerical solution with 30 terms
are exactly the same. This proves the appropriateness of the
ANSYS FEMmodel developed in this paper.

In addition, since no exact solution exits for the beams
under linear distributed moment, the ANSYS FEM model is
used to compare with the published data which is obtained
from newly developed FEM model. Table 3 listed the results
of ABSYS and those of B3DW [15].

It can be observed that (1) all the results of B3DW
are higher than those of the ANSYS model developed in
this paper, and the largest deviation is less than 1.3%; (2)
all the results given by the numerical solutions (referenced
“theory”) are the lowest and closer to the those of ANSYS
with the maximum difference within 0.31%. This provides
an additional evidence of the appropriateness of the ANSYS
FEM model, and the analytical and numerical solutions
developed in the current work are verified preliminarily.

It should be pointed out that the BEAM189 in ANSYS
software can only be used to predict the critical moment for
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Table 1: Section dimensions and geometric properties for the selected beams.

Section A Section B Section C𝐻 = 400mm; ℎ = 372mm; 𝐻 = 400mm; ℎ = 372mm; 𝐻 = 400mm; ℎ = 372mm;ℎ𝑤 = 344mm; 𝑏𝑓 = 400mm; ℎ𝑤 = 344mm; 𝑏𝑓1 = 200mm; ℎ𝑤 = 344mm; 𝑏𝑓1 = 400mm;𝑡𝑓 = 28mm; 𝑡𝑤 = 18mm; 𝑏𝑓2 = 400mm; 𝑡𝑓 = 28mm; 𝑏𝑓2 = 200mm; 𝑡𝑓 = 28mm;𝐼𝑦 = 2.987 × 10−4m4; 𝑡𝑤 = 18mm; 𝐼𝑦 = 1.680 × 10−4m4; 𝑡𝑤 = 18mm; 𝐼𝑦 = 1.680 × 10−4m4;𝐽𝑘 = 6.523 × 10−6m4; 𝐽𝑘 = 5.059 × 10−6m4; 𝐽𝑘 = 5.059 × 10−6m4;𝐼𝜔 = 10.333 × 10−6m6. 𝐼𝜔 = 2.296 × 10−6m6. 𝐼𝜔 = 2.296 × 10−6m6.
bf

bf

t f
t f

tw ℎ
wh H

t f
t f

tw ℎ
wh H

bf1

bf2

t f
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tw ℎ
w

h H
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Table 2: Critical moments for the selected beams under pure bending.

Section 𝐾 𝐿/m 𝜂 𝑘 𝛽𝑥 𝑁 = 6𝑀crTheory

N = 30𝑀crTheory
𝑀crSHELL Diff.1/% 𝑀crBEAM Diff.2/%

A
1.063 6 1 1 0 0.687 0.687 0.680 0.91 0.689 −0.35
0.797 8 1 1 0 0.802 0.802 0.801 0.22 0.808 −0.66
0.531 12 1 1 0 1.066 1.066 1.068 −0.23 1.076 −0.96

B
0.569 6 0.125 1 −0.322 0.391 0.391 0.383 1.85 0.641 61.35
0.427 8 0.125 1 −0.322 0.541 0.541 0.535 1.15 0.809 46.51
0.284 12 0.125 1 −0.322 0.871 0.871 0.867 0.52 1.162 30.43

C
0.569 6 8 1 0.322 1.035 1.035 1.048 −1.28 0.641 −39.11
0.427 8 8 1 0.322 1.185 1.185 1.204 −1.55 0.809 −33.11
0.284 12 8 1 0.322 1.515 1.515 1.539 −1.53 1.162 −25.02

Note. Diff.1 = (𝑀crTheory −𝑀crSHELL)/𝑀crSHELL × 100%; Diff.2 = (𝑀crTheory −𝑀crBEAM)/𝑀crBEAM × 100%.

Table 3: Critical moments for the beams of HEA-200 under linear distributed moment.

Number k SHELL/103N⋅m B3Dw/103 N⋅m Diff.1/% Theory/103N⋅m Diff.2/% BEAM/103N⋅m Diff.3/%
L-1 1 82.064 82.69 0.76 81.872 −0.23 82.687 −0.99
L-2 0.75 93.574 94.79 1.30 93.358 −0.23 94.285 −0.98
L-3 0.5 108.090 108.94 0.79 107.853 −0.22 108.916 −0.98
L-4 0.25 126.419 127.45 0.82 126.175 −0.19 127.393 −0.96
L-5 0 149.142 150.45 0.88 148.935 −0.14 150.318 −0.92
L-6 −0.25 175.909 177.61 0.97 175.823 −0.05 177.353 −0.86
L-7 −0.5 204.151 206.32 1.06 204.317 0.08 205.944 −0.79
L-8 −0.75 225.915 228.38 1.09 226.436 0.23 228.096 −0.73
L-9 −1 219.686 221.97 1.04 220.378 0.31 221.905 −0.69

Section and its properties

bf

bf

t f
t f

tw

ℎ
wh H

𝐻 = 190mm; ℎ = 180mm;ℎ𝑤 = 170mm; 𝑏𝑓 = 200mm;𝑡𝑓 = 10mm; 𝑡𝑤 = 6.5mm;𝐿 = 8m; 𝐴 = 51.05 cm2;𝐼𝑦 = 3559.23 cm4; 𝐼𝑧 = 1333.33 cm4𝐽𝑘 = 14.8895 cm4; 𝐼𝜔 = 108 × 103 cm6𝐸 = 210GPa
Note. Diff.1 = (B3Dw − SHELL)/SHELL × 100%; Diff.2 = (Theory − SHELL)/SHELL × 100%; Diff.3 = (Theory − BEAM)/BEAM × 100%.
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Table 4: Critical moments for the selected beams under linear distributed moment.

Section 𝐾 𝐿/m 𝜂 𝑘 𝛽𝑥 𝑁 = 6𝑀crTheory

𝑁 = 30𝑀crTheory
𝑀crFEM Diff.1/%

A

1.063 6 1 0.5 0 0.906 0.906 0.897 0.99
1.063 6 1 0.1 0 1.179 1.179 1.164 1.30
1.063 6 1 0 0 1.265 1.265 1.247 1.45
1.063 6 1 −0.1 0 1.357 1.357 1.336 1.63
1.063 6 1 −0.5 0 1.766 1.766 1.720 2.69
1.063 6 1 −1 0 1.872 1.872 1.809 3.48

B

0.569 6 0.125 0.5 −0.322 0.512 0.512 0.502 1.92
0.569 6 0.125 0.1 −0.322 0.649 0.649 0.635 2.18
0.569 6 0.125 0 −0.322 0.689 0.689 0.673 2.29
0.569 6 0.125 −0.1 −0.322 0.730 0.730 0.713 2.41
0.569 6 0.125 −0.5 −0.322 0.908 0.908 0.883 2.88
0.569 6 0.125 −1 −0.322 1.075 1.075 1.088 1.19

C

0.569 6 8 0.5 0.322 1.365 1.365 1.385 −1.50
0.569 6 8 0.1 0.322 1.767 1.767 1.784 −0.93
0.569 6 8 0 0.322 1.889 1.889 1.900 −0.56
0.569 6 8 −0.1 0.322 2.017 2.017 2.029 −0.60
0.569 6 8 −0.5 0.322 2.263 2.262 2.228 1.55
0.569 6 8 −1 0.322 1.126 1.126 1.090 3.29

Note. Diff.1 = (𝑀crTheory −𝑀crFEM)/𝑀crFEM × 100%.

a doubly symmetric beam but will yield erroneous results for
a singly symmetric beam.

In summary, all the results show that the “CRIG” com-
mand in ANSYS can be used to simulate the Vlasov’s rigid
section hypothesis, and its simulation effect is more effective
and hence better than the method of adding stiffeners.

6.3. Verification of the Analytical and Numerical Solutions.
This paragraph will further to verify the accuracy of the
analytical and numerical solutions developed in this paper.

For the steel I-beams with the section listed in Table 1
under linear distributed moment, their critical moments and
buckling modes are calculated by ANSY FEM model, sixth-
order approximation, and numerical solution, respectively.
The results of the calculated critical moments are listed in
Table 4. The predicted buckling modes for the beams with
doubly and singly symmetric sections are pictured in Figures
8 and 9, respectively.

It can be found that (1) if three decimal places are retained,
the results of the 6th-order approximate analytical solution
and the numerical solution with 30 terms are exactly the
same as shown in Table 2; (2) when 𝑘 changes from 1 to−1, the deviations from the FEM results gradually increase,
and the largest deviation occurs in the case of 𝑘 = −1 and
is less than 3.54%; (3) there is close agreement between the
buckling modes of the present theory and those of ANSYS.
This validates both the analytical and numerical solutions
developed in the current work, and it can be concluded
that the dimensionless analytical solution presented provides
accurate solutions for the LTB problem of the simply sup-
ported steel I-beams.

It is noted that, for all I-beams studied in this paper,
the results given by the 6th-order approximation are of
high accuracy. Our other research results also support this
conclusion [34–36]. Therefore, if you are able to accept the
calculation results with three-decimal precision, the sixth-
order approximation proposed in this paper is a simple and
quick calculationmethod.However, in order to obtain a high-
precision design formula, we propose to use the analytical
solution with more terms; that is, use the numerical solution
proposed in previous sections.

Finally, it is noted that, for the case of Section A and Sec-
tion B, SHELL solutions of ANSYS will provide lower critical
moment predictions than the exact solution as expected, but,
for Section C, the result is just the opposite. Therefore, for
the case of the beam under linear distributed moment, FEM
cannot be applied to formulate the design formula, because it
lacks precision consistency in the analysis.

7. Proposed Dimensionless Design Formula

Nowadays, the concept of equivalent uniform moment coef-
ficient (EUMF) is widely accepted in design codes in many
countries. However, it is found that, even for the case of the
doubly symmetric I-beams under linear distributedmoment,
the design formulas given by the codes/specifications of
different countries are quite different. The corresponding
comparison between the design formulas [61–65] with the
exact solutions developed in current work is depicted in
Figure 1. Due to space constraints, this paper does not intend
to make too many evaluations of these results.
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Figure 8: Buckling mode graph of the beams with doubly symmetric section (Section A).

This paper attempts to use a new mathematical model
as the benchmark to solve this long-standing engineering
problem with the above-mentioned dimensionless analytical
solutions.

7.1. Trilinear Mathematical Model. Since the concept of
equivalent uniform moment factor (EUMF) proposed by
Salvadori [66] is widely recognized in the engineering com-
munity, similar to others, at first we have tried to use EUMF
to describe the relationship between the criticalmoments and
the gradient moment factor k, but we ultimately failed.

In order to analyze the cause of failure, through the
parametric analysis, we first study its change law of the data.

Figures 10, 11, and 12 show the trend of the curves of the
critical moments versus the gradient moment factor 𝑘 with
varied 𝜂 and 𝐾, respectively. It can be seen that the trend of
all the curves are very different that no rules can be followed.
This means that it is not possible to describe such a complex
change with a single EUMF. In other words, a single EUMF
does not exist in the case of I-beams with unequal flanges
subjected to unequal end moments; hence, we must break
through the shackles of traditional concepts, so that we can
get a breakthrough.

With the aid of the idea of using a piecewise linear approx-
imation to simulate an actual curve, this paper proposes a
new trilinear mathematical model used as the benchmark of
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Figure 9: Buckling mode graph of the beams with singly symmetric section (Section C).

formulating the design formula. This new idea is represented
by the graphics shown in Figure 13. There are four control
points in this new model; that is, −1𝑀cr,

−0.5𝑀cr,
0𝑀cr,

+1𝑀cr
are the four control moments. Since +1𝑀cr can be expressed
by the existing exact solution, that is, (37), only the other
three moments are undetermined parameters, which should
be obtained by the nonlinear regression techniques.

7.2. Parameter Regression Techniques and Comparison. As we
all know, there are three key issues in regression technology,
namely, the choice of target formula, how to generate data,
and how to regress the unknown coefficient in the target
formula.

Firstly, according to the results of the previous parametric
analysis, after a number of analyses, observations, and tries,
we finally selected the following target formula:

𝑀̃cr = 𝐶1 [(𝐶3𝛽𝑥)
+ √(𝐶3𝛽𝑥)2 + 𝐶4𝜂(𝐶5 + 𝐶6𝜂)2 (1 + 𝐾−2)] ,

(43)

where 𝐶1, 𝐶3, 𝐶4, 𝐶5, and 𝐶6 are undetermined regression
coefficients and the later three are newly defined in this paper.
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Figure 10: Distribution pattern of critical moments with varied 𝐾
and 𝑘.
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Figure 11: Critical moments versus gradient moment factor with
varied 𝜂 (𝐾 = 2).

In addition, the study also found that these undetermined
regression coefficients for the cross sections with lager top
flange are completely different from those of other cross
sections in the range (−1.0 ≤ 𝑘 < −0.5), so we cannot
expect to describe all the cases with a set of unified regression
coefficients by using the target formula (43). Therefore, two
sets of regression coefficients have to be used for 𝐶1, 𝐶3, 𝐶4,𝐶5, and𝐶6 in the proposed design formula for the case where𝑘 = −1.0 and 𝑘 = −0.5.

Next, theMATLAB program formulated in the paper can
be employed to generate the above-mentioned dimensionless
data. In the following data analysis, the end moment ratio 𝑘
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Figure 12: Critical moments versus gradient moment factor with
varied 𝐾 (𝜂 = 0.5).
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Figure 13: Proposed trilinear model as the benchmark of design
formula.

is fixed for each control moment, while 𝛽𝑥, 𝜂, 𝛽𝑥𝐾 are varied.𝐾 is changed from 0.2 to 5.0 with the varied step size of 0.02∼
0.05; 𝜂 is changed from 0.1 to 10.0 with the varied step size
of 0.05∼1.0; 𝛽𝑥 is changed from −0.4 to +0.4 with step size of
0.01.

Thirdly, due to the highly nonlinear nature of the target
formula, we chose the 1stOpt [67] software to do this regres-
sion [30–35]. 1stOpt is a software package for the analysis of
mathematical optimization problem. The nonlinear curve fit
of 1stOpt is powerful compared to any other similar software
package available today. The greatest feature is that it no
longer needs the end-user to provide or guess the initial
start-values for each parameter, but, randomly generated by
machine, the probability for finding the correct solution is
higher than the others.
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Figure 14: Relationship of the target value and calculated value.

Table 5

Parameter Best estimate𝑐1 2.220165826𝑐3 −0.458694891𝑐4 7.259270297𝑐5 1.482366765𝑐6 2.735838541

Taking a cross section having a larger top flange and
a negative moment (𝑘 = −1) as an example, based on
the 475 sets of dimensionless data (𝛽𝑥, 𝜂, 𝐾, 𝑀̃cr) obtained
from the dimensionless analytical solution, using Levenberg-
Marquardt algorithm in the 1stOpt software, then after 39
iterations, the resulting regression coefficients are obtained
as shown in Table 5 and the corresponding correlation coef-
ficient is 0.99545.

The resulting relationship between the target value and
the calculated value is depicted in Figure 14. In this figure,
the red line represents the calculated curve, and the blue line
represents the target curve. It is found that quite satisfactory
regression results have been obtained.

Using a similar approach, we can get all the undetermined
coefficients and the relevant results are listed in Table 6.

It must be pointed out that the whole regression process
takes only a few minutes, of which the calculation process of
nearly 500 sets of data only takes a few seconds. If you intend
to use the FEM to obtain such a large number of data sets, it
may take at least a month. This fully demonstrates that the
dimensionless solution has an unparalleled advantage over
the finite element method in terms of efficiency and quality
in obtaining a large number of regression data.

Finally, the proposed dimensionless design formula is
used to calculate the critical moments of the I-beams with the

Formula for Section A
Formula for Section B
Formula for Section C

�eory for Section A
�eory for Section B
�eory for Section C
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Figure 15: Comparison between theory and the proposed formula.

sections listed in Table 1 and the results are comparedwith the
theoretical solution. All results are plotted in Figure 15 and
listed in Table 7.

The results show that the proposed formula is of high
accuracy and is applicable to both the doubly symmetric
section and the singly symmetric section under positive and
negative gradient moment.

It must be noted that the trilinear mathematical model
can also be converted to a cubic curve model or by adding
more points to obtain a quadratic or higher-order curve
model. Due to the limited space, these will be discussed
elsewhere.
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Table 6: Formula and parameters for I-beams under linear distributed moment.𝑘 = −1 𝑘 = −0.5 𝑘 = −0 𝑘 = +1𝐶1 0.234 (2.220) 1.387 (1.095) 5.983 1𝐶3 4.674 (−0.459) 0.822 (0.922) 0.287 1𝐶4 72.762 (7.259) 0.615 (10.860) 11.468 1𝐶5 0.861 (1.482) 0.587 (1.629) 11.713 1𝐶6 0.566 (2.736) 0.273 (1.154) 10.446 1

−0.5−1 10 k

−1 M＝Ｌ

−0.5 M＝Ｌ

0 M＝Ｌ
+1 M＝Ｌ

M＝Ｌ
𝑀̃0 = 𝑀1(𝜋2𝐸𝐼𝑦/𝐿2)ℎ ;𝛽𝑥 = 𝛽𝑥ℎ ;𝜂 = 𝐼1𝐼2 ;𝐾 = √𝜋2𝐸𝐼𝜔𝐺𝐽𝑘𝐿2𝑀̃cr = 𝐶1[(𝐶3𝛽𝑥) + √(𝐶3𝛽𝑥)2 + 𝐶4𝜂(𝐶5 + 𝐶6𝜂)2 (1 + 𝐾−2)]

Note. (1) Parameters in parentheses for I-beams of singly symmetric sections with larger top flange only; (2) applicable scope of the formula:𝐾 = 0.2∼5.0; 𝜂 =
0.1∼10.0; 𝛽𝑥 = −0.4∼+0.4.

Table 7: Comparison of the results of design formula with those of theory for I-beams under linear distributed moment.

Section 𝐾 𝐿/m 𝜂 𝑘 𝛽𝑥 𝑁 = 6𝑀crTheory

𝑁 = 30𝑀crTheory
𝑀crRegression Diff./%

A

1.063 6 1 1 0 0.687 0.687 0.687 0.00
1.063 6 1 0 0 1.265 1.265 1.255 −0.72
1.063 6 1 −0.5 0 1.766 1.766 1.737 −1.68
1.063 6 1 −1 0 1.872 1.872 1.919 2.54

B

0.569 6 0.125 1 −0.322 0.391 0.390 0.391 0.00
0.569 6 0.125 0 −0.322 0.689 0.689 0.664 0.51
0.569 6 0.125 −0.5 −0.322 0.908 0.908 0.915 5.43
0.569 6 0.125 −1 −0.322 1.075 1.075 1.194 11.08

C

0.569 6 8 1 0.322 1.035 1.035 1.035 0.00
0.569 6 8 0 0.322 1.961 1.961 1.958 −0.19
0.569 6 8 −0.5 0.322 2.263 2.262 2.286 0.88
0.569 6 8 −1 0.322 1.126 1.126 1.150 7.00

8. Conclusions

Because there is no reliable analytical solution available, this
study is initially intended to develop an exact analytical
solution to study the applicability of the design formulas
published in literature. However, we found that results given
by the existing design formulas vary widely, especially in the
range −1.0 ≤ 𝑘 < 0, so, according to the idea that scientific
research should serve for engineering, a new dimensionless
design formula is proposed for practical engineering and the
following conclusions can be drawn.

(1)There is a challenge to part of the theory of monosym-
metric beams, called the Wagner hypothesis, was presented
by Ojalvo (1981). This challenge can be fully resolved by the
Plate-BeamTheory put forward by the author, in which only
the commonly used plate and beam theory was used and the
Vlasov’s warping function was discarded.

(2) For the case of Section A and Section B, SHELL
solutions of ANSYS will provide lower critical moment
predictions than the exact solution as expected, but, for
Section C, the result is just the opposite. Therefore, for the
case of the beam under linear distributed moment, FEM
cannot be applied to formulate the design formula, because
it lacks precision consistency in the analysis.

(3) By introducing a new dimensionless coefficient of
lateral deflection, new dimensionless critical moment and
dimensionlessWagner’s coefficient are derived naturally from
the total potential energy. These new dimensionless parame-
ters are independent of each other and thus can be used as
independent variables in the process of regression formula.

(4) The results show that, in the case of the simple-
supported I-beams under linearly distributed moments, the
dimensionless analytical solution presented in current work
is exact in nature and has an unparalleled advantage over



Mathematical Problems in Engineering 21

the finite element method in terms of efficiency and quality
in obtaining a large number of regression data. Therefore,
it provides a more convenient and effective method for the
formulation of a more accurate design formula than finite
element method.

(5) It is found that, for all I-beams studied in this
paper, the results given by the 6th-order approximation are
of high accuracy. Our other research results also support
this conclusion [30–35]. Therefore, if you can accept the
calculated results of three-decimal precision, then the sixth-
order approximation presented in this paper is a simple and
quick calculation method.

(6) The dimensionless parameters defined by Kitiporn-
chai lack clear physical and geometric meanings. More
importantly, none of these parameters is independent; thus
it is difficult to use them to regress a rational design
formula.

(7) The dimensionless analytical buckling equation is
expressed as the generalized eigenvalue problem as that
used in the traditional finite element method. This not only
facilitates the solution in MATLAB programming but also
makes the analytical solution have a clear physical meaning,
more easy to understand and apply.

(8) To satisfy Vlasov’s rigid section hypothesis, the
“CRIG” command is used in the FEM model of ANSYS. The
results show that its simulation effect is more effective and
hence better than the method of adding stiffeners.

(9) BEAM189 in ANSYS software can only be used to
predict the critical moment for a doubly symmetric beam
but will yield erroneous results for a singly symmetric
beam.

(10) It is found that the concept of equivalent uniform
moment factor (EUMF) is not applicable for the simple-
supported I-beamswith unequal flanges subjected to unequal
end moments; that is, a single EUMF does not exist in this
case.

(11) This paper proposes a new trilinear mathematical
model as the benchmark of formulating the design formula.
The results show that the proposed design formula has a
high accuracy and is applicable to both the doubly symmetric
section and the singly symmetric section under positive and
negative gradient moment. This model provides a new idea
for the formulation of more reasonable design formulas, so it
is suggested that the designers of the design specifications can
formulate the corresponding design formulas with reference
to this model.
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