
Research Article
A Novel Memetic Algorithm Based on Decomposition for
Multiobjective Flexible Job Shop Scheduling Problem

ChunWang, Zhicheng Ji, and YanWang

Engineering Research Center of IoT Technology Applications, Ministry of Education, Jiangnan University, Wuxi 214122, China

Correspondence should be addressed to Yan Wang; wangyan88@jiangnan.edu.cn

Received 12 May 2017; Revised 1 November 2017; Accepted 9 November 2017; Published 29 November 2017

Academic Editor: Josefa Mula

Copyright © 2017 Chun Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A novel multiobjective memetic algorithm based on decomposition (MOMAD) is proposed to solve multiobjective flexible job
shop scheduling problem (MOFJSP), which simultaneously minimizes makespan, total workload, and critical workload. Firstly,
a population is initialized by employing an integration of different machine assignment and operation sequencing strategies.
Secondly, multiobjective memetic algorithm based on decomposition is presented by introducing a local search to MOEA/D.
The Tchebycheff approach of MOEA/D converts the three-objective optimization problem to several single-objective optimization
subproblems, and the weight vectors are grouped by K-means clustering. Some good individuals corresponding to different weight
vectors are selected by the tournament mechanism of a local search. In the experiments, the influence of three different aggregation
functions is first studied. Moreover, the effect of the proposed local search is investigated. Finally, MOMAD is compared with eight
state-of-the-art algorithms on a series of well-known benchmark instances and the experimental results show that the proposed
algorithm outperforms or at least has comparative performance to the other algorithms.

1. Introduction

The job shop scheduling problem (JSP) is one of the most
important and difficult problems in the field of manufac-
turing which processes a set of jobs on a set of machines.
Each job consists of a sequence of successive operations, and
each operation is allowed to process on a unique machine.
Different from JSP which one operation is merely allowed
to process on a specific machine, the flexible job shop
scheduling problem (FJSP) permits one operation processed
by any machine from its available machine set. Since FJSP
needs to assign operations to their suited machine as well as
sequence those operations assigned on the same machine, it
is a complex NP-hard optimization problem [1].

The existing literatures [2–5] about solving single-
objective FJSP (SOFJSP) over the past decades mainly
concentrated on minimizing one specific objective such as
makespan. However, in practical manufacturing process,
single-objective optimization cannot fully satisfy the produc-
tion requirements since many optimized objectives are usu-
ally in conflict with each other. In recent years, multiobjective

flexible job shop scheduling problem (MOFJSP) has received
much attention, and, until now, many algorithms have been
developed to solve this kind of problem. These methods can
be classified into two groups: one is a priori approach and the
other is Pareto approach.

Multiple objectives are usually linearly combined into a
single one by weighted sum approach in the a priori method,
which can be illustrated as 𝐹 = ∑�푀�푖=1 𝜆�푖𝑓�푖, where ∑�푀�푖=1 𝜆�푖 =1, 0 ≤ 𝜆�푖 ≤ 1. However, we can get only one or several
Pareto solutions by using this approach, which may not well
reflect the tradeoffs among different objectives, and it would
be difficult to assign an appropriate weight for each problem.
Even more important, the performance of the algorithm
deteriorates when solving the problems contains nonconcave
Pareto front (PF). The Pareto approach mainly focuses on
searching the Pareto set (PS) of optimization problems by
comparing two solutions based on Pareto dominance relation
[6]. A solution x is said to dominate solution y iff x is not
worse than y in all objectives and there exists at least one
objective in which x is better than y. x∗ is called a Pareto
optimal solution iff there is no solution x ∈ Ω that dominates

Hindawi
Mathematical Problems in Engineering
Volume 2017, Article ID 2857564, 20 pages
https://doi.org/10.1155/2017/2857564

https://doi.org/10.1155/2017/2857564

2 Mathematical Problems in Engineering

x∗. All the Pareto optimal solutions constitute the PS, and
PF is the mapped vector of PS in the objective space. Since
Pareto approach can achieve a set of Pareto solutions rather
than a specific one, it has receivedmuchmore attention than a
priori approach and is recognized to bemore suitable to solve
MOFJSP.

Because the three objectives, makespan, total workload,
and critical workload, are conflicted with each other, it is
better to handle this model with knowledge about their PF.
Multiobjective evolutionary algorithm (MOEA) is a kind of
mature global optimization method with high robustness
and wide applicability. Due to the fact that MOEAs have
low requirements on the optimization problem itself and
high ability to obtain multiple Pareto solutions during each
run, they are suitable for solving multiobjective optimization
problems (MOPs). The multiobjective evolutionary algo-
rithm based on decomposition (MOEA/D) that integrates
mathematical programming with evolutionary algorithm
(EA) can obtain a set of Pareto solutions by aggregat-
ing multiple objectives into different single-objectives with
many predefined weight vectors [7]. MOEA/D has shown
great superiority on continuous optimization problems [8–
12]; thus it is necessary to investigate its performance on
multiobjective combinatorial optimization problems (MO-
COPs) such as MOFJSP. To the best of our knowledge, in the
literature reported, although MOEA/D has been applied to
different kinds of multiobjective scheduling problems such as
multiobjective flow shop scheduling problem (MOFSP) [13],
multiobjective permutation flow shop scheduling problem
(MOPFSP) [14], multiobjective stochastic flexible job shop
scheduling problem (MOSFJSP) [15], and multiobjective job
shop scheduling problem (MOJSP) [16], there is seldom
corresponding application on MOFJSP.

The primary aim of this paper is to solve MOFJSP
in a decomposition manner by proposing a multiobjective
memetic algorithm based on decomposition (MOMAD)
hybridizing MOEA/D with local search. With the purpose of
making the proposed algorithmmore applicable, four aspects
are studied: (1) integration of different machine assignment
and operation sequencing strategies are presented to con-
struct the initial population; (2) objective normalization is
incorporated into Tchebycheff approach to convert an MOP
into a number of single-objective optimization subproblems;(3) all weight vectors are divided into a few groups based on
K-means clustering: some superior individuals correspond-
ing to different weight vector groups are selected by using
a selection mechanism; (4) local search based on moving
critical operations is applied on selected individuals. To
evaluate the effectiveness of the proposed algorithm, some
benchmark instances are tested with three purposes: (1)
investigating the effects of different aggregation functions and
validating the effectiveness of local search; (2) analyzing the
influence of the key parameters on the performance of the
algorithm; (3) comparing the performance of MOMAD with
other state-of-the-art algorithms for solving MOFJSP.

The rest of the paper is organized as follows. Next section
presents a short overview of the existing related work. In
Section 3, the background knowledge of MOFJSP is intro-
duced. Section 4 introduces the framework of MOMAD.The

implementation details of the proposed MOMAD including
genetic global search and problem specific local search are
described in Section 5. Afterwards, experimental studies are
provided in Section 6. Finally, Section 7 concludes this paper
and outlines some avenues for future research.

2. Related Work

As mentioned above, there are two main methods to solve
MOFJSP: a priori approach and Pareto approach. As for
a priori approach, Xia and Wu [17] discussed a hybrid
algorithm, where particle swarm optimization (PSO) and
simulated annealing (SA)were employed in global search and
local search, respectively. A bottleneck shifting-based local
search was incorporated into genetic global search by Gao
et al. [18]. Zhang et al. [19] introduced an effective hybrid
PSO algorithm combined with tabu search (TS). Xing et
al. [20] used ten different weight vectors to collect effective
solution sets. A hybrid TS (HTS) algorithm was structured
by combining adaptive rules with two neighborhoods. In
this algorithm, three weight coefficients 𝜆1, 𝜆2, and 𝜆3
with different settings were given to test different problems
[21]. An effective estimation of distribution algorithm was
proposed by Wang et al. [22], in which the new individuals
were generated by sampling a probability model.

Contrary to the a priori approach, a PS can be obtained
by using Pareto approach, and the tradeoffs among different
objectives can be presented. The integration of fuzzy logic
and EA was proposed by Kacem et al. [23]. A guide local
search was incorporated into EA to enhance the convergence
[24]. With the aim of keeping population diversity, immune
and entropy principle were adopted in multiobjective genetic
algorithm (MOGA) [25]. Two memetic algorithms (MAs)
were, respectively, proposed, both of which integrate non-
dominated sorting genetic algorithm II (NSGA-II) [6] with
effective local search techniques [26, 27]. Several effective
neighborhood approaches were used in variable neighbor-
hood search to enhance the convergence ability in a hybrid
Pareto-based local search (PLS) [28]. Chiang and Lin [29]
proposed a simple and effective evolutionary algorithm
which only requires two parameters. Both the neighborhoods
of machine assignment and operation sequence are consid-
ered in Xiong et al. [30]. An effective Pareto-based EDA
was proposed by Wang et al. [31]. A novel path-relinking
multiobjective TS algorithm was proposed in [32], in which
a routing solution is identified by problem-specific neighbor-
hood search and is then further refined by the TS with back-
jump tracking for a sequencing decision. In addition to the
successful use of EA, several swarm intelligence algorithms
have also been widely used for global search. PSOs were used
as global search algorithms in [33–36]. Besides, shuffled frog
leaping [37] and artificial bee colony [38]were integratedwith
local search in related hybrid algorithms.

Besides the successful using in many scheduling prob-
lems, MOEA/Ds have also been widely dedicated to other
MO-COPs. A novel NBI-style Tchebycheff approach was
used in MOEA/D to solve portfolio management MOP with
disparately scaled objectives [39]. Mei et al. [40] developed
an effective MA by combining MOEA/D with extended

Mathematical Problems in Engineering 3

neighborhood search to solve capacitated arc routing prob-
lem. Hill climbing, SA, and evolutionary gradient search
were, respectively, embedded into EDA for solving multiple
traveling salesmen problem (MTSP) in a decomposition
manner [41]. A hybrid MOEA was established by combining
ant colony optimization with MOEA/D [42], and then it
was adopted to solve multiobjective 0-1 knapsack problem
(MOKP) and MTSP, respectively. Then, aiming at the same
two problems, Ke and Zhang proposed a hybridization of
decomposition and PLS [43].

As mentioned before, MOEA/D is a kind of popular
MOEA which is very suitable for solving MO-COPs such as
scheduling problem. In this paper, a MOMAD is proposed
that integrates MOEA/D algorithm with local search to
enrich the tool-kit for solving MOFJSP.

3. Related Background Knowledge

3.1. Problem and Objective of MOFJSP. The MOFJSP can
be formulated as follows. There are a set of 𝑛 jobs J ={𝐽1, 𝐽2, . . . , 𝐽�푛} and𝑚machinesM = {𝑀1,𝑀2, . . . ,𝑀�푚}; each
job 𝐽�푖 (𝑖 = 1, 2, . . . , 𝑛) contains one or more operations to be
processed in accordance with the predetermined sequence.
Each operation can be processed on any machine among its
corresponding operable machine set𝑀�푖�푗 ∈ M. The problem
is defined as T-FJSP iff 𝑀�푖�푗 = M; otherwise, it is called
P-FJSP [44]. MOFJSP not only assigns suitable processing
machines for each operation but also determines the most
reasonable processing sequence of operations assigned on the
same machine in order to simultaneously optimize several
objectives.

The following constraints should be satisfied in the
process:

(1) At a certain time, a machine can process one opera-
tion at most, and one operation can be processed by
only one machine at a certain moment.

(2) Each operation cannot be interrupted once processed.
(3) All jobs and machines are available at time 0.
(4) Different jobs share the same priority.
(5) There exists no precedence constraint among the

operations of different jobs, but there exist precedence
constraints among the operations belonging to the
same job.

An instance of P-FJSP with three jobs and threemachines
is illustrated in Table 1. Let 𝐶�푖�푗 and 𝑝�푖�푗�푘 be the completion
time of operation 𝑂�푖�푗 and its processing time on machine𝑘, respectively. 𝐶�푖 denotes the completion time of job 𝐽�푖.
Three considered objectives are makespan, total workload,
and critical workload which are formulated as follows:

min: F = (𝑓1, 𝑓2, 𝑓3)�푇 ,
𝑓1: 𝐶max = max {𝐶�푖 | 𝑖 = 1, 2, . . . , 𝑛} ,
𝑓2: 𝑊�푇 = �푚∑

�푘=1

�푛∑
�푖=1

�푛𝑖∑
�푗=1

𝑝�푖�푗�푘𝑢�푖�푗�푘,

Table 1: An instance of P-FJSP with 3 jobs on 3 machines.

Job Operation Machine𝑀1 𝑀2 𝑀3
𝐽1 𝑂11 2 - 4𝑂12 6 3 -𝑂13 - 2 2

𝐽2 𝑂21 3 3 4𝑂22 - 2 5𝑂23 - 3 2

𝐽3 𝑂31 4 3 2𝑂32 4 - 2𝑂33 3 4 3

𝑓3: 𝑊max = max
1≤�푘≤�푚

{{{
�푛∑
�푖=1

�푛𝑖∑
�푗=1

𝑝�푖�푗�푘𝑢�푖�푗�푘}}} ,𝑢�푖�푗�푘
= {{{

1, if machine 𝑘 is selected for operation 𝑂�푖�푗0, otherwise.
(1)

3.2. Disjunctive Graph Model. Disjunctive graph model 𝐺 =(𝑉,𝑈, 𝐸) has been adapted for representing feasible schedules
of FJSP. 𝑉 denotes nodes set, and each of them represents
an operation. The virtual starting and ending operations are
represented by two virtual nodes, 0 and ∗, respectively. 𝑈 is
the set of conjunctive arcs which connect adjacent operations
of the same job, and each arc indicates the precedence
constraint within the same job. 𝐸 is the set of disjunctive arcs
corresponding to the adjacent operations scheduled on the
samemachine.𝐸 = ⋃�푚�푘=1 𝐸�푘, where𝐸�푘 denotes the disjunctive
arcs set of machine 𝑘. The weight value above the node 𝑂�푖�푗
denotes𝑝�푖�푗�푘, and the selectedmachine to operate𝑂�푖�푗 is labeled
under the node 𝑂�푖�푗, 𝑝0 = 𝑝∗ = 0.

Figure 1 shows the disjunctive graph of a feasible solution
corresponding to the instance shown in Table 1, in which
every disjunctive arc confirms a direction. This graph is
called digraph. In digraph 𝐺, the longest path from node𝑎 to node 𝑏 is termed as critical path, the length of which
denotes the makespan of corresponding schedule. Besides,
each operation on critical path is called critical operation. In
Figure 1, there is one critical path 0 → 𝑂11 → 𝑂12 → 𝑂33 →∗ whose length equals 13.

Given that the local search in the following section can
be well described, some concepts based on digraph 𝐺 are
denoted here. Suppose ℎ is a node in𝐺, and its corresponding
operation is𝑂ℎ.𝑀(𝐺, ℎ) denotes the corresponding machine
to process 𝑂ℎ. 𝑆�퐸(𝐺, ℎ) and 𝐶�퐸(𝐺, ℎ) denote its earliest
starting time and earliest completion time. Let 𝑝ℎ,�푀(�퐺,ℎ) be
the processing time of operation 𝑂ℎ on 𝑀(𝐺, ℎ); the latest
starting time 𝑆�퐿(𝐺, ℎ, 𝐶max(𝐺)) and latest completion time

4 Mathematical Problems in Engineering

(1) Generate a set of weight vectors Λ ← {𝜆1,𝜆2, . . . ,𝜆�푁}(2) Generate weight vector groups {𝜁1, 𝜁2, . . . , 𝜁�푛𝑐 }(3) Get the neighborhood 𝐵(𝑖) of each weight vector 𝜆�푖, 𝑖 = 1, 2, . . . , 𝑁, where {𝜆�푖1 ,𝜆�푖2 , . . . ,𝜆�푖𝑇} are the 𝑇
closest weight vectors to 𝜆�푖.(4) 𝑃0 ← Initialize the population()(5) Initialize Idealpoint: z∗ = (𝑧∗1 , 𝑧∗2 , . . . , 𝑧∗�푀)�푇(6) Find the non-dominated solutions in initial population to construct the archive 𝐴𝑟𝑐(7) while the termination criterion is not satisfied do(8) for 𝑖 = 1, 2, . . . , 𝑁 do(9) if rand(1) < 𝛿 then(10) 𝑃𝑃 ← 𝐵(𝑖)(11) else(12) 𝑃𝑃 ← {1, 2, . . . , 𝑁}(13) end if(14) Randomly select two different indexes 𝑘, 𝑙 from 𝑃𝑃, (𝑘 ̸= 𝑖, 𝑙 ̸= 𝑖)(15) y ← GeneticOperators (x�푘, x�푙)(16) UpdateIdealPoint (y, z∗)(17) Objective Normalization(18) Update Current Population(19) Update External Archive 𝐴𝑟𝑐(20) end for(21) 𝑃 ← LocalSearch(𝑃)(22) end while

Algorithm 1: Framework of the proposed MOMAD.

Disjunctive arcs
Conjunctive arcs

0

24 6

323

223

O O12

O21

O31 O32 O33

O22 O23

O13

M3

M3

M3

M1

M1

M1

M2

M2

M2

∗

Figure 1: Illustration of the disjunctive graph.

𝐶�퐿(𝐺, ℎ, 𝐶max(𝐺)) without delaying the required makespan𝐶max(𝐺) can be calculated by

𝐶�퐸 (𝐺, ℎ) = 𝑆�퐸 (𝐺, ℎ) + 𝑝ℎ,�푀(�퐺,ℎ),
𝐶�퐿 (𝐺, ℎ, 𝐶max (𝐺)) = 𝑆�퐿 (𝐺, ℎ, 𝐶max (𝐺)) + 𝑝ℎ,�푀(�퐺,ℎ). (2)

The predecessor and successor operation scheduled on
the same machine right before or after 𝑂ℎ are denoted as𝑃𝑀(𝐺, ℎ) and 𝑆𝑀(𝐺, ℎ), respectively. In addition, 𝑃𝐽(𝐺, ℎ)
and 𝑆𝐽(𝐺, ℎ) are the predecessor and successor operation of𝑂ℎ in the same job, respectively. 𝑂ℎ is a critical operation if
and only if 𝐶�퐸(𝐺, ℎ) = 𝐶�퐿(𝐺, ℎ, 𝐶max(𝐺)).

4. Framework of the Proposed MOMAD

The framework ofMOMADalgorithm is formed by hybridiz-
ing MOEA/D with local search, which is given in Algo-
rithm 1. First, a set of uniformly distributed weight vectors
𝜆1,𝜆2, . . . ,𝜆�푁 is generated by Das and Dennis’s approach
[45], where each vector 𝜆�푖 corresponds to subproblem 𝑖. Next,
all the weight vectors are divided into 𝑛�푐 groups by K-means
clustering. After calculating the Euclidean distance between
any two weight vectors, the neighborhood 𝐵(𝑖) of 𝜆�푖 is set
by gathering 𝑇 closest weight vectors. Then, the population
containing 𝑁 solutions is initialized. The ideal point vector
z∗ is obtained by calculating the infimum found so far of 𝑓�푖.
The archive Arc is established by founding the nondominated
solutions in initial population. In Steps (9)–(13), the two
mating parent solutions x�푘 and x�푙 are chosen from𝑃𝑃 formed
by 𝐵(𝑖)with the probability 𝛿 or by whole population with the
probability 1 − 𝛿. Then, the new solution y is generated by
crossover and mutation, and finally y is used to update z∗.

Steps (17)–(21) contain the updating and local search
phase. The objective normalization is first adopted before
population updating. Suppose 𝜆�푗 = (𝜆1�푗, 𝜆2�푗, . . . , 𝜆�푀�푗)�푇 is𝑗th weight vector and 𝑧nad�푖 is the largest value of 𝑓�푖 in the
current population; then y is compared with the solutions
from 𝑃𝑃 one by one, and the one that has poorer fitness
in terms of (3) will be replaced by y. It should be noted
that the updating procedure will be terminated as soon as
the predefined maximal replacing number 𝑛�푟 which benefits
from keeping population diversity is reached or 𝑃𝑃 is empty.
Afterwards, the updating of Arc is held. If no solutions in Arc
dominate y, then copy y into Arc and remove all the repeated
and dominated solutions. Finally, after selecting the super

Mathematical Problems in Engineering 5

233 2 21 212 1 31 3 2 2 1 1 3

Machine selection part (MS)

Job 1 Job 2 Job 3

M1 M3 M3
J1 J1 J1J3 J3 J3J2 J2 J2M2M1

Operation sequence part (OS)

O22 O32 O12 O13 O23 O33O21O31O11

Figure 2: Chromosome encoding.

solutions in current population, the local search is applied to
get some improved solutions, and then they are rejected into
the population to ameliorate it.

𝑔�푡�푒 (x | 𝜆�푗, z∗) = max
1≤�푖≤�푀

{𝜆�푖�푗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓�푖 (x) − 𝑧∗�푖𝑧nad�푖 − 𝑧∗�푖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨} . (3)

5. Detailed Description of Exploration and
Exploitation in MOMAD

5.1. Chromosome Encoding and Decoding. In MOMAD, a
chromosome coding consists of two parts: machine selec-
tion (MS) part and operation sequence (OS) part, which
are encoded by machine selection and operation sequence
vector, respectively. Each integer in MS vector represents the
corresponding machine assigned for each operation in turn.
As for OS vector, each gene is directly encoded with the
job number. When compiling the chromosome from left to
right, the 𝑘th occurrence of the job number refers to the𝑘th operation of the corresponding job. Figure 2 shows a
chromosome encoding of an P-FJSP instance which is shown
in Table 1. 𝑀3 is selected to process operation 𝑂11 and 𝑀1
is selected to process operation 𝑂21. The operation sequence
can be interpreted as 𝑂11 → 𝑂31 → 𝑂21 → 𝑂22 → 𝑂32 →𝑂12 → 𝑂13 → 𝑂23 → 𝑂33.

Since it has been verified that the optimal schedule exists
in active schedule [3], the greedy inserting algorithm [25]
is employed for chromosome encoding to make sure the
operation is positioned in the earliest capable time of its
assigned machine. It should be noted that operation 𝑂�푖�푗 may
be started earlier than 𝑂�푙�푘 while 𝑂�푙�푘 appears before 𝑂�푖�푗 in the
OS. In order tomake the encoding be able to reflect the actual
processing sequence, the operation sequence in original OS
will be reordered in the light of their actual starting time after
decoding.

5.2. Population Initialization. Population initialization plays
an important role in MOMAD performance since a high
quality initial population with more diversity can avoid
falling into premature convergence. Here, four machine
assignment rules are used to produce themachine assignment
vectors for MOFJSP. The first two rules are global selection

and local selection proposed by Zhao et al. [46]. The third
rule prefers to select a machine from the candidate machine
set at random. The aim of the last rule is assigning each
operation to a machine with the minimum processing time.
In our MOMAD, for machine assignment initialization, 50%
of individuals are generated by rule 1, 10% of individuals are
formed with rule 4, and rule 2 and rule 3 take share of the rest
of the population.

Once the machines are assigned to each operation, the
sequence of operations should be considered next. Amixture
of four operation sequencing rules is employed to generate
the initial operation sequencing vectors. The probabilities of
using four operation sequencing rules are set as 0.3, 0.2, 0.3,
and 0.2, respectively.

Operation sequencing rules are as follows:

(1) Most Work Remaining [47]. The operations which
have the most remaining processing time will be put
into the operation sequencing vector first.
(2) Most Number of Operations Remaining (MOR)
[47]. The operations which have the most subsequent
operations in the same job will be preferentially taken
into account.
(3) Shortest Processing Time (SPT) [48]. The opera-
tions with the shortest processing time will be firstly
processed.
(4) Random Dispatching. It randomly orders the
operations on each machine.

5.3. Exploration Using Genetic Operators. The problem-
specific crossover and mutation operators are applied to
produce the offspring, both of which are performed on each
vector independently since the encoding of one chromosome
has two components.

Crossover. For theMS, uniform crossover [3] is adopted. First
of all, a subset of 𝑟 ∈ [1, 𝐷] positions is uniformly chosen at
random, where 𝐷 equals the total number of all operations.
Then, two new individuals are generated by changing the
gene between parent chromosomes corresponding to the
selected positions. With respect to OS vector, the precedence
preserving order-based (POX) [3] crossover is applied.

6 Mathematical Problems in Engineering

(1) for 𝑗 = 1 to 𝑛�푐 do(2) Randomly select a weight 𝜆 from the weight vector set 𝜁�푖;(3) Select all solutions {x1, x2, . . . , x�푛𝑖 } respectively correspond to weight vectors {𝜆1,𝜆2, . . . ,𝜆ni } which
belong to 𝜁�푖.(4) (MS,OS) ←Tournament Selection (x1, x2, . . . , x�푛𝑖)(5) 𝐸�耠�푗 ← LocalSearchForIndividual ((MS,OS),𝜆�푖)(6) UpdateNeighborhood (𝐸�耠�푗, 𝐵(𝜆))(7) 𝐴𝑟𝑐 ← UpdateArchive (𝐸�耠�푗, 𝐴𝑟𝑐)(8) end for

Algorithm 2: LocalSearch (𝑃).

Mutation. As for MS, two positions are chosen arbitrarily,
and the genes are replaced by changing the different machine
from their corresponding machine set. With regard to OS,
themutation is achieved by exchanging two randomly chosen
operations.

5.4. Exploitation Using Local Search. It is widely accepted
that integrating local search can effectually improve the
performance of EAs, and it is an effective strategy to solve
FJSP [31], so it is of great importance to design an effect
local search method to make MOMAD keep good balance
between exploration and exploitation. First of all, with the
aim of saving the computational complexity as well as main-
taining the population diversity, only a number of ⌊𝑁 × 𝑃ls⌋
individuals are selected from entire evolutionary population
to apply local search in each generation. Then, the following
two critical issues will be introduced in detail in the next two
subsections.

(1) How to select appropriate solutions to apply local
search?

(2) Which local search method will be used?

5.4.1. Selection of Individuals for Local Search. When selecting
a candidate individual each time, at first, a weight vector 𝜆 is
chosen from the vector set 𝜁�푖 at random.Then, all incumbent
solutions corresponding to different weight vectors which
belong to 𝜁�푖 are selected. Next, all the selected individuals
are compared according to (3) with the weight vector 𝜆, and
the one which has the best fitness is selected as a candidate
solution to apply local search. Finally, an improved solution
obtained by local search is adopted to update neighborhood
and archive. Denote 𝑛�푖 as the number of weight vectors which
belong to 𝜁�푖. The basic framework of local search can be
summarized as Algorithm 2.

5.4.2. Description of Local Search Method. Considering that
makespan is the most important and the hardest objective
to be optimized among the three optimization objectives,
the local search is performed on the decoded schedule
of one chromosome rather than the chromosome itself.
Suppose there are a set of 𝑛𝑐(𝐺) critical operations 𝑐(𝐺) ={cor1, cor2, . . . , cor�푛�푐(�퐺)}, and let 𝐶max(𝐺) be the makespan of

𝐺. Then, the following theorems based on disjunctive graph
are summarized as follows [2]:

(1) It has been proven that the makespan can only be
reduced by moving critical operations 𝑂�푖�푗 ∈ 𝑐(𝐺).

(2) Suppose 𝐺−�푖 is obtained by deleting one critical
operation cor�푖 in 𝐺. Let 𝜙�푘 be the set of operations
processed on𝑀�푘 which are sorted by the increasing
of starting time (note that cor�푖 ∉ 𝜙�푘) in 𝐺−�푖 ; then two
subsequences of 𝜙�푘 denoted as 𝑅�푘 and 𝐿�푘 are defined
as follows:

𝑅�푘 = {V ∈ 𝜙�푘 | 𝑆�퐸 (𝐺, V) + 𝑝V,�푘 > 𝑆�퐸 (𝐺−�푖 , cor�푖)} ,
𝐿�푘 = {V ∈ 𝜙�푘 | 𝑆�퐿 (𝐺, V, 𝐶max (𝐺))
< 𝑆�퐿 (𝐺−�푖 , cor�푖, 𝐶max (𝐺))} .

(4)

It has been verified that a feasible schedule 𝐺�耠 can
be achieved by inserting cor�푖 into a position V ∈Υ�푘, where Υ�푘 contains all positions before all the
operations of 𝑅�푘\𝐿�푘 and after all the operations of𝐿�푘\𝑅�푘.

(3) The insertion of moving cor�푖 on position V must
satisfy the following constraint:

max {𝐶�퐸 (𝐺−�푖 , 𝑃𝑀 (𝐺−�푖 , V)) , 𝐶�퐸 (𝐺−�푖 , 𝑃𝐽 (cor�푖))}
+ 𝑝cor𝑖 ,�푘 ≤ min {𝑆�퐿 (𝐺−�푖 , V, 𝐶max (𝐺)) ,
𝑆�퐿 (𝐺−�푖 , 𝑆𝐽 (cor�푖) , 𝐶max (𝐺))} .

(5)

When considering an action of finding a position on𝑀�푘
for cor�푖 to insert into 𝐺−�푖 , which is denoted as cor�푖 󳨃→ 𝑀�푘,
only the positions in Υ�푘 should be taken into account. Insert
cor�푖 into one position V in Υ�푘 if V satisfies (5), and other
positions in Υ�푘 will no longer be considered. Suppose𝑀cor𝑖
is the alternative machine set to operate cor�푖; 𝑛cor𝑖 denotes
the total actions of cor�푖 󳨃→ 𝑀�푘. Let 𝜑(𝑐(𝐺),𝑀) be the action
set {cor�푖 󳨃→ 𝑀�푘 | 𝑖 = 1, 2, . . . , 𝑛𝑐, 𝑀�푘 ∈ 𝑀cor𝑖}, which
contains∑�푛𝑐�푖=1 𝑛cor𝑖 actions. Now, a hierarchical strategy [27] is
adopted to calculate Δ𝑡 and Δ𝑐 which, respectively, represent

Mathematical Problems in Engineering 7

(1) iter← 0(2) 𝐺 ← ChromosomeDecoding{MS,OS}(3) 𝐺best ← 𝐺(4) while 𝐺 ̸= 0 and 𝑖𝑡𝑒𝑟 < itermax do(5) 𝐺�耠 ← GetNeighborhood(𝐺)(6) if 𝐺�耠 ̸= 0 then(7) if (F(𝐺�耠) ≺ F(𝐺best)) or ((F(𝐺�耠) ‖ F(𝐺best))&(F(𝐺�耠) ̸= F(𝐺best))) then(8) 𝐺best ← 𝐺�耠(9) end if(10) end if(11) 𝐺 ← 𝐺�耠(12) iter = iter + 1(13) end while(14) 𝐸�耠 ← ChromosomeEncoding(𝐺best)(15) return 𝐸�耠
Algorithm 3: LocalSearchForIndividual {(MS,OS),𝜆�푖}.

the variation of total workload and critical workload. All
actions in 𝜑(𝑐(𝐺),𝑀) are sorted by nondescending order ofΔ𝑡. If both actions have the same Δ𝑡, then the lowest Δ𝑐 is
chosen as a second criterion.The value of Δ𝑡, Δ𝑐 is calculated
as follows:

Δ𝑡 (cor�푖 󳨃󳨀→ 𝑀�푘) = 𝑝cor𝑖 ,�푘 − 𝑝cor𝑖 ,�푀(�퐺,cor𝑖),Δ𝑐 (cor�푖 󳨃󳨀→ 𝑀�푘) = 𝑊�푘 (𝐺) + 𝑝cor𝑖 ,�푘. (6)

These actions in sorted 𝜑(𝑐(𝐺),𝑀) are considered in suc-
cession until a neighborhood 𝐺�耠 is established. Whereafter,
we compare 𝐺�耠 with 𝐺best by adopting an acceptance rule
described as Step (7) in Algorithm 3. 𝐺best will be replaced
by 𝐺�耠, providing that 𝐺�耠 is not dominated by 𝐺 and they are
different from each other. It should be noted that the length
of once local search is controlled by two points in order to
save the computing cost. First, when getting a neighborhood
of 𝐺, once an effective action in 𝜑(𝑐(𝐺),𝑀) is found, a
neighbor schedule 𝐺�耠 is formed.Then, the remaining actions
in 𝜑(𝑐(𝐺),𝑀)will no longer be considered.The second effort
is to set max iteration number itermax so that the search will
be terminated when the itermax is exhausted.

5.4.3. Computational Complexity Analysis. The major com-
putational costs in MOMAD are involved in Step (16)∼
Step (18) and Step (21). Step (16) performs 𝑂(𝑀) com-
parisons and assignments. The objective normalization in
Step (17) requires 𝑂(𝑀) operations. Because the computing𝑔�푡�푒 for 𝑇 neighborhood solutions and𝑂(𝑀) basic operations
are required in one computation,𝑂(𝑀𝑇) basic operations are
needed for Step (18). Therefore, the total computational cost
in Step (16)∼Step (18) is 𝑂(𝑀𝑁2) + 𝑂(𝑀𝑁2) + 𝑂(𝑀𝑁𝑇)
since it computes 𝑁 times. When comparing F(𝐺) and
F(𝐺best) in local search, it requires 𝑂(𝑀) basic operations
in one iteration, and the worst case is 𝑂(𝑀itermax) if the
maximal iterations are reached. The computational cost of
Step (21) is𝑂(𝑀𝑁𝑃lsitermax) since it has𝑃ls×𝑁 passes.Thus,
the total computational complexity ofMOMAD is𝑂(𝑀𝑁2)+𝑂(𝑀𝑁𝑃lsitermax).

Table 2: Parameter settings of the proposed MOMAD algorithm.

Parameters Values
Population size (𝑁) 120
Crossover probability (𝑃�푐) 1.0
Mutation probability (𝑃�푚) 0.1
Neighborhood size (𝑇) 0.1 × 𝑁
Controls parameters (𝛿) 0.9
Maximal replacing number (𝑛�푟) 1
Division (𝐻) 14
Local search probability (𝑃ls) 0.1
Number of weight vector cluster (𝜁) 𝑃ls × 𝑁
Maximal iterations of local search (itermax) 50

6. Experiments and Results

With the aim of testing the performance of MOMAD, 5 well-
knownKacem instances (Ka 4×5, Ka 8×8, Ka 10×7, Ka 10×10,
and Ka 15 × 10) [23] and 10 BRdata instances (MK01∼MK10)
[49] are underinvestigated in the experiment. The MOMAD
is implemented in C++ language and on an Intel Core i3-4170
3.70GHz processor with 4GB of RAM.

6.1. Parameter Settings. With the purpose of eliminating
the influence of random factors on the performance of the
algorithm, it is necessary to independently run the proposed
MOMAD 10 times on each test instance, and the algorithm
will be terminated when reaching the maximal number of
objective function evaluations in one run. The parameters
used in MOMAD algorithm are listed in Table 2. Moreover,
because of the different complexity of each test instance,
the predefined maximal numbers of objective evaluations
corresponding to different problems are listed in the second
column in Table 3.

6.2. Performance Metrics. In order to quantitatively eval-
uate the performance of the compared algorithms, three

8 Mathematical Problems in Engineering

Table 3: Comparison of three different aggregation functions on average IGD and HV values over 10 independent runs for all Kacem and
BRdata instances.

Instance NFs§ IGD HV
MOMAD MOMAD-WS MOMAD-PBI MOMAD MOMAD-WS MOMAD-PBI

ka 4 × 5 40000 0.1054 0.2108 0.1845 0.5910 0.5843 0.5860
ka 8 × 8 40000 0.1071 0.1252 0.1541 0.6574 0.6191 0.5917
ka 10 × 7 40000 0.0298 0.0400 0.0651 1.0594 1.0481 0.9762
ka 10 × 10 40000 0.1394 0.0767 0.1676 0.6802 0.9127‡ 0.6873
ka 15 × 10 40000 0.4002 0.4108 0.4405 0.3727 0.3474 0.2849
MK01 50000 0.0304 0.0254 0.0619† 1.0316 1.0368 0.9975†

MK02 50000 0.0415 0.0495 0.0972† 0.9908 0.9772 0.9374†

MK03 50000 0.0233 0.1251 0.2837† 0.8296 0.7027 0.4929†

MK04 50000 0.0340 0.0282 0.1128† 1.1437 1.1455 1.0758†

MK05 50000 0.0072 0.0057 0.1181† 1.0576 1.0636 0.9120†

MK06 60000 0.0473 0.0529† 0.0993† 0.9700 0.9610 0.8906†

MK07 50000 0.0218 0.0313 0.1288† 0.9906 0.9734† 0.8484†

MK08 50000 0.0000 0.0075 0.1943† 0.5755 0.5705 0.3832†

MK09 50000 0.0365 0.0396 0.1489† 1.1893 1.1725† 1.0642†

MK10 70000 0.0391 0.0765† 0.0597† 1.1480 1.0751† 1.0743†

§ means the number of function evaluations; † means that the results are significantly outperformed by MOMAD; ‡ means that the results are significantly
better than MOMAD.

quantitative indicators are employed tomake the comparison
more convincing, and they are described as follows.

(1) Inverted Generational Distance (IGD) [50]. Let 𝑃known be
the approximate PF obtained by the compared algorithm and𝑃∗ be the reference PF uniformly distributed in the object

space. IGDmetric measures the distance between 𝑃known and𝑃∗ with smaller value representing better performance. The
IGD metric can well reflect the convergence and diversity
simultaneously to some extent if 𝑃∗ is larger enough to well
represent the reference PF; that is,

IGD (𝑃∗, 𝑃known) = ∑y∗∈�푃∗ 𝑑 (y∗, 𝑃known)|𝑃∗| ,
𝑑 (y∗, 𝑃known) = min

y∈�푃known

{{{√
�푀∑
�푖=1

(𝑦∗�푖 − 𝑦�푖)2}}} , y
∗ = (𝑦∗1 , 𝑦∗2 , . . . , 𝑦∗�푀)�푇 , y = (𝑦1, 𝑦2, . . . , 𝑦�푀)�푇 .

(7)

In this experiment, since all benchmark instances are
tested without knowledge about their actual PFs, 𝑃∗ used
in calculating IGD metric is obtained by two steps. First,
we merge all final nondominated solutions obtained by
all compared algorithms during all the independent runs.
Then, we select the nondominated solutions from the mixed
solution set as 𝑃∗.
(2) Set Coverage (C) [51]. 𝐶 metric can directly reflect the
dominance relationship between two groups of approximate
PFs. Let 𝐴 and 𝐵 be two approximate PFs that are obtained
by two different algorithms; then 𝐶(𝐴, 𝐵) is defined as

𝐶 (𝐴, 𝐵) = |{𝑏 ∈ 𝐵 | ∃𝑎 ∈ 𝐴 : 𝑎 ≺ 𝑏}||𝐵| . (8)

Although 𝐶(𝐴, 𝐵) represents the percentage of solutions
in 𝐵 that are dominated by at least one solution in 𝐴, in
general, 𝐶(𝐴, 𝐵) ̸= 1 − 𝐶(𝐵, 𝐴). If 𝐶(𝐴, 𝐵) is larger than

𝐶(𝐵, 𝐴), algorithm 𝐴 is better than algorithm 𝐵 to some
extent.

(3) Hypervolume (HV) [51]. HV metric is employed to
measure the volume of hypercube enclosed by PF 𝐴 and
reference vector rref = (𝑟1, 𝑟2, . . . , 𝑟�푀)�푇 with lager values
representing better performance. It can be obtained by

HV (𝐴) = ⋃
�푎∈�퐴

vol (𝑎) , (9)

where vol(𝑎) is the volume of hypercube enclosed by solution𝑎 in PF 𝐴 and reference vector rref = (𝑟1, 𝑟2, . . . , 𝑟�푀)�푇.
HV measure can reflect both convergence and diversity of
corresponding PF to a certain degree.

For the convenience of computation, all objective vectors
of the Pareto solutions are normalized based on (10) before
calculating all three metrics. Thus, the reference vectors of

Mathematical Problems in Engineering 9

Table 4: Comparison of three different aggregation functions on average C value over 10 independent runs for all 15 problems.

Instance MOMAD(A) versus MOMAD-WS(B) MOMAD(A) versus MOMAD-PBI(C)𝐶(𝐴, 𝐵) 𝐶(𝐵, 𝐴) 𝐶(𝐴, 𝐶) 𝐶(𝐶, 𝐴)
ka 4 × 5 0.0000 0.0000 0.0000 0.0000
ka 8 × 8 0.0250 0.0000 0.0983 0.0333
ka 10 × 7 0.1000 0.0000 0.1167 0.0333
ka 10 × 10 0.0583 0.0667 0.0250 0.0333
ka 15 × 10 0.3167 0.2000 0.2500 0.2500
MK01 0.2070 0.2221 0.4386 0.0373
MK02 0.2296 0.1261 0.6180 0.1143
MK03 0.2034 0.0453 0.5069 0.0121
MK04 0.1689 0.1868 0.3457 0.0704
MK05 0.1727 0.1300 0.5658 0.0174
MK06 0.5158 0.3765 0.3546 0.2746
MK07 0.3294 0.1690 0.5408 0.1346
MK08 0.0143 0.0000 0.3300 0.0000
MK09 0.5997 0.2937 0.5915 0.1200
MK10 0.5408 0.1637 0.2795 0.3700

Table 5: Performance evaluation of the effect of local search using IGD, HV, and C values over 10 independent runs for all 15 problems.

Instance IGD HV MOMAD(A) versus MOEA/D(B)
MOMAD MOEA/D MOMAD MOEA/D 𝐶(𝐴, 𝐵) 𝐶(𝐵, 𝐴)

ka 4 × 5 0.1054 0.2635 0.5910 0.5810 0.0000 0.0000
ka 8 × 8 0.1071 0.1398 0.6574 0.6188 0.0500 0.0000
ka 10 × 7 0.0298 0.0687 1.0594 0.9828 0.1333 0.0333
ka 10 × 10 0.1394 0.3617 0.6802 0.3178 0.1667 0.0333
ka 15 × 10 0.4002 0.3666 0.3727 0.4776 0.3833 0.0000
MK01 0.0304 0.0537 1.0316 1.0161 0.5218 0.0358
MK02 0.0415 0.0740 0.9908 0.9263 0.4055 0.0386
MK03 0.0233 0.0077 0.8296 0.8363 0.0258 0.0330
MK04 0.0340 0.0441 1.1437 1.1297 0.2585 0.0800
MK05 0.0072 0.0062 1.0576 1.0621 0.2326 0.0616
MK06 0.0473 0.0540 0.9700 0.9223 0.3511 0.4992
MK07 0.0218 0.0418 0.9906 0.9552 0.2602 0.1224
MK08 0.0000 0.0000 0.5755 0.5755 0.0000 0.0000
MK09 0.0365 0.0406 1.1893 1.1622 0.7050 0.2499
MK10 0.0391 0.0737 1.1480 1.0525 0.5546 0.2328

all benchmark instances for calculating HV value are set as(1.1, 1.1, 1.1)�푇.
𝑓�푖 (x) = (𝑓�푖 (x) − 𝑓min

�푖)(𝑓max
�푖 − 𝑓min

�푖) , (10)

where𝑓max
�푖 and𝑓min

�푖 are the supremum and infimum of𝑓�푖(x)
over all nondominated solutions obtained by gathering all
compared algorithms.

6.3. Performance Comparison with Several Variants of
MOMAD. Because the implementation of algorithm frame-
work is not unique and there are some different strategies

employed to instantiate it, several variants of MOMAD will
be first studied. MOEA/D is a simplified algorithm designed
by eliminating local search from MOMAD to investigate its
effectiveness. In the interest of studying the effect of different
aggregation functions, MOMAD-WS and MOMAD-PBI are
formed by replacing the Tchebycheff approach with weighted
sum (WS) [7] and penalty-based boundary intersection
(PBI) approach [7]. The Wilcoxon signed-rank test [52] is
performed on the sample data of three metrics obtained after
10 independent runs with the significance of 0.05, and the one
which is significantly better than others is marked in bold.
Three metric values are listed in Tables 3–5.

10 Mathematical Problems in Engineering

MK10

MOMAD
MOEAD

×10
4

2 4 6 80
Number of function evaluations

0

20

40

60

80

100

120
IG

D
-m

et
ric

 v
al

ue

MK07

MOMAD
MOEAD

×10
4

1 2 3 4 50
Number of function evaluations

40

50

60

70

80

90

IG
D

-m
et

ric
 v

al
ue

MK01

MOMAD
MOEA/D

×10
4

1 2 3 4 50
Number of function evaluations

0

2

4

6

8
IG

D
-m

et
ric

 v
al

ue
MK02

MOMAD
MOEA/D

×10
4

1 2 3 4 50
Number of function evaluations

0

2

4

6

8

IG
D

-m
et

ric
 v

al
ue

Figure 3: Convergence graphs in terms of average IGD value obtained by MOMAD and MOEA/D for MK01, MK02, MK07, and MK10
problems.

In Tables 3 and 4, the results of performance comparison
between MOMAD, MOMAD-WS, and MOMAD-PBI are
listed. MOMAD is significantly better than MOMAD-WS
on MK10 for IGD, HV, and C values. Besides, MOMAD
performs better than MOMAD-WS on MK07 and MK09 in
terms of HV and C value and is also better than MOMAD-
WS onMK06 for IGDmetric. In contrast, MOMAD-WS only
achieves a better HV value on Ka 10 × 10. When comparing
with MOMAD-PBI, MOMAD is better than MOMAD-PBI
for all the BRdata instances in terms of IGD and HV values.
In addition,MOMADalso obtains betterCmetric values on 8
out of 10 instances. In summary, the presented results indicate
that Tchebycheff aggregation function is more suitable to be
utilized in MOEA/D framework when solving MOFJSP.

To understand the effectiveness of problem-specific local
search, the comparison between MOMAD and MOEA/D is
conducted, and the three metric values over 10 independent

runs are shown in Table 5. It is easily observed that, as for IGD
value, there are significant differences in the performances
of the two algorithms on 8 test problems, and MOMAD
significantly outperforms MOEA/D on all these instances.
As for the other two metrics, the situations are similar to
IGD metric. MOMAD outperforms MOEA/D on 9 out of
total 15 instances in terms of HV metric and 7 out of 15
instances for C metric, while MOEA/D only obtains a better
C value onMK06. Based on the above comparison results and
analyses, MOMAD is much powerful than MOEA/D, which
well verifies the effectiveness of local search.

With the aim of intuitively comparing the convergence
performance of the two algorithms, the evolutions of average
IGD values in MOMAD and MOEA/D on four selected
BRdata instances are illustrated in Figure 3. As can be
clearly seen from this figure, with the increasing number of
function evaluations, the IGD values in all four instances

Mathematical Problems in Engineering 11

Table 6: Comparison of the Kacem instance by listing the nondominated solutions.

Instance F PSO + SA hGA PSO + TS Xing HTSA EDA MOMAD
1 2 1 1 2 1 2 1 2 3 1 2 3 4 1 2 3 4

ka 4 × 5
𝑓1 11 12 11 12 11 11 12 11 11 12 13𝑓2 32 32 32 32 34 32 32 34 32 32 33𝑓3 10 8 10 8 9 10 8 9 10 8 7

ka 8 × 8
𝑓1 15 16 14 14 15 14 15 14 15 14 15 14 15 16 16𝑓2 75 73 77 77 75 77 76 77 75 77 75 77 75 73 77𝑓3 12 13 12 12 12 12 12 12 12 12 12 12 12 13 11

ka 10 × 7
𝑓1 11 11 11 11 11 11 11 11 12𝑓2 61 62 61 62 61 62 61 62 60𝑓3 11 10 11 10 11 10 11 10 12

ka 10 × 10
𝑓1 7 7 7 7 8 7 7 8 7 7 8 8 7 7 8 8𝑓2 44 43 43 42 42 43 42 42 43 42 41 42 43 42 41 42𝑓3 6 5 6 6 5 5 6 5 5 6 7 5 5 6 7 5

ka 15 × 10
𝑓1 12 11 11 11 11 11 11 11 11 11𝑓2 91 91 93 91 93 93 91 93 91 93𝑓3 11 11 11 11 10 10 11 10 11 10

Table 7: Comparison between MOMAD and other algorithms using IGD metric for Kacem and BR data instances.

Instance Algorithm
MOMAD MOGA PLS HSFLA HMOEA SEA P-EDA hDPSO PRMOTS + IS

ka 4 × 5 0.0000 0.1954 0.0000 — 0.0000 0.0000 0.0000 — 0.0000
ka 8 × 8 0.1414 0.2532 0.1414 0.1414 0.2532 0.1414 0.1414 0.1414 0.1414
ka 10 × 7 0.0000 — 0.0000 — 0.0000 0.0000 0.0000 — 0.0000
ka 10 × 10 0.0000 0.1250 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ka 15 × 10 0.0000 0.3571 0.0000 0.0000 0.0000 0.0000 0.0000 0.1429 0.0000
MK01 0.0037 0.1525 0.0525 0.1909 0.0300 0.0078 0.0307 0.0984 0.0042
MK02 0.0000 0.0680 0.0662 0.1493 0.0119 0.0357 0.0119 0.0000 0.0287
MK03 0.0643 0.3933 0.2119 0.2119 0.0838 0.0643 0.1911 0.0949 0.0643
MK04 0.0242 0.1470 — 0.1508 — 0.0271 0.0617 0.0540 0.0340
MK05 0.0245 0.2486 — 0.0185 — 0.0245 0.0245 0.0596 0.0223
MK06 0.0243 0.1457 — 0.1283 — 0.0296 0.0774 0.1377 0.0245
MK07 0.0924 0.0243 — 0.1174 — 0.1029 0.0924 0.0976 0.0841
MK08 0.0440 0.1709 0.1519 0.1519 0.0440 0.0567 0.0440 0.0540 0.0440
MK09 0.0115 0.2491 — 0.1083 — 0.0056 0.0648 0.1520 0.0305
MK10 0.0186 0.1111 — 0.0902 — 0.0419 0.0762 0.1653 0.0517
For each instance, the minimal IGD values obtained by the compared algorithms are marked in bold.

gradually decrease and tend to be stable, which indicates
that both algorithms have good convergence. SinceMOMAD
achieves lower IGD convergence curves, it is easily observed
that MOMAD achieves better convergence property and
convergence efficiency than MOEA/D.

6.4. Performance Comparison with Other Algorithms. In this
subsection, comparison betweenMOMAD and several state-
of-the-art algorithms are made. First, to compare MOMAD
with algorithms solving MOFJSP by using a priori approach,
MOMAD is compared on five Kacem instances with PSO
+ SA [17], hGA [18], PSO + TS [19], Xing et al.’s algorithm
[20], HTSA [21], and EDA [22]. All Pareto solutions marked
in bold are listed in Table 6. Next, in Tables 7–10, MOMAD

is compared with eight algorithms recently proposed for
solving MOFJSP by using Pareto approach that are MOGA
[25], PLS [28], HSFLA [37], HMOEA [30], SEA [29], P-
EDA [31], hDPSO [34], and PRMOTS + IS [32]. It should be
pointed out that these compared algorithms list the results
after predefined runs rather than each run in their original
literatures. Therefore, the statistical comparisons as made
before no longer apply. In this subsection, the three metrics
are computed for the set of PFs collected over predefined runs
of each algorithm.

As shown in Table 6, first, the MOMAD can obtain more
Pareto solutions than all other algorithms for solving the five
instances except EDA for Ka 10×10 and Ka 15×10 and Xing
for Ka 15×10. Second, as for Ka 10×10, the solution (7, 44, 6)

12 Mathematical Problems in Engineering

Table 8: Comparison between MOMAD and other algorithms using HV metric for Kacem and BR data instances.

Instance Algorithm
MOMAD MOGA PLS HSFLA HMOEA SEA P-EDA hDPSO PRMOTS + IS

ka 4 × 5 0.5977 0.5777 0.5977 — 0.5977 0.5977 0.5977 — 0.5977
ka 8 × 8 0.5185 0.3385 0.5185 0.5185 0.3385 0.5185 0.5185 0.5185 0.5185
ka 10 × 7 0.4560 — 0.4560 — 0.4560 0.4560 0.4560 — 0.4560
ka 10 × 10 0.9060 0.6560 0.9060 0.9060 0.9060 0.9060 0.9060 0.9060 0.9060
ka 15 × 10 1.0167 0.2739 1.0167 1.0167 1.0167 1.0167 1.0167 0.7310 1.0167
MK01 1.2130 1.0833 1.1820 0.7579 1.2003 1.2110 1.2022 1.1680 1.2132
MK02 0.9691 0.9152 0.9173 0.8032 0.9538 0.9402 0.9586 0.9691 0.9370
MK03 0.6659 0.6296 0.5443 0.5443 0.6574 0.6659 0.6405 0.6331 0.6659
MK04 1.1118 1.0882 — 0.9804 — 1.1084 1.0893 1.0990 1.1044
MK05 0.8274 0.7805 — 0.8234 — 0.8274 0.8290 0.7912 0.8131
MK06 0.9018 0.8163 — 0.7816 — 0.8766 0.8121 0.8307 0.9454
MK07 0.1926 0.7863 — 0.1805 — 0.1804 0.1926 0.1900 0.1894
MK08 0.5521 0.4469 0.4819 0.4819 0.5521 0.5451 0.5521 0.5375 0.5521
MK09 1.3115 1.2575 — 1.2742 — 1.2858 1.2939 1.3013 1.2897
MK10 1.0365 0.8106 — 0.9372 — 0.9496 0.9369 0.7976 0.9652
For each instance, the greater HV values obtained by the compared algorithms are marked in bold.

Table 9: Comparison between MOMAD and other algorithms using Cmetric for Kacem and BR data instances.

Instance
MOMAD(A) versus

MOGA(B) MOMAD(A) versus PLS(C) MOMAD(A) versus
HSFLA(D)

MOMAD(A) versus
HMOEA(E)𝐶(𝐴, 𝐵) 𝐶(𝐵, 𝐴) 𝐶(𝐴, 𝐶) 𝐶(𝐶, 𝐴) 𝐶(𝐴,𝐷) 𝐶(𝐷,𝐴) 𝐶(𝐴, 𝐸) 𝐶(𝐸, 𝐴)

ka 4 × 5 0.0000 0.0000 0.0000 0.0000 — — 0.0000 0.0000
ka 8 × 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ka 10 × 7 — — 0.0000 0.0000 — — 0.0000 0.0000
ka 10 × 10 0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ka 15 × 10 0.6667 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MK01 0.7500 0.0000 0.7143 0.0000 0.9091 0.0000 0.5833 0.0000
MK02 0.5000 0.0000 0.7500 0.0000 1.0000 0.0000 0.2500 0.0000
MK03 0.1000 0.0000 0.8571 0.0000 0.8571 0.0000 0.0000 0.0000
MK04 0.4000 0.1034 — — 0.8000 0.1724 — —
MK05 0.0000 0.0000 — — 0.3571 0.0000 — —
MK06 0.3000 0.1387 — — 0.8667 0.0438 — —
MK07 0.0000 0.5000 — — 0.6667 0.0000 — —
MK08 0.0000 0.1111 0.6250 0.0000 0.6250 0.0000 0.0000 0.0000
MK09 0.6667 0.0000 — — 1.0000 0.0000 — —
MK10 1.0000 0.0000 — — 0.6000 0.1747 — —
For each instance, the greater set coverage values obtained by the compared algorithms are marked in bold.

obtained by PSO + SA and solution (7, 43, 6) obtained by PSO
+TS are both dominated by (7, 42, 6) and (7, 43, 5) obtained by
MOMAD. Besides, when comparing with Xing, one solution
(15, 76, 12) of Ka 8 × 8 obtained by Xing is dominated by
(15, 75, 12) got by MOMAD. By analyzing the results of Ka
15 × 10, two solutions (i.e., (12, 91, 11) and (11, 93, 11)) which
are, respectively, obtained by PSO + SA and PSO + TS are,
respectively, dominated by (11, 91, 11) and (11, 93, 10) achieved
byMOMAD. According to the above comparison results and
analyses, when comparing with the algorithms based on a

priori approach, MOMAD can obtain more nondominated
solutions with higher quality.

Tables 7 and 8 show the comparison results of IGD
and HV values between MOMAD and eight Pareto-based
algorithms. First, it can be observed that except MOGA and
hDPSO, MOMAD and other 6 algorithms can find all the
nondominated solutions of Ka 4×5, Ka 10×7, Ka 10×10, and
Ka 15 × 10. Although there exist no algorithms that can find
all nondominated solutions of Ka 8 × 8, MOMAD and other
6 algorithms are better than MOGA and HMOEA. Next, we

Mathematical Problems in Engineering 13

Table 10: Comparison between MOMAD and other algorithms using Cmetric for Kacem and BR data instances.

Instance
MOMAD(A) versus

SEA(B)
MOMAD(A) versus

P-EDA(C)
MOMAD(A) versus

hDPSO(D)
MOMAD(A) versus
PRMOTS + IS(E)𝐶(𝐴, 𝐵) 𝐶(𝐵, 𝐴) 𝐶(𝐴, 𝐶) 𝐶(𝐶, 𝐴) 𝐶(𝐴,𝐷) 𝐶(𝐷,𝐴) 𝐶(𝐴, 𝐸) 𝐶(𝐸, 𝐴)

ka 4 × 5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ka 8 × 8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ka 10 × 7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ka 10 × 10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ka 15 × 10 0.0000 0.0000 0.0000 0.0000 0.6667 0.0000 0.0000 0.0000
MK01 0.1818 0.0000 0.4545 0.0000 0.0000 0.0000 0.1818 0.3000
MK02 0.1429 0.0000 0.2500 0.0000 0.0000 0.0000 0.4444 0.0000
MK03 0.0000 0.0000 0.1111 0.0000 0.0909 0.0000 0.0000 0.0000
MK04 0.0000 0.4138 0.1875 0.0345 0.0000 0.3448 0.0870 0.2414
MK05 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.4000 0.0000
MK06 0.1165 0.6350 0.7869 0.1241 0.1250 0.1241 0.2619 0.5912
MK07 0.0000 0.0000 0.0000 0.0000 0.1000 0.0000 0.3478 0.0000
MK08 0.0000 0.0000 0.0000 0.0000 0.1111 0.0000 0.0000 0.0000
MK09 0.3281 0.5714 0.9481 0.0286 0.1429 0.1286 0.8817 0.1143
MK10 0.5072 0.2651 0.7250 0.1024 0.2857 0.0653 0.5602 0.2349
For each instance, the greater set coverage values obtained by the compared algorithms are marked in bold.

focus on the BRdata test set. When considering IGD metric,
MOMAD obtains the best values on 6 out of 10 instances and
the second-best IGD values on three instances. The situation
of HV metric is much similar to IGD metric. MOMAD
achieves the best HV values on 7 out of 10 instances and
yields the second-best HV values on all the other instances.
MOGA obtains the best IGD value on MK07, but MOMAD
is better than MOGA on other 9 instances. The situation is
much similar to SEA, P-EDA, and PRMOTS + IS. Although
they exhibit superior performance over MOMAD on several
instances for IGD andHV values, inmost cases, they perform
relatively worse than MOMAD.

MOMAD is compared with eight algorithms in Tables
9 and 10 by using set coverage value. It is clearly indicated
that MOMAD is much superior to five algorithms except
for MOGA, SEA, and PRMOTS + IS. When comparing
with MOGA, MOMAD is worse than MOGA on MK07 and
MK08, but MOMAD is better than MOGA on 7 BRdata
instances. Compared with SEA, MOMAD is generally better
on MK01, MK02, and MK10 instances, but on MK04, MK06,
and MK09, SEA generally shows higher performance. As for
PRMOTS + IS, MOMAD is superior to it on MK02, MK05,
MK07, MK09, and MK10, whereas PRMOTS + IS only wins
in MK01, MK04, and MK06.

Table 11 shows the comparison between MOMAD and
MOGA on 18 DPdata instances which are designed in [53].
The predefinedmaximal function evaluation of each instance
is shown in second column, and MOMAD is independently
run 5 times at a time. From the IGD and HV value, it is easily
observed that the performance of MOMAD is much better
than MOGA since MOGA only obtains a better IGD value
on 07a and a better HV value on 02a. The comparison of
C metric is similar to the IGD and HV, MOMAD achieves

16 significantly better results, and there is no significant
difference between MOMAD andMOGA on 02a and 09a. In
addition, it can also be observed that C (MOMAD, MOGA)
equals one on 12 test instances which means, as for these 12
instances, every solution obtained byMOGA is dominated by
at least one solutions by MOMAD.

The objective ranges of MOMAD and PRMOTS + IS for
DPdata instances are given in Table 12. The MOMAD finds
a wider spread of nondominated solutions than PRMOTS +
IS especially in terms of makespan and total workload. Thus,
it can be concluded that MOMAD is more effective than
PRMOTS + IS in terms of exploring a search space.

According to the above extensive IGD and HV values,
the average performance scores of 10 BRdata instances are
further recorded to rank the compared algorithm, which
make it easier to quantify the overall performance of these
algorithms by intuitive observation. For each specific BRdata
instance, suppose Alg1,Alg2, . . . ,Alg�푙, respectively, denote
the 𝑙 algorithms employed in comparison. Let 𝜗�푖�푗 be 1, iff Alg�푗
obtains smaller IGD and biggerHV value thanAlg�푖.Then, the
performance𝑃(Alg�푖) of each algorithmAlg�푖 can be calculated
as [54]

𝑃 (Alg�푖) = �푙∑
�푗=1
�푗 ̸=�푖

𝜗�푖�푗. (11)

It should be noted that the smaller the score, the better
the algorithm. Here, PLS and HMOEA only consider part of
instances, so we first rank all algorithms onMK01∼MK03 and
MK08 instances, and then we rank these algorithms except
PLS and HMOEA on the remaining 6 instances. Figure 4
shows the average performance score of IGD and HV values

14 Mathematical Problems in Engineering

Table 11: Comparison between MOMAD and MOGA using IGD, HV, and Cmetric for DP data.

Instance NFs§ IGD HV MOMAD versus MOGA
MOMAD MOGA MOMAD MOGA C(MOMAD, MOGA) C(MOGA, MOMAD)

01a 50000 0.0000 0.2121 1.3310 1.0743 1.0000 0.0000
02a 50000 0.2705 0.3002 0.6117 0.8576 0.0000 0.0000
03a 50000 0.1852 0.5899 0.9950 0.2615 0.5000 0.0000
04a 50000 0.0000 0.4022 1.1059 0.6042 1.0000 0.0000
05a 60000 0.0000 0.4845 1.2857 0.6156 1.0000 0.0000
06a 60000 0.0000 0.6834 1.3126 0.4432 1.0000 0.0000
07a 50000 0.5034 0.2517 1.1886 0.6220 0.6667 0.0000
08a 50000 0.0755 0.6998 1.1682 0.1780 0.5000 0.0000
09a 50000 0.3162 0.3802 1.1149 0.4647 0.0000 0.0000
10a 70000 0.0028 0.3334 1.0840 0.5980 0.7500 0.0000
11a 70000 0.0000 0.7135 1.2853 0.3112 1.0000 0.0000
12a 70000 0.0000 0.7982 1.3137 0.2533 1.0000 0.0000
13a 60000 0.0000 1.1040 1.2866 0.1062 1.0000 0.0000
14a 60000 0.0000 0.9852 1.2799 0.1414 1.0000 0.0000
15a 70000 0.0000 0.6547 1.2388 0.2967 1.0000 0.0000
16a 70000 0.0000 0.4685 1.1568 0.3833 1.0000 0.0000
17a 70000 0.0000 0.8188 1.2872 0.2075 1.0000 0.0000
18a 70000 0.0000 1.0231 1.3079 0.0975 1.0000 0.0000
§ means the number of function evaluations.

Table 12: Objective ranges for the DPdata.

Instance 𝑓1(min, max) 𝑓2(min, max) 𝑓3(min, max)
MOMAD PRMOTS + IS MOMAD PRMOTS + IS MOMAD PRMOTS + IS

01a (2561, 2561) (2592, 2596) (11137, 11137) (11137, 11137) (2505, 2505) (2508, 2549)
02a (2340, 2378) (2345, 2441) (11137, 11137) (11137, 11137) (2232, 2236) (2228, 2238)
03a (2267, 2334) (2317, 2351) (11137, 11137) (11137, 11137) (2230, 2236) (2228, 2245)
04a (2533, 2766) (2647, 2786) (11064, 11081) (11064, 11087) (2503, 2727) (2503, 2727)
05a (2263, 2792) (2426, 2852) (10941, 10981) (10941, 10988) (2203, 2465) (2194, 2497)
06a (2202, 2767) (2328, 2769) (10809, 10866) (10809, 10848) (2166, 2347) (2164, 2347)
07a (2454, 2454) (2522, 2522) (16485, 16485) (16485, 16485) (2187, 2187) (2187, 2187)
08a (2186, 2426) (2276, 2465) (16485, 16485) (16485, 16485) (2064, 2083) (2062, 2093)
09a (2168, 2297) (2254, 2458) (16485, 16485) (16485, 16485) (2064, 2077) (2062, 2068)
10a (2443, 2986) (2656, 2912) (16464, 16518) (16464, 16512) (2178, 2607) (2178, 2629)
11a (2137, 2918) (2416, 2954) (16135, 16231) (16135, 16194) (2031, 2375) (2021, 2328)
12a (2036, 2319) (2339, 2745) (15748, 15828) (15748, 15809) (1974, 2082) (1974, 2115)
13a (2392, 2511) (2643, 2708) (21610, 21610) (21610, 21610) (2216, 2223) (2203, 2215)
14a (2297, 2405) (2493, 2522) (21610, 21610) (21610, 21610) (2165, 2174) (2165, 2168)
15a (2235, 2337) (2549, 2595) (21610, 21610) (21610, 21610) (2165, 2178) (2164, 2173)
16a (2409, 3040) (2735, 3236) (21478, 21556) (21478, 21562) (2237, 2549) (2206, 2478)
17a (2163, 2783) (2528, 3002) (20875, 20942) (20878, 20972) (2105, 2347) (2093, 2268)
18a (2109, 2442) (2416, 2901) (20562, 20633) (20566, 20621) (2068, 2171) (2061, 2198)

over 10 BRdata instances for 9 selected algorithms, and the
rank accordance with the score of each algorithm is listed in
the corresponding bracket. It is easily observed thatMOMAD
works well nearly on all the instances in terms of IGD andHV
metrics since it achieves good performance on almost all the
test problems.

Figures 5 and 6 show the final PFs of MK01∼MK10
instances obtained byMOMAD and the reference PFs gener-
ated by selecting nondominated solutions from the mixture
of eight compared algorithm. As can be seen, MOMAD
finds all Pareto solutions for MK02. As for MK01, MK03,
MK05, MK07, and MK08, MOMAD almost finds all Pareto

Mathematical Problems in Engineering 15

0.0000(1)
1.2500(2)

2.0000(3)
2.7500(4) 3.0000(5) 3.5000(6)

5.7500(7)
7.0000(8) 7.5000(9)

PRMOTS +
IS

MOMAD P-EDA SEA hDPSO PLS HSFLA MOGAHMOEA
0

2

4

6

8

10
Av

er
ag

e I
G

D
 p

er
fo

rm
an

ce
sc

or
e

0.2500(1)
1.2500(2)

2.2500(3) 2.5000(4) 2.5000(4)
4.0000(6)

6.0000(7)
7.0000(8) 7.2500(9)

PRMOTS +
IS

P-EDA HMOEA SEA hDPSO PLS HSFLA MOGAMOMAD
0

2

4

6

8

10

Av
er

ag
e H

V
 p

er
fo

rm
an

ce
sc

or
e

(a)

0.5000(1)

2.3333(2) 2.6667(3) 2.6667(3)
3.5000(5)

4.3333(6) 4.6667(7)

0

2

4

6

Av
er

ag
e H

V
 p

er
fo

rm
an

ce
sc

or
e

PRMOTS +
IS

P-EDA SEA hDPSO MOGA HSFLAMOMAD

0.8333(1)
1.8333(3)1.5000(2)

2.8333(4)

4.0000(5)
4.6667(6) 4.6667(6)

0

2

4

6

Av
er

ag
e I

G
D

 p
er

fo
rm

an
ce

sc
or

e

PRMOTS +
IS

P-EDA SEA hDPSO MOGA HSFLAMOMAD

(b)

Figure 4: Ranking in the average performance score over MK01, MK02, MK03, and MK08 problem instances for the compared nine
algorithms and over other six BRdata instances for the compared seven algorithms. The smaller the score, the better the overall performance
in terms of HV and IGD metrics.

solutions. Besides, MOMAD can find the vast majority of the
optimal solutions for MK04, MK06, MK09, andMK10.Thus,
MOMAD is capable of finding a wide spread of PF for each
instance and showing the tradeoffs among three different
objectives.

Average CPU time consumed by MOMAD and other
compared algorithms are listed in Table 13. However, the
different experimental platform, programming language, and
programming skills make this comparison not entirely rea-
sonable. Hence, we enumerate the computational CPU time

combined with original experimental platform and program-
ming language for each corresponding algorithm, which
help us distinguish the efficiency of the referred algorithms.
The values show that the computational time consumed by
MOMAD is much smaller than other algorithms except for
Ka 4 × 5.

In summary, from the above-mentioned experimental
results and comparisons, it can be concluded that MOMAD
outperforms or at least has comparative performance to all
the other typical algorithms when solving MOFJSP.

16 Mathematical Problems in Engineering

MK01

40
42

44 46

150
160

170
36

38

40

42

Makespan
Total work load

Cr
iti

ca
l w

or
k

lo
ad

MK02

25
30

35

140
145

150
25

30

35

MakespanTotal work load

Cr
iti

ca
l w

or
k

lo
ad

MK03

200 250
300

350

800
850

900
100

200

300

400

Makespan
Total work load

Cr
iti

ca
l w

or
k

lo
ad

MK04

50
100

150

300
350

400
50

100

150

Makespan
Total work load

Cr
iti

ca
l w

or
k

lo
ad

MK05

170 180 190 200 210

670
680

690
160

180

200

220

Makespan
Total work load

Cr
iti

ca
l w

or
k

lo
ad

MOMAD
PF

MK06

40 60
80 100 120

300
400

500
40

60

80

100

Makespan
Total work load

Cr
iti

ca
l w

or
k

lo
ad

MOMAD
PF

Figure 5: Final nondominated solutions of MK01∼Mk06 instance found by MOMAD.

6.5. Impacts of Parameters Settings

(1) Impacts of Population Size 𝑁. Since population size 𝑁 is
an important parameter for MOMAD, we test the sensitivity
of MOMAD to different settings of 𝑁 for MK04. All other
parameters except 𝑁 are the same as shown in Table 2. The
algorithm independently runs 10 times with each different𝑁 independently. As clearly shown in Table 14, the HV
value changes weakly with the increasing of 𝑁. The IGD
value decreases at first; then it will have a growing tendency.
Totally speaking, MOMAD is not significantly sensitive to
population size 𝑁, and properly increasing value of 𝑁 can
improve the algorithm performance to some extent.

(2) Impacts of Neighborhood Size 𝑇. 𝑇 is another key param-
eter in MOMAD. With the aim of studying the sensitivity
of 𝑇, MOMAD is implemented by setting different values
of 𝑇 and keeps other parameter settings unchanged. We

run the MOMAD with each 𝑇 10 times independently for
MK06. Table 14 shows how the IGD and HV values change
along with the increasing of 𝑇 from where we can obtain the
same observations. Both values are enhanced first with the
increasing of 𝑇; then the algorithm performance is degraded
with the continuous increasing. So the influence of 𝑇 on
MOMAD is similar to𝑁.

7. Conclusions and Future Work

This paper solves the MOFJSP in a decomposition manner
for the purpose of simultaneously minimizing makespan,
total workload, and critical workload. To propose an effec-
tive MOMAD algorithm, the framework of MOEA/D is
adopted. First, a mixture of different machine assignment
and operation sequencing rules is utilized to generate an
initial population. Then, objective normalization technique

Mathematical Problems in Engineering 17

MK07

100
150

200
250

0

500

1000
100

150

200

250

Makespan
Total workload

Cr
iti

ca
l w

or
kl

oa
d

MK08

Cr
iti

ca
l w

or
kl

oa
d

500
550

600

2450

2500

2550
450

500

550

600

Makespan
Total workload

MK09

300
400

500

2200

2300

2400
200

300

400

500

Makespan
Total workload

Cr
iti

ca
l w

or
kl

oa
d

MOMAD
PF

MK10

Cr
iti

ca
l w

or
kl

oa
d

150
200

250
300

1800

2000

2200
150

200

250

300

Makespan
Total workload

MOMAD
PF

Figure 6: Final nondominated solutions of MK07∼Mk10 instance found by MOMAD.

Table 13: The average CPU time (in seconds) consumed by different algorithms on Kacem and BRdata instances.

Instance Algorithm
MOMADa MOGAb HSFLAc HMOEAd hDPSOe PRMOTS + ISf

ka 4 × 5 1.96 5.8 1.26 3.09 — —
ka 8 × 8 2.69 9.5 — 9.69 8.2 —
ka 10 × 7 3.78 — 10.14 14.52 — —
ka 10 × 10 5.50 14.2 — 14.41 11.7 —
ka 15 × 10 15.28 87.5 21.13 32.46 81.6 —
MK01 7.02 29.4 172.18 47.27 23.6 58.3
MK02 13.73 45.0 229.56 51.26 25.8 61.7
MK03 22.28 285.0 139.87 318.13 70.3 185.8
MK04 16.84 105.6 426.12 — 66.3 86.1
MK05 16.93 140.4 153.12 — 127.8 91.1
MK06 59.05 115.8 577.80 — 122.5 218.2
MK07 30.02 295.2 185.23 — 231.2 101.3
MK08 32.93 722.4 165.48 1674.14 147.1 560.6
MK09 46.59 1168.8 565.70 — 723.4 794.1
MK10 97.58 1072.2 1072.20 — 883.6 822.8
aThe CPU time on an Intel Core i3-4170 CPU 3.7GHz processor in C++. bThe CPU time on a 2GHz processor in C++. cThe CPU time on a Pentium IV
1.8 GHz processor in C++. dThe CPU time on an Intel Core(TM)2 Duo CPU 2.66GHz processor in C♯. eThe CPU time on a 2GHz processor in C++. fThe
CPU time on an Intel Core TM2 T8100 CPU 2.1 GHz processor in C♯.

18 Mathematical Problems in Engineering

Table 14: IGD and HV metric corresponding to different𝑁 and 𝑇.
MK04 MK06𝑁(𝐻) IGD HV 𝑇 IGD HV55(8) 0.0465 1.1332 6 0.0448 0.9397120(14) 0.0361 1.1380 12 0.0417 0.9547153(16) 0.0437 1.1296 24 0.0402 0.9533210(19) 0.0364 1.1338 48 0.0426 0.9463253(21) 0.0326 1.1383 96 0.0487 0.9348300(23) 0.0417 1.1336 120 0.0502 0.9360

is used in Tchebycheff approach, and the MOP is converted
into many single-objective optimization subproblems. By
clustering the weight vectors into different groups, a local
exploitation based on moving critical operations is incorpo-
rated in MOEA/D and applied on candidate solutions with
best aggregation function compared with solutions whose
weight vectors belong to the same group.After embedding the
local search into MOEA/D, our MOMAD is established. In
simulation experiments, the Tchebycheff approach is studied
to be more suitable for using in MOEA/D framework than
WS and PBI approaches, and the effectiveness of local search
is also verified. Moreover, MOMAD is compared with eight
competitive algorithms in terms of three quantitativemetrics.
Finally, the effect of two key parameters, population size and
neighborhood size, are analysed. Extensive computational
results and comparisons indicate that the proposedMOMAD
outperforms or at least has a comparative performance to
other representative approaches, and MOMAD is fit to solve
MOFJSP.

In the future, we want to study the MOFJSP with more
than three objectives at first. Second, it would be significant to
introduce a novel local search method which considers mov-
ing more than one critical operation. Finally, it would also
be interesting to apply the MOMAD to dynamic scheduling
problem.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This research work is supported by the National Science
Foundation of China (no. 61572238) and the Provincial
Outstanding Youth Foundation of Jiangsu Province (no.
BK20160001).

References

[1] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of
flowshop and jobshop scheduling,” Mathematics of Operations
Research, vol. 1, no. 2, pp. 117–129, 1976.

[2] M. Mastrolilli and L. M. Gambardella, “Effective neighbour-
hood functions for the flexible job shop problem,” Journal of
Scheduling, vol. 3, no. 1, pp. 3–20, 2000.

[3] G. Zhang, L. Gao, and Y. Shi, “An effective genetic algorithm for
the flexible job-shop scheduling problem,” Expert Systems with
Applications, vol. 38, no. 4, pp. 3563–3573, 2011.

[4] L.Wang, S. Wang, Y. Xu, G. Zhou, andM. Liu, “A bi-population
based estimation of distribution algorithm for the flexible job-
shop scheduling problem,”Computers & Industrial Engineering,
vol. 62, no. 4, pp. 917–926, 2012.

[5] Y. Yuan and H. Xu, “An integrated search heuristic for large-
scale flexible job shop scheduling problems,” Computers &
Operations Research, vol. 40, no. 12, pp. 2864–2877, 2013.

[6] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–
197, 2002.

[7] Q. Zhang and H. Li, “MOEA/D: a multiobjective evolutionary
algorithm based on decomposition,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007.

[8] H. Li and Q. Zhang, “Multi-objective optimization problems
with complicated pareto sets, MOEA/D and NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 13, no. 2, pp.
284–302, 2009.

[9] Q. Zhang, W. Liu, E. Tsang, and B. Virginas, “Expensive
multiobjective optimization byMOEA/Dwith gaussian process
model,” IEEE Transactions on Evolutionary Computation, vol.
14, no. 3, pp. 456–474, 2010.

[10] Y.-Y. Tan, Y.-C. Jiao, H. Li, and X.-K. Wang, “A modification
toMOEA/D-DE formultiobjective optimization problems with
complicated Pareto sets,” Information Sciences, vol. 213, pp. 14–
38, 2012.

[11] Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao, “A new
dominance relation-based evolutionary algorithm for many-
objective optimization,” IEEE Transactons on Evolutionary
Computation, vol. 20, no. 1, pp. 16–37, 2016.

[12] Y. Yuan, H. Xu, B. Wang, B. Zhang, and X. Yao, “Balancing
Convergence and Diversity in Decomposition-Based Many-
ObjectiveOptimizers,” IEEETransactions on EvolutionaryCom-
putation, vol. 20, no. 2, pp. 180–198, 2016.

[13] P. C. Chang, S. H. Chen, Q. Zhang, and J. L. Lin, “MOEA/D
for flowshop scheduling problems,” in Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’08), pp. 1433–
1438, Hong Kong, June 2008.

[14] A. Alhindi and Q. Zhang, “MOEA/D with Tabu Search for
multiobjective permutation flow shop scheduling problems,”
in Proceedings of the 2014 IEEE Congress on Evolutionary
Computation, CEC 2014, pp. 1155–1164, China, July 2014.

[15] X.-N. Shen, Y. Han, and J.-Z. Fu, “Robustness measures and
robust scheduling for multi-objective stochastic flexible job
shop scheduling problems,” Soft Computing, pp. 1–24, 2016.

[16] F. Zhao, Z. Chen, J. Wang, and C. Zhang, “An improved
MOEA/D for multi-objective job shop scheduling problem,”
International Journal of Computer Integrated Manufacturing,
vol. 30, no. 6, pp. 616–640, 2017.

[17] W. Xia and Z. Wu, “An effective hybrid optimization approach
for multi-objective flexible job-shop scheduling problems,”
Computers & Industrial Engineering, vol. 48, no. 2, pp. 409–425,
2005.

[18] J. Gao, M. Gen, L. Sun, and X. Zhao, “A hybrid of genetic
algorithm and bottleneck shifting for multiobjective flexible job
shop scheduling problems,” Computers & Industrial Engineer-
ing, vol. 53, no. 1, pp. 149–162, 2007.

Mathematical Problems in Engineering 19

[19] G. H. Zhang, X. Y. Shao, P. G. Li, and L. Gao, “An effec-
tive hybrid particle swarm optimization algorithm for multi-
objective flexible job-shop scheduling problem,” Computers &
Industrial Engineering, vol. 56, no. 4, pp. 1309–1318, 2009.

[20] L.-N. Xing, Y.-W. Chen, and K.-W. Yang, “An efficient search
method for multi-objective flexible job shop scheduling prob-
lems,” Journal of Intelligent Manufacturing, vol. 20, no. 3, pp.
283–293, 2009.

[21] J.-Q. Li, Q.-K. Pan, and Y.-C. Liang, “An effective hybrid
tabu search algorithm for multi-objective flexible job-shop
scheduling problems,” Computers & Industrial Engineering, vol.
59, no. 4, pp. 647–662, 2010.

[22] S. Wang, L. Wang, M. Liu, and Y. Xu, “An estimation of
distribution algorithm for the multi-objective flexible job-shop
scheduling problem,” inProceedings of the 2013 IEEE Symposium
on Computational Intelligence in Scheduling, CISched 2013 -
2013 IEEE SymposiumSeries onComputational Intelligence, SSCI
2013, pp. 1–8, Singapore, April 2013.

[23] I. Kacem, S. Hammadi, and P. Borne, “Pareto-optimality
approach for flexible job-shop scheduling problems: hybridiza-
tion of evolutionary algorithms and fuzzy logic,” Mathematics
andComputers in Simulation, vol. 60, no. 3-5, pp. 245–276, 2002.

[24] N. B. Ho and J. C. Tay, “Solving multiple-objective flexible job
shop problems by evolution and local search,” IEEE Transac-
tions on Systems,Man, and Cybernetics, Part C: Applications and
Reviews, vol. 38, no. 5, pp. 674–685, 2008.

[25] X. Wang, L. Gao, C. Zhang, and X. Shao, “A multi-objective
genetic algorithm based on immune and entropy principle
for flexible job-shop scheduling problem,” The International
Journal of Advanced Manufacturing Technology, vol. 51, no. 5-8,
pp. 757–767, 2010.

[26] M. Frutos, A. C. Olivera, and F. Tohm, “A memetic algorithm
based on a NSGAII scheme for the flexible job-shop scheduling
problem,” Annals of Operations Research, vol. 181, pp. 745–765,
2010.

[27] Y. Yuan and H. Xu, “Multiobjective flexible job shop scheduling
using memetic algorithms,” IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 1, pp. 336–353, 2015.

[28] J.-Q. Li, Q.-K. Pan, and J. Chen, “A hybrid Pareto-based local
search algorithm for multi-objective flexible job shop schedul-
ing problems,” International Journal of Production Research, vol.
50, no. 4, pp. 1063–1078, 2012.

[29] T.-C. Chiang andH.-J. Lin, “A simple and effective evolutionary
algorithm for multiobjective flexible job shop scheduling,”
International Journal of Production Economics, vol. 141, no. 1, pp.
87–98, 2013.

[30] J. Xiong, X. Tan, K. Yang, L. Xing, and Y. Chen, “A Hybrid
Multiobjective Evolutionary Approach for Flexible Job-Shop
Scheduling Problems,” Mathematical Problems in Engineering,
vol. 2012, pp. 1–27, 2012.

[31] L. Wang, S. Y. Wang, and M. Liu, “A Pareto-based estimation
of distribution algorithm for the multi-objective flexible job-
shop scheduling problem,” International Journal of Production
Research, vol. 51, no. 12, pp. 3574–3592, 2013.

[32] S. Jia and Z.-H. Hu, “Path-relinking Tabu search for the multi-
objective flexible job shop scheduling problem,” Computers &
Operations Research, vol. 47, pp. 11–26, 2014.

[33] G. Moslehi and M. Mahnam, “A Pareto approach to multi-
objective flexible job-shop scheduling problem using particle
swarm optimization and local search,” International Journal of
Production Economics, vol. 129, no. 1, pp. 14–22, 2011.

[34] X. Shao, W. Liu, Q. Liu, and C. Zhang, “Hybrid discrete par-
ticle swarm optimization for multi-objective flexible job-shop
scheduling problem,” The International Journal of Advanced
Manufacturing Technology, vol. 67, no. 9–12, pp. 2885–2901,
2013.

[35] L. C. F. Carvalho andM.A. Fernandes, “Multi-objective Flexible
Job-Shop scheduling problem with DIPSO: More diversity,
greater efficiency,” in Proceedings of the 2014 IEEE Congress on
Evolutionary Computation, CEC 2014, pp. 282–289, China, July
2014.

[36] N. Tian and Z. Ji, “Pareto-ranking based quantum-behaved
particle swarm optimization for multiobjective optimization,”
Mathematical Problems in Engineering, vol. 2015, Article ID
940592, 10 pages, 2015.

[37] J. Li, Q. Pan, and S. Xie, “An effective shuffled frog-leaping
algorithm for multi-objective flexible job shop scheduling
problems,” Applied Mathematics and Computation, vol. 218, no.
18, pp. 9353–9371, 2012.

[38] L. Wang, G. Zhou, Y. Xu, and M. Liu, “An enhanced Pareto-
based artificial bee colony algorithm for the multi-objective
flexible job-shop scheduling,” The International Journal of
Advanced Manufacturing Technology, vol. 60, no. 9–12, pp. 1111–
1123, 2012.

[39] Q. Zhang, H. Li, D. Maringer, and E. Tsang, “MOEA/D with
NBI-style Tchebycheff approach for portfolio management,”
in Proceedings of the 2010 6th IEEE World Congress on Com-
putational Intelligence, WCCI 2010 - 2010 IEEE Congress on
Evolutionary Computation, CEC 2010, Spain, July 2010.

[40] Y. Mei, K. Tang, and X. Yao, “Decomposition-based memetic
algorithm for multiobjective capacitated arc routing problem,”
IEEE Transactions on Evolutionary Computation, vol. 15, no. 2,
pp. 151–165, 2011.

[41] V. A. Shim, K. C. Tan, and C. Y. Cheong, “A hybrid estimation
of distribution algorithm with decomposition for solving the
multiobjective multiple traveling salesman problem,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, vol. 42, no. 5, pp. 682–691, 2012.

[42] L. Ke and Q. Zhang, “Multiobjective combinatorial optimiza-
tion by using decomposition and ant colony,” IEEE Transactions
on Cybernetics, vol. 43, no. 6, pp. 1845–1859, 2013.

[43] L. Ke andQ. Zhang, “Hybridzation ofDecomposition and Local
Search for Multiobjective Optimization,” IEEE Transactions on
Cybernetics, vol. 44, no. 44, pp. 1808–1819, 2014.

[44] I. Kacem, S. Hammadi, and P. Borne, “Approach by localization
and multiobjective evolutionary optimization for flexible job-
shop scheduling problems,” IEEETransactions on Systems,Man,
and Cybernetics, Part C: Applications and Reviews, vol. 32, no. 1,
pp. 1–13, 2002.

[45] K. Deb and H. Jain, “An evolutionary many-objective optimiza-
tion algorithm using reference-point- based nondominated
sorting approach, part I: solving problemswith box constraints,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 4,
pp. 577–601, 2014.

[46] S.-K. Zhao, S.-L. Fang, and X.-J. Gu, “Machine selection and
FJSP solution based on limit scheduling completion time min-
imization,” Jisuanji Jicheng Zhizao Xitong/Computer Integrated
Manufacturing Systems, CIMS, vol. 20, no. 4, pp. 854–865, 2014.

[47] F. Pezzella, G.Morganti, and G. Ciaschetti, “A genetic algorithm
for the flexible job-shop scheduling problem,” Computers &
Operations Research, vol. 35, no. 10, pp. 3202–3212, 2008.

[48] K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X. Cai, and
C. S. Chong, “Pareto-based grouping discrete harmony search

20 Mathematical Problems in Engineering

algorithm for multi-objective flexible job shop scheduling,”
Information Sciences, vol. 289, pp. 76–90, 2014.

[49] P. Brandimarte, “Routing and scheduling in a flexible job shop
by tabu search,”Annals of Operations Research, vol. 41, no. 3, pp.
157–183, 1993.

[50] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V.
G. Da Fonseca, “Performance assessment of multiobjective
optimizers: an analysis and review,” IEEE Transactions on
Evolutionary Computation, vol. 7, no. 2, pp. 117–132, 2003.

[51] E. Zitzler and L. Thiele, “Multiobjective evolutionary algo-
rithms: A comparative case study and the strength Pareto
approach,” IEEETransactions onEvolutionaryComputation, vol.
3, no. 4, pp. 257–271, 1999.

[52] J. Demsar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7, pp. 1–30,
2006.

[53] S. Dauzère-Pérès and J. Paulli, “An integrated approach for
modeling and solving the general multiprocessor job-shop
scheduling problem using tabu search,” Annals of Operations
Research, vol. 70, pp. 281–306, 1997.

[54] J. Bader and E. Zitzler, “HypE: an algorithm for fast hypervol-
ume-based many-objective optimization,” Evolutionary Com-
putation, vol. 19, no. 1, pp. 45–76, 2011.

Submit your manuscripts at
https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

