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This paper deals with 3D reconstructions of series of partially focussed images. Some of these methods are known in case of images
which were acquired in small field of view (by confocal microscope or CCD camera, e.g.). In this case, recorded images do not
differ in any geometrical transformation from each other. In case of larger samples (oversized for microscope or CCD camera),
it is necessary to use wider viewing field (standard cameras, e.g.), and taken images primarily differ in scaling but may also differ
in shifting and rotation too. These images cannot be used for reconstruction directly; they must be registered; that is, we must
determine all transformations which the images differ and eliminate their effects.There are several ways to do this.This paper deals
with the registration based on phase correlation. After this registration, it is necessary to identify the sharp parts and to compose a2D and 3Dmodel. Present methods are very sensitive to noise and their results are not satisfactory in many cases. We introduce a
new method for 3D reconstruction which is significantly better.

1. Introduction

The three-dimensional reconstruction of general surfaces
plays an important role in many branches; for example, the
morphological analysis of fracture surfaces reveals informa-
tion on mechanical properties of natural or construction
materials.

There are more techniques capable of producing digital
three-dimensional (3D) replicas of solid surfaces.Mechanical
engineers can use contacting electronic profilometers to
determine digital two-dimensional (2D) profiles that can be
combined into 3D surface profiles; see [1, 2], for example.
The contacting mode of atomic force microscopes actually
belongs to this mechanical category [3]. Besides the mechan-
ical tools, there exist different optical devices [2], light section
microscopy [4, 5], coherence scanning interferometry [6],
specklemetrology [7], stereo projection [8], photogrammetry
[9], and various kinds of light profilometry [10], to mention
some of them.

3D laser scanning techniques are the next possibilities of
how to obtain the 3D data. These techniques have also been
tested in some rock engineering projects, such as 3D digital
fracture mapping [11–13].

However, these devices are not of universal use. Each
of them has technical limits [14, 15]. For example, very
rough surfaces can hardly be measured by atomic force
microscopes, which work in the nanoregions. On the other
hand, plane surfaces with microscopically small irregular-
ities may be measured, for example, by the microscopic
sectional technique within the so-called confocal micro-
scopes [16–19]. However, confocal microscope is often not
suitable for technical purposes due to the small size of the
visual field (maximal visual field is approximately 2 cm [5, 20–
22]).

In this paper, how to perform the 3D reconstruction of
larger surfaces using a standard camera will be shown.

2. Materials and Methods

2.1. Equipment. In technical practice the confocal micro-
scope is used as a standard tool for imaging microscopic
three-dimensional surfaces. The depth of the optical field of
the microscope is very small and its advanced hardware is
capable of removing nonsharp points from the images. The
points of the object close to the focal plane are visible as sharp
points. The parts lying above or beneath the focal plane are
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Figure 1: Different scaling and different sharp and nonsharp regions
in images acquired by classic camera placed in different distances
from the 3D relief, the first and the fifteenth images from the series
of fifteen images of blue marble. Frame size 10 × 7.5 cm. Locality
Nedvědice, Czech Republic, photo Pavel Štarha.

invisible and represented as black regions. To create a 2D and
3D reconstruction, it is necessary to obtain a series of images
of the same object, each of them with different focusing, and
each point of the object focussed in one of the images (in the
ideal case). The sharp parts are identified and composed of a
2D and 3D model.

However, the confocal microscope is often not suitable
for technical purposes due to the small size of the visual
field (maximal visual field is approximately 2 cm [5, 20–22]).
Nevertheless, the same principlemay be used even in the case
of a CCD camera, classical microscope, or camera. For non-
destructive scanning, the cameramust bemounted on a stand
which enables a movement in the direction approximately
orthogonal to the surface with a controlled step.

The difference between confocal microscope and stan-
dard camera concerns nonsharp regions that are displayed
by classic camera, whereas they are missing in the case of a
confocal microscope. However, the sharp and blurred areas
can be detected by software. The next dissimilarity lies in a
central projection which caused different scaling of partial
images in the image series (see Figure 1). Different image
scaling (including possibly shift and rotation) may be also
quantified and corrected. This problem has not been solved
in available sources.

2.2. Present Methods. Probably the first attempts to carry out
nonconfocal reconstructions come from the seventies and
eighties of the last century [23–28]. Blurred areas detectors
(or so-called focusing criteria) are based on various princi-
ples. Present methods work in three steps.

The First Step. Three-dimensional matrix {𝐶𝑖𝑗𝑘} is stated.
Its element 𝐶𝑖𝑗𝑘 determines statistical range, variance, or
standard Fourier transform of certain neighborhood of the
pixel [𝑖; 𝑗] in 𝑘th image in the series of 𝑛 images [29].

The Second Step. Maxima max𝑘{𝐶𝑖𝑗𝑘} in the columns {𝐶𝑖𝑗1;𝐶𝑖𝑗2; . . . ; 𝐶𝑖𝑗𝑛} are found. Height ℎ𝑖𝑗 is assigned to the pixel[𝑖; 𝑗] if and only if themaximum is detected on the ℎth image.
In this way, a stair-approximation is obtained.

The Third Step. The stair-approximation from the second
step is obviously refined by various interpolation of detector
values adjacent with these maxima, that is, values 𝐶𝑖;𝑗;ℎ−1;

𝐶𝑖;𝑗;ℎ+1: inverse proportionality [29, 30], parabolic fits [31–33],
or Gaussian fits [34].

In [35], it is stated: “We have verified that there are
only small differences between the three-point Gaussian and
the three-point parabolic approximations.” However, this
statement does not indicate an accuracy of the reconstruc-
tion. As shown below, this fact can only mean that both
reconstructions are roughly equally bad.

A noise is the fundamental problem of the second and the
third step. This problem was solved by several ways: varying
size of computational pixel windows [33, 36], averaging
multiple snapshots taken at each vertical position [26], or
input data averaging [37]. However, thesemethods are able to
decrease a noise but the noise cannot be zeroed.Therefore, the
maxima computed in the second step need not indicate the
height correctly; moreover, any interpolation (the third step)
is not useable for noise data from point of view of numerical
mathematics.

Except for these inaccuracies, methods cited above must
assume the same scale of all images in the series because they
are not able to detect image transformations. In the follow-
ing sections, we will introduce the 3D reconstructionmethod
which is able to process a series of noisy images acquired
using central projection with variable center, that is, in
various scaling (various shift and rotation eventually).

2.3. The Fourier Transform and Phase Correlation

2.3.1. Standard Fourier Transform and Inverse Transform.
Standard (continuous) Fourier transform of function 𝑓(𝑥) :
R→ C is function

F (𝑓) (𝑥) = 𝐹 (𝜉) = ∫∞
−∞

𝑓 (𝑥) 𝑒−𝑖𝑥𝜉d𝑥 (1)

(if this integral exists and is finite).
Standard (continuous) Fourier transform of function𝑓(𝑥; 𝑦) : R2 → C is function

F (𝑓) (𝑥; 𝑦) = 𝐹 (𝜉; 𝜂) = ∬
R2
𝑓 (𝑥; 𝑦) 𝑒−𝑖(𝑥𝜉+𝑦𝜂)d𝑥 d𝑦 (2)

(if this integral exists and is finite).
Inverse (continuous) Fourier transformof function𝐺(𝜉) :

C→ C is function

F
−1 (𝐺) (𝜉) = 𝑔 (𝑥) = 12𝜋 ∫

∞

−∞
𝐺 (𝜉) 𝑒𝑖𝑥𝜉d𝜉 (3)

(if this integral exists and is finite).
Inverse (continuous) Fourier transform of function𝐺(𝜉; 𝜂) : C2 → C is function

F
−1 (𝐺) (𝜉; 𝜂) = 𝑔 (𝑥; 𝑦)

= 14𝜋2 ∬R2
𝐺 (𝜉; 𝜂) 𝑒𝑖(𝑥𝜉+𝑦𝜂)d𝜉 d𝜂 (4)

(if this integral exists and is finite).
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Standard discrete Fourier transform of function 𝑓(𝑥; 𝑦) :{0; 1; . . . ; 𝑁 − 1}2 → C is function

F (𝑓) (𝜉; 𝜂) = 𝐹 (𝜉; 𝜂)
= 𝑁−1∑
𝑥=0

𝑁−1∑
𝑦=0

𝑓 (𝑥; 𝑦) 𝑒−(2𝜋𝑖/𝑁)(𝑥𝜉+𝑦𝜂). (5)

Function 𝐹 is also called the Fourier spectrum of function𝑓. It is possible to obtain the function 𝑓 from its Fourier
spectrum 𝐹(𝜉; 𝜂) using inverse discrete Fourier transform

F
−1 (𝐹) (𝑥; 𝑦) = 𝑓 (𝑥; 𝑦)

= 1𝑁2
𝑁−1∑
𝜉=0

𝑁−1∑
𝜂=0

𝐹 (𝜉; 𝜂) 𝑒(2𝜋𝑖/𝑁)(𝑥𝜉+𝑦𝜂) (6)

(see [38] for proof). Function 𝐴(𝜉; 𝜂) = |𝐹(𝜉; 𝜂)| is called
amplitude spectrum of 𝑓(𝑥; 𝑦).
2.3.2. 𝛿-Distribution. One-dimensional 𝛿-distribution 𝛿(𝑥) is
a limit of a sequence of functions 𝛿𝑛(𝑥); 𝑛 ∈ N such that

(a) lim
𝑛→∞

∫∞
−∞

𝛿𝑛 (𝑥) d𝑥 = 1;
(b) lim
𝑛→∞

𝛿𝑛 (𝑥0)
lim𝑥→0𝛿𝑛 (𝑥) = 0; 𝑥0 ∈ R − {0} .

(7)

Two-dimensional 𝛿-distribution 𝛿(𝑥; 𝑦) is a limit of a
sequence of functions 𝛿𝑛(𝑥; 𝑦); 𝑛 ∈ N such that

lim
𝑛→∞

∫∞
−∞

∫∞
−∞

𝛿𝑛 (𝑥; 𝑦) d𝑥 d𝑦 = 1;
lim
𝑛→∞

𝛿𝑛 (𝑥0; 𝑦0)
lim(𝑥;𝑦)→(0;0)𝛿𝑛 (𝑥; 𝑦) = 0;

(𝑥0; 𝑦0) ∈ R
2 − {(0; 0)} .

(8)

Example 1. One of the well-known examples (which we
demonstrate in 1D for simplicity) is the series of expanding
rectangular signals 𝛿∗𝑛 (𝜉) with constant unitary intensity
on (−𝑛; 𝑛); 𝑛 ∈ N and zeroed elsewhere. Inverse Fourier
transform gives

F
−1 (𝛿∗𝑛 ) (𝜉) = 𝛿𝑛 (𝑥) = 12𝜋 ∫

∞

−∞
𝑒𝑖𝑥𝜉d𝜉

= 12𝜋 ∫
𝑛

−𝑛
𝑒𝑖𝑥𝜉d𝜉 = 12𝜋 [𝑒

𝑖𝑥𝜉

𝑖𝑥 ]𝑛
𝜉=−𝑛

= 𝑒𝑖𝑥𝑛 − 𝑒−𝑖𝑥𝑛2𝜋𝑖𝑥 = sin 𝑛𝑥𝜋𝑥 .
(9)
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Figure 2: Fourier transforms of the fifth member of the series
of expanding rectangular signals. The series converges to 𝛿-
distribution.

Because ∫∞
−∞
((sin 𝑛𝑥)/𝜋𝑥)d𝑥 = 1 for each 𝑛 ∈ N (see [36]

for proof), condition (a) is fulfilled. Because lim𝑥→0((sin 𝑛𝑥)/𝜋𝑥) = (𝑛/𝜋)lim𝑥→0((sin 𝑛𝑥)/𝑛𝑥) = 𝑛/𝜋 for each 𝑛 ∈ N, there
is

lim
𝑛→∞

𝛿𝑛 (𝑥0)
lim𝑥→0𝛿𝑛 (𝑥) = lim

𝑛→∞

sin 𝑛𝑥0𝑛𝑥0 = 0
for each 𝑥0 ̸= 0.

(10)

It means that also condition (b) holds and limit 𝛿(𝑥) =
lim𝑛→∞𝛿𝑛(𝑥) is the (one-dimensional) 𝛿-distribution. Ex-
panded unitary signal and its Fourier transform are illus-
trated in Figure 2.

2.3.3. Phase Correlation. For image processing, it is necessary
to transform the images so that the studied structures are at
the same position in all the images. This is the task of image
registration, to find the transformation. In some applications
we assume that images were shifted only; in others we allow
shift, rotation, and scale change (i.e., similarity), general
linear transformation, or even general transformations. The
methods used for registration depend on the expected trans-
formation and on the structures in the image. Some methods
use corresponding structures or points in the images and
then find a global transformation using the measurements of
positions of the structures or points [39–41]. These methods
require these structures to be clearly visible. Other methods
are based on correlation and work with the image as a whole.
The phase correlation proved to be a powerful tool (not only)
for registration of particular focussed images. For functions𝑓1; 𝑓2, it is defined as

𝑃𝑓1;𝑓2 (𝑥; 𝑦) = F
−1 { 𝐹1 (𝜉; 𝜂) ⋅ 𝐹2 (𝜉; 𝜂)󵄨󵄨󵄨󵄨𝐹1 (𝜉; 𝜂)󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝐹2 (𝜉; 𝜂)󵄨󵄨󵄨󵄨} (11)

and its modification as

𝑃𝑓1;𝑓2; ;𝑝;𝑞 (𝑥; 𝑦) = F
−1 {𝐻(𝜉; 𝜂)

⋅ 𝐹1 (𝜉; 𝜂) ⋅ 𝐹2 (𝜉; 𝜂)(󵄨󵄨󵄨󵄨𝐹1 (𝜉; 𝜂)󵄨󵄨󵄨󵄨 + 𝑝) ⋅ (󵄨󵄨󵄨󵄨𝐹2 (𝜉; 𝜂)󵄨󵄨󵄨󵄨 + 𝑞)} ,
(12)
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where strip means complex conjugation and 𝐻(𝜉; 𝜂) is a
bounded real function such that 𝐻(𝜉; 𝜂) = 𝐻(−𝜉; −𝜂) and𝑝; 𝑞 > 0 are arbitrary constants. It can be proved that for real
functions 𝑓1; 𝑓2 the phase-correlation function is real [42].
This is of great value, since it enables us to search for extremes
of the phase-correlation function.

2.4. Image Transformation

Identical Images. Let 𝐹 be the infinity periodic expansion of
an image. Denote 𝑎 + 𝑏𝑖 as its value 𝐹(𝜉; 𝜂) in the point (𝜉; 𝜂),𝑎 + 𝑏𝑖 ̸= 0. It is evident that the value of the phase correlation
of the 𝐹 with itself is

𝐹 (𝜉; 𝜂) ⋅ 𝐹 (𝜉; 𝜂)󵄨󵄨󵄨󵄨𝐹 (𝜉; 𝜂) ⋅ 𝐹 (𝜉; 𝜂)󵄨󵄨󵄨󵄨 = (𝑎 + 𝑏𝑖) (𝑎 − 𝑏𝑖)|(𝑎 + 𝑏𝑖)| ⋅ |𝑎 + 𝑏𝑖| = 𝑎2 + 𝑏2𝑎2 + 𝑏2
= 1.

(13)

According to Example 1 in Section 2.3.2, one has

𝑃𝑓;𝑓 (𝑥; 𝑦) = F
−1 { 𝐹 (𝜉; 𝜂) ⋅ 𝐹 (𝜉; 𝜂)󵄨󵄨󵄨󵄨𝐹 (𝜉; 𝜂)󵄨󵄨󵄨󵄨 ⋅ 󵄨󵄨󵄨󵄨𝐹 (𝜉; 𝜂)󵄨󵄨󵄨󵄨} = F

−1 {1}
= 𝛿 (𝑥; 𝑦) .

(14)

Itmeans that the inverse Fourier transformof the convolution
of two identical images is the two-dimensional 𝛿-distribution𝛿(𝑥; 𝑦).
Shifted Images. If two functions are shifted in arguments, that
is, 𝑓2(𝑥; 𝑦) = 𝑓1(𝑥 − 𝑥0; 𝑦 − 𝑦0), their Fourier transforms are
shifted in phase; that is,

𝐹2 (𝜉; 𝜂) = 𝐹1 (𝜉; 𝜂) ⋅ exp (−𝑖 (𝜉𝑥0 + 𝜂𝑦0)) , (15)

and their phase-correlation function is the 𝛿-distribution
shifted in arguments by the opposite shift vector

𝑃𝑓1 ;𝑓2 (𝑥; 𝑦) = F
−1 {exp (𝑖 (𝜉𝑥0 + 𝜂𝑦0))}

= 𝛿 (𝑥 + 𝑥0; 𝑦 + 𝑦0) . (16)

This is the main idea of phase correlation. The task to
find a shift between two images is converted by the phase
correlation to the task of finding the only nonzero point in
a matrix. If the images are not identical (up to a shift), that
is, if the images are not ideal, the phase-correlation function
is more complicated, but it still has a global maximum at the
coordinates corresponding to the shift vector.

Rotated Images. The phase-correlation function can be also
used for estimation of image rotation and rescale. Let 𝑓2 be
function 𝑓1 rotated and shifted in arguments; that is,

𝑓2 (𝑥; 𝑦)
= 𝑓1 (𝑥 cos 𝜃 − 𝑦 sin 𝜃 − 𝑥0; 𝑥 sin 𝜃 + 𝑦 cos 𝜃 − 𝑦0) . (17)

Their Fourier spectra 𝐹1; 𝐹2 and amplitude spectra𝐴1;𝐴2 are
related as follows:

𝐹2 (𝜉; 𝜂) = exp (−𝑖 (𝜉𝑥0 + 𝜂𝑦0))⋅ 𝐹1 (𝜉 cos 𝜃 − 𝜂 sin 𝜃; 𝜉 sin 𝜃 + 𝜂 cos 𝜃) ,𝐴2 (𝜉; 𝜂) = 𝐴1 (𝜉 cos 𝜃 − 𝜂 sin 𝜃; 𝜉 sin 𝜃 + 𝜂 cos 𝜃) .
(18)

The shift results in a phase shift and the spectra are rotated
in the same way as the original functions. A crucial step
here is transformation of the amplitude spectra into the
polar coordinate system to obtain functions 𝐴𝑝1; 𝐴𝑝2 : R+0 ×⟨0; 2𝜋) → R+0 such that𝐴𝑝1(𝜌; 𝜑) = 𝐴𝑝2(𝜌; 𝜑+𝜃). The rotation
around an unknown center of rotation was transformed
to a shift. This shift is estimated with the standard phase
correlation (see the previous paragraph) after rotating back
by the measured angle; the shift (𝑥0; 𝑦0) is measured with
another computation of the phase correlation.

Scaled Images. Let 𝑓2 be function 𝑓1 rotated, shifted, and
scaled in arguments; that is,

𝑓2 (𝑥; 𝑦) = 𝑓1 (𝛼 (𝑥 cos 𝜃 − 𝑦 sin 𝜃)− 𝑥0; 𝛼 (𝑥 sin 𝜃 + 𝑦 cos 𝜃) − 𝑦0) . (19)

Their Fourier spectra and amplitude spectra are related as
follows:

𝐹2 (𝜉; 𝜂) = 1𝛼2 exp (−𝑖 (𝜉𝑥0 + 𝜂𝑦0))
⋅ 𝐹1 ( 1𝛼 (𝜉 cos 𝜃 − 𝜂 sin 𝜃) ; 1𝛼 (𝜉 sin 𝜃 + 𝜂 cos 𝜃)) ,

𝐴2 (𝜉; 𝜂) = 1𝛼2
⋅ 𝐴1 ( 1𝛼 (𝜉 cos 𝜃 − 𝜂 sin 𝜃) ; 1𝛼 (𝜉 sin 𝜃 + 𝜂 cos 𝜃)) .

(20)

The shift results in a phase shift, and the spectra are rotated
in the same way as the originalfunctions and scaled with
a reciprocal factor. A crucial step here is transformation of
theamplitude spectra into the logarithmic-polar coordinate
system

exp 𝜌 = √𝑥2 + 𝑦2; 𝑥 = exp 𝜌 cos𝜑; 𝑦 = exp 𝜌 sin𝜑 (21)

to obtain 𝐴𝑝1; 𝐴𝑝2 : R+0 × ⟨0; 2𝜋) → R+0 such that 𝐴1𝑝2 (𝜌; 𝜑) =𝐴1𝑝2 (𝜌 − ln𝛼; 𝜑 + 𝜃).
Both rotation and scale change were transformed to a

shift. The unknown angle 𝜃 and unknown factor 𝛼 can be
estimated by means of the phase correlation applied on the
amplitude spectra in the logarithmic-polar coordinate system𝐴1𝑝1 ; 𝐴1𝑝2 . After rotating function 𝑓2 back by the estimated
angle 𝜃 and scaling by factor 𝛼, the shift vector (𝑥0; 𝑦0).
2.5. Proposed Method of Surface Approximation

2.5.1. Preprocessing: Image Registration. Before 3D pro-
file calculation, it is necessary to identify all geometric
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transformation in the image series and to eliminate them.
The images are analyzed as geometrically similar. Generally,
similarity is a combination of rotation, scale change, shift, and
axial symmetry. Axial symmetry is not possible in our case.

The discrete Fourier transform described above is used
for the image registration. It either works with periodic func-
tions or makes them periodic. In general case, an image has
not the same values on the edges and by periodizing an image,
we obtain a function with jumps at the edges of the original
image. These jumps are often the most contrast structures in
the function andmay lead to incorrect registration.Therefore,
it is necessary to remove such edges from the image used for
the shift estimation, to smooth them out.This is done bymul-
tiplying the image by a suitable function, a so-called window
function. Such function must be zero or almost zero at the
image edges and one on a large part of the image.We can pri-
marily use the Gaussian window function and the Hanning
window function. Let 𝜎 ∈ R+ be a given number and set

R = ⟨−𝑎; 𝑎⟩ × ⟨−𝑏; 𝑏⟩ ; 𝑎; 𝑏 ∈ R
+
0 ,

C = {(𝑥; 𝑦) ∈ R
2 | 𝑥2 + 𝑦2 ≤ 𝑟} ; 𝑟 ∈ R

+
0 . (22)

Let 𝜌(𝑋;S) be the distance of point 𝑋 = (𝑥; 𝑦) from set S;
that is,

𝜌 (𝑋;S) = inf {𝑑 ∈ R | 𝑑 = ‖𝑋𝑌‖ ; 𝑌 ∈ S} . (23)

Functions

𝑔GR (𝑥; 𝑦) = 𝑒−𝜌2(𝑋;R)/𝜎2
or 𝑔GC (𝑥; 𝑦) = 𝑒−𝜌2(𝑋;C)/𝜎2 (24)

are called rectangular or circular Gaussian window function.
Functions

𝑔HR (𝑥; 𝑦)
= {{{

12 + 12 cos 𝜋𝜌 (𝑋;R)𝜎 if (𝑋;R) ≤ 𝜎
0 if (𝑋;R) > 𝜎

or 𝑔HC (𝑥; 𝑦)
= {{{

12 + 12 cos 𝜋𝜌 (𝑋;C)𝜎 if (𝑋;C) ≤ 𝜎
0 if (𝑋;C) > 𝜎

(25)

are called rectangular or circular Hanning window function.
Let {𝐼1; 𝐼2; . . . ; 𝐼𝑛} be the image series to be registered;

image 𝐼1 was acquired by means of the biggest angle of view.
This image will be not transformed or (formally) it will be
transformed by identity mapping to the image 𝐼∗1 . Now we
must find transform 𝐼2 → 𝐼∗1 to obtain image 𝐼∗2 which differs
from 𝐼∗1 in focussed and blurred parts only. In the same way,
transforms 𝐼3 → 𝐼∗2 ; . . . ; 𝐼𝑘 → 𝐼∗𝑘−1; . . . ; 𝐼𝑛 → 𝐼∗𝑛−1 must be
found.

After the multiplying both images 𝐼𝑘; 𝐼∗𝑘−1 by the chosen
window function, we determine the rotation angle 𝜃𝑘 and

Figure 3: Even extension of the 32 × 32 neighborhood (framed) of
the processing pixel (cross).

scale factor 𝛼𝑘 by means of the method described in Sec-
tion 2.4. Then, image 𝐼𝑘 is rotated by angle −𝜃𝑘 and scaled by
factor 𝛼−1𝑘 to compensate the rotation and scale change found
by the phase correlation, creating image 𝐼𝑘. Only shift and
different focussed and blurred parts remain between image 𝐼𝑘
and image 𝐼∗𝑘−1. Now we can apply phase correlation to find
the shift (𝑥0; 𝑦0) and image 𝐼𝑘 is shifted by vector (−𝑥0; −𝑦0)
to compensate the shift, creating image 𝐼∗𝑘 which differs from𝐼∗𝑘−1 in focussed and blurred parts only.

2.5.2. The First Step: Matrix of Sharpness Detectors. As was
said in Section 2.2, statistical range, variance, or standard
Fourier transform of certain neighborhood of the pixel [𝑖; 𝑗]
may be used as the sharpness detectors (focusing criteria).
The neighborhood of the pixel [𝑖; 𝑗] is a square of 𝑠 × 𝑠 pixels
where 𝑠 is obviously ten to twenty. In case of the standard
Fourier transform, algorithm FFT is used. It requires the
square with the side 𝑠 = 2𝑛; that is, 𝑠 = 8 or 𝑠 = 16 is
used in this case.However, standard Fourier transform suffers
from jumps at the edges of the square and it is necessary
to use a suitable window function like in Section 2.5.1.
Therefore, cosine Fourier transform is preferable. This trans-
form is obtained from the standard Fourier transform which
is applied to even extension of the neighborhood to be
processed.This extension is illustrated in Figure 3. Due to this
extension, there are no jumps at the edges. Sine frequencies
in (5) are zeroed and application of any window function is
not necessary.

However, low frequencies in amplitude spectrum detect
blurred parts of image and very height frequencies are given
by noise. Therefore, suitable weight must be assigned to each
frequency in sharpness detector calculation. In our software,
the following detectors may be used:

𝑎𝐶𝑖𝑗𝑘 = 𝑠∑
𝑚=−𝑠

𝑠∑
𝑛=−𝑠
𝑎𝑐𝑖+𝑚;𝑗+𝑛;𝑘

= 𝑠∑
𝑚=−𝑠

𝑠∑
𝑛=−𝑠

(|𝑚| + |𝑛|) ⋅ 󵄨󵄨󵄨󵄨󵄨𝐹𝑖+𝑚;𝑗+𝑛;𝑘󵄨󵄨󵄨󵄨󵄨 ,
(26)
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(a) (b) (c)

Figure 4: Graphical representation of sharpness detectors 𝑎𝐶 (a); 𝑏𝐶 (b); and 𝑐𝐶 (c).

(a) (b)

Figure 5: The first and the fifteenth images from the series of fifteen images of blue marble (see Figure 1) displayed in supplementary
pseudocolors. Real surface size 10 × 7.5 cm (b).

𝑏𝐶𝑖𝑗𝑘 = 𝑠∑
𝑚=−𝑠

𝑠∑
𝑛=−𝑠
𝑏𝑐𝑖+𝑚;𝑗+𝑛;𝑘 = 1

S (A𝑖𝑗) ∑
(𝑚;𝑛)∈A𝑖𝑗

󵄨󵄨󵄨󵄨𝐹𝑚𝑛𝑘󵄨󵄨󵄨󵄨 , (27)

𝑐𝐶𝑖𝑗𝑘 = 𝑠∑
𝑚=−𝑠

𝑠∑
𝑛=−𝑠
𝑐𝑐𝑖+𝑚;𝑗+𝑛;𝑘

= 𝑠∑
𝑚=−𝑠

𝑠∑
𝑛=−𝑠

󵄨󵄨󵄨󵄨󵄨𝐹𝑖+𝑚;𝑗+𝑛;𝑘󵄨󵄨󵄨󵄨󵄨 ⋅ sin2 (𝜋𝑠 √𝑚2 + 𝑛2) ,
(28)

where 𝐹 is the cosine spectrum of the pixel neighborhood
and 𝑆(A𝑖𝑗) is volume of the annulusA𝑖𝑗 with the center (𝑖; 𝑗).
Elements 𝑎𝑐; 𝑏𝑐; 𝑐𝑐 which are summed in (26); (27); (28) are
illustrated as pixel values in Figure 4. Size of detectors really
used in software is 16×16 or 32×32 pixels. In Figure 4, higher
resolution is used for better illustration.

2.5.3. The Second Step: Profile Heights Calculation. The main
imperfection of current methods is the hypothesis that the
profile height in given pixel is exactly determined by values
of chosen sharpness detector. This hypothesis implies that
these values can be interpolated. However, this conclusion is
quite false. We have available the series {𝐶𝑖𝑗𝑘}; 𝑘 = 1; 2; . . . ; 𝑛
for assessment of the height of pixel (𝑖; 𝑗). This series is
not deterministic but it is a random variable. It cannot be
interpolated, and it must be processed by statistical method.
One of the possibilities is a regression analysis but it would be

very complicated. Direct calculation of the expected value is
much easier.

For each pixel (𝑖; 𝑗), we can construct theoretically infi-
nitely many probability distribution functions 𝑝(𝑟)𝑖𝑗 using dif-
ferent exponents 𝑟 applied to series members 𝐶𝑖𝑗𝑘:

𝑝(𝑟)𝑖𝑗 (𝑘) = 𝐶𝑟𝑖𝑗𝑘∑𝑛𝑠=1 𝐶𝑟𝑖𝑗𝑠 . (29)

Expected values of random variables 𝑃(𝑟)𝑖𝑗 given by these
probability functions estimate the height ℎ(𝑟)𝑖𝑗 of surface in its
pixel (𝑖; 𝑗):

ℎ(𝑟)𝑖𝑗 = 𝐸 (𝑃(𝑟)𝑖𝑗 ) = 𝑛∑
𝑘=1

𝑘 ⋅ 𝑝(𝑟)𝑖𝑗 (𝑘) = 𝑛∑
𝑘=1

𝑘 ⋅ 𝐶𝑟𝑖𝑗𝑘∑𝑛𝑠=1 𝐶𝑟𝑖𝑗𝑠 . (30)

3. Results and Discussion

3.1. The Preprocessing: Image Registration. In Figure 5, we
can see the photos from Figure 1 but they are displayed
in so-called supplementary pseudocolors. If these images
were completely identical, then arithmetic mean of the blue-
green image on Figure 5(a) and orange image on Figure 5(b)
would be “perfectly grey.” Arithmetic mean of these images
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(a) (b)

Figure 6:The arithmetic mean of the images from Figure 5: before registration (a) and after registration (b). Real surface size 10×7.5 cm (b).

is constructed in Figure 6(a). It is clear that components of
this mean are very different, values of the orange image are
bigger in yellow parts of the mean, and values of the blue-
green image are bigger in blue-violet parts of the mean.

In Figure 6(b), the same construction after the registra-
tion is realized. Very low color saturation of arithmetic mean
confirms very good conformity. Of course, arithmetic mean
cannot be “perfectly grey” in our case because components of
the mean differs in blurred and sharp parts.

In Table 1, indicated and applied transforms in separated
images of the blue marble are summarized. All transforma-
tions have been detected with subpixel precision; they are
listed with a precision of one thousandths pixels. It is obvious
that the scaling playsmost important role; however, nor shifts
are negligible. Rotation angle between the first and the last
image is over five arcminutes; it means approximately one
pixel on the image periphery (used data resolution is 1600 ×1200 pixels). This transformation is marginal in our case.

3.2. The First Step: Sharpness Detectors. As is clear from (26),
(27), and (28) and Figure 4, detector 𝑎𝐶 increased high
frequencies (right bottom corner of squares in Figure 4)
too much; it means that it is very noise sensitive. The
disadvantages of the detector 𝑏𝐶 are too sharp cuts which
remove low and height frequencies.

Differences between the sharpness detectors stated in
Section 2.5.2 are best demonstrated by their maxima. The
graphical representation of detector 𝑐𝐶 (i.e., corresponding
stair-approximation of the surface) is shown in Figure 7.

Differences between representations 𝑎𝐶; 𝑏𝐶; and 𝑐𝐶 are
visually quite miniscule (therefore, 𝑎𝐶 and 𝑏𝐶 are not illus-
trated); however, differences exist. For their quantification,
Root Mean Square Error is as follows:

RMSE (ℎ(1); ℎ(2)) = √ 1𝑊𝐻 ⋅ 𝑊−1∑
𝑖=0

𝐻−1∑
𝑗=0

(ℎ(1)𝑖𝑗 − ℎ(2)𝑖𝑗 )2. (31)

Average Deviation is as follows:

AD (ℎ(1); ℎ(2)) = 1𝑊𝐻 ⋅ 𝑊−1∑
𝑖=0

𝐻−1∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨ℎ(1)𝑖𝑗 − ℎ(2)𝑖𝑗 󵄨󵄨󵄨󵄨󵄨 . (32)
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Figure 7: The stairs-approximation of the data from Figure 1
constructed by means of the sharpness detector 𝑐𝐶; see expression
(28) and Figure 4(c).

Pearson Correlation Coefficient is as follows:

PCC (ℎ(1); ℎ(2))
= ∑𝑊−1𝑖=0 ∑𝐻−1𝑗=1 (ℎ(1)𝑖𝑗 − ℎ(1)) (ℎ(2)𝑖𝑗 − ℎ(2))
√∑𝑊−1𝑖=0 ∑𝐻−1𝑗=0 (ℎ(1)𝑖𝑗 − ℎ(1))2∑𝑊−1𝑖=0 ∑𝐻−1𝑗=0 (ℎ(2)𝑖𝑗 − ℎ(2))2

(33)

and Difference of surface Information Entropy is as follows:

DIE (ℎ(1); ℎ(2)) = 󵄨󵄨󵄨󵄨󵄨IE (ℎ(1)) − IE (ℎ(2))󵄨󵄨󵄨󵄨󵄨 , (34)

where𝑊;𝐻 are width and height of surface domain in pixels;ℎ(1)𝑖𝑗 ; ℎ(2)𝑖𝑗 are height of first (second) surface in the pixel (𝑖; 𝑗);ℎ(1); ℎ(2) are the average height of the first (second) surface;
and

IE (ℎ)
= −𝑊−1∑
𝑖=1

𝐻−1∑
𝑗=1

( ℎ𝑖𝑗∑𝑊−1𝑚=1 ∑𝐻−1𝑛=1 ℎ𝑚𝑛 log2
ℎ𝑖𝑗∑𝑊−1𝑚=1 ∑𝐻−1𝑛=1 ℎ𝑚𝑛)

(35)

is the Information Entropy of the surface ℎ.
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Table 1: Parameters of the transforms indicated and applicated to separate images in the series (stated relative to the first image).

Image number
Indicated transforms Applicated transforms

Scale Rotation (arcmin.) Shift vector Scale Rotation (arcmin.) Shift vector𝑥 (pixels) 𝑦 (pixels) 𝑥 (pixels) 𝑦 (pixels)
(2) 1.01343 −0.554 −1.011 1.064 0.98675 0.554 1.011 −1.064
(3) 1.02351 −0.221 −0.990 1.861 0.97703 0.221 0.990 −1.861
(4) 1.03796 −0.061 −1.869 3.027 0.96343 0.061 1.869 −3.027
(5) 1.04888 0.053 −2.903 3.032 0.95340 −0.053 2.903 −3.032
(6) 1.06228 −0.409 −4.085 5.142 0.94137 0.409 4.085 −5.142
(7) 1.07055 −0.140 −4.947 4.987 0.93410 0.140 4.947 −4.987
(8) 1.08105 −0.027 −4.964 5.856 0.92503 0.027 4.964 −5.856
(9) 1.09173 0.134 −4.847 6.141 0.91598 −0.134 4.847 −6.141
(10) 1.10340 4.652 −4.988 7.003 0.90629 −4.652 4.988 −7.003
(11) 1.11426 5.215 −5.003 7.934 0.89746 −5.215 5.003 −7.934
(12) 1.12590 5.728 −5.895 8.972 0.88818 −5.728 5.895 −8.972
(13) 1.13784 5.278 −5.907 8.872 0.87886 −5.278 5.907 −8.872
(14) 1.14940 5.378 −5.928 8.980 0.87002 −5.378 5.928 −8.980
(15) 1.16066 5.275 −6.935 9.137 0.86158 −5.275 6.935 −9.137
(16) 1.17297 5.324 −8.036 9.095 0.85254 −5.324 8.036 −9.095

Table 2: RootMean Square Error (RMSE) andAverageDeviation (AD) inmillimeters, PearsonCorrelationCoefficient (PCC), andDifference
of surface Information Entropy (DIE) (dimensionless quantities) for separate pairs of stairs-approximations 𝑎𝐶, 𝑏𝐶, and 𝑐𝐶.
PCC (DL) RMSE (mm) DIE (DL) AD (mm)

𝑎𝐶 𝑏𝐶 𝑐𝐶 𝑎𝐶 𝑏𝐶 𝑐𝐶
𝑎𝐶 \ 0.51228 0.69630 𝑎𝐶 \ 0.15258 0.30171

𝑏𝐶 0.99320 \ 0.56214 𝑏𝐶 0.00505 \ 0.13145

𝑐𝐶 0.98740 0.99158 \ 𝑐𝐶 0.00812 0.00307 \
Table 3: Root Mean Square Error (RMSE), Average Deviation (AD), Pearson Correlation Coefficient (PCC), and Difference of surface
Information Entropy (DIE) for separate pairs of parabolic interpolation approximations 𝑎𝐶, 𝑏𝐶, and 𝑐𝐶.
PCC (DL) RMSE (mm) DIE (DL) AD (mm)

𝑎𝐶 𝑏𝐶 𝑐𝐶 𝑎𝐶 𝑏𝐶 𝑐𝐶
𝑎𝐶 \ 0.27750 0.38644 𝑎𝐶 \ 0.15066 0.27180

𝑏𝐶 0.99850 \ 0.24776 𝑏𝐶 0.00464 \ 0.18216

𝑐𝐶 0.99627 0.99810 \ 𝑐𝐶 0.00714 0.00250 \

Values of these characteristics are summarized in Table 2.
Note that it is RMSE = AD = DIE = 0; PCC = 1 for a pair of
identical surfaces.

Similar summary is made in Table 3 for the present
reconstruction methods: parabolic interpolation of the stair-
approximations 𝑎𝐶, 𝑏𝐶, and 𝑐𝐶. In Table 4, there are
summarized RMSE, AD, PCC, and DIE for parabolic and
Gaussian interpolation of the same stair-approximation 𝑐𝐶
and proposed method of the expected values of columns{𝑐𝐶𝑖𝑗𝑘}; 𝑘 = 1; 2; . . . ; 𝑛.

As was already stated in [35], only small differences
are between parabolic and Gaussian interpolation. Really,
values of RMSE, AD, and DIE for parabolic and Gaussian
interpolation are approximately thousand times smaller than
for interpolation and proposedmethod. Correlation between
interpolations is stated even as one in Table 4. Therefore, it
might seem that interpolations aremuch better than expected
value estimation but the opposite is true. Small differences
between these methods mean only that these reconstructions
are roughly equally bad as shown in Figures 8 and 9.
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Table 4: Root Mean Square Error (RMSE), Average Deviation (AD), Pearson Correlation Coefficient (PCC), and Difference of surface
Information Entropy (DIE) for separate pairs of parabolic interpolation, Gaussian interpolation, and the proposed method applied to the
same matrix 𝑐𝐶. The expected values of columns {𝑐𝐶𝑖𝑗𝑘}; 𝑘 = 1; 2; . . . ; 𝑛 was calculated according to expression (31) where 𝑟 = 5 was used.
PCC (DL) RMSE (mm) DIE (DL) AD (mm)

Parabolic Gaussian Mean Parabolic Gaussian Mean
Parabolic \ 0.00592 0.49098 Parabolic \ 0.00477 0.34745
Gaussian 1.00000 \ 0.48993 Gaussian 0.00002 \ 0.34679
Mean 0.99377 0.99379 \ Mean 0.00309 0.00468 \

Figure 8: 3Dreconstruction of the data fromFigure 1: preprocessing
according to Section 2.5.1 (new method), the first step according
to Section 2.5.2 (new method), and the second and the third steps
according to Section 2.2 (present method). Expression (28) with𝑠 = 16 was used in calculation of the matrix of sharpness detectors,
its columns {𝑐𝐶𝑖𝑗𝑘}; 𝑘 = 1; 2; . . . ; 𝑛 was interpolated by the parabolic
interpolation (present method).

Results illustrated in Figures 8 and 9 have been obtained by
combination of present and proposed method (they are not
realized by present methods only due to different scaling of
the input data). Visualization of the parabolic interpolation of
𝑐𝐶 is shown in Figure 8; Gaussian interpolation is illustrated
in Figure 9. Practically the same and large noise is evident in
these reconstructions.

Low-pass filters are commonly used to reduce the noise,
but these filters are not ableto differentiate whether high-
frequency information is caused by noise or by small details of
useful information. Therefore, the loss of useful information
is inevitable as shown in Figure 10.

In Figure 11, there is illustrated significantly better result
of proposed method applied to the same matrix 𝑐𝐶. There
is no visible noise at the output, and high-frequency useful
information (small surface details) is retained.

4. Conclusion

Reconstructions of three-dimensional object surfaces are an
important task in many branches of research. Even though
the standard method of imaging object surfaces is the
use of confocal microscopes or laser scanners, there exist
sophisticated mathematical methods that are able to process

Figure 9: 3Dreconstruction of the data fromFigure 1: preprocessing
according to Section 2.5.1 (new method), the first step according
to Section 2.5.2 (new method), and the second and the third steps
according to Section 2.2 (present method). Expression (28) with𝑠 = 16 was used in calculation of the matrix of sharpness detectors,
its columns {𝑐𝐶𝑖𝑗𝑘}; 𝑘 = 1; 2; . . . ; 𝑛 was interpolated by the Gaussian
interpolation (present method).

Figure 10: Gaussian low-pass filter with dispersion 𝜎2 = 5 applied to
noisily output data from Figure 9. The noise is indeed reduced (but
still visible); however useful high-frequency information is already
lost.

images acquired by classic cameras and to construct 3D
reconstruction similar to these from confocal microscopes or
laser scanners. This enables us to obtain similar results with
substantially less expensive equipment.



10 Mathematical Problems in Engineering

Figure 11: Completely new 3D reconstruction of the data from
Figure 1: preprocessing according to Section 2.5.1, the first step
according to Section 2.5.2—expression (28) with 𝑠 = 16 was used—
and the second step according to Section 2.5.3, the expected values
of its columns {𝑐𝐶𝑖𝑗𝑘}; 𝑘 = 1; 2; . . . ; 𝑛 was calculated according to
expression (29) where 𝑟 = 5 was used.
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cessing,” Mathematics for Applications, vol. 3, no. 1, pp. 77–90,
2014.

[31] M. Niederost, J. Niederost, and J. Ščučka, “International Ar-
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