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In multiproduct single-period inventory management problem (MSIMP), the optimal order quantity often depends on the
distributions of uncertain parameters. However, the distribution information about uncertain parameters is usually partially
available. To model this situation, a MSIMP is studied by credibilistic optimization method, where the uncertain demand and
carbon emission are characterized by variable possibility distributions. First, the uncertain demand and carbon emission are
characterized by generalized parametric interval-valued (PIV) fuzzy variables, and the analytical expressions about themean values
and second-ordermoments of selection variables are established. Taking second-ordermoment as a riskmeasure, a new credibilistic
multiproduct single-period inventorymanagement model is developed undermean-moment optimization criterion. Furthermore,
the proposed model is converted to its equivalent deterministic model. Taking advantage of the structural characteristics of the
deterministicmodel, a domain decompositionmethod is designed to find the optimal order quantities. Finally, a numerical example
is provided to illustrate the efficiency of the proposed mean-moment credibilistic optimization method.The computational results
demonstrate that a small perturbation of the possibility distribution can make the nominal optimal solution infeasible. In this case,
the decision makers should employ the proposed credibilistic optimization method to find the optimal order quantities.

1. Introduction

The MSIMP is a classical inventory management problem.
In order to maximize (minimize) the total expected profit
(cost), the decision makers have to make the optimal order
quantities at the beginning of the period. At the end of
the selling period, either stock-out or excess inventory will
occur. The two possibilities should be considered during
the decision-making process. The popularity of the MSIMP
is due to its applicability in retailing and manufacturing
industries. Hadley and Whitin [1] first considered a MSIMP
with storage capacity or budget constraints and proposed
a dynamic programming solution procedure to find the
optimal order quantities. Since then, many researchers have
developed stochastic MSIMP. For instance, Nahmias and
Schmidt [2] discussed the MSIMP under the linear and
deterministic constraints on budget or space. H.-S. Lau and

A. H. L. Lau [3] extended the MSIMP to handle multicon-
straint and presented a Lagrangian-based numerical solution
procedure for the MSIMP. When the conditions of closed-
form expressions did not hold, Erlebacher [4] proposed an
effective heuristic solution. Moon and Silver [5] dealt with
the MSIMP subject to not only a budget constraint on the
total value of the replenishment quantities but also fixed
costs for nonzero replenishment. Furthermore, Abdel-Malek
et al. [6] considered a MSIMP under a budget constraint
with probabilistic demand and random yield. Zhang [7]
considered theMSIMPwith both supplier quantity discounts
and a budget constraint and formulated it as a mixed
integer nonlinear programming model. In order to deal
with the possible shortage of limited capacity, Zhang and
Du [8] discussed zero lead time outsourcing strategy and
nonzero lead time outsourcing strategy. They also developed
the structural properties and solution procedures for their
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profit-maximization models. Abdel-Malek and Montanari
[9] proposed a methodology for studying the dual of the
solution space of the MSIMP with two constraints and intro-
duced an approach to obtain the optimal order quantities
of each product. In addition, Huang et al. [10] studied a
competitive MSIMP with shortage penalty cost and partial
product substitution. In view of risk preference, Özler et al.
[11] proposed the MSIMP under a Value at Risk constraint.
Van Ryzin and Mahajan [12] reviewed the contributions to
multiproduct inventory problem with demand substitution.
Under mean-variance and utility function approaches, Van
Mieghem [13] studied multiproduct single-period networks’
problems in probabilistic framework.

When the exact probability distribution of demand is
unavailable, probabilistic robust optimization method [14] is
a tool to deal with the corresponding uncertainty in inventory
management problem. Based on the assumption that demand
was described by discrete or interval scenarios, Vairaktarakis
[15] discussed several minimax regret formulations for the
MSIMP with a budget constraint. When the distribution
of demand had known support, mean, and variance, Kam-
burowski [16] presented the theoretical foundations for ana-
lyzing the inventory management problem. They derived the
closed-form formulas for the worst-case and best-case order
quantities. Shu et al. [17] considered the distribution-free
single-period inventory management problem by borrowing
an economic theory from transportation disciplines. Moon
et al. [18] found the differences between normal distribution
approaches and distribution-free approaches in four scenar-
ios with mean and variance. Under interval demand uncer-
tainty, Solyali et al. [19] proposed a new robust formulation
which could solve the intractability issue for large problem
instances. As for recent development in stochastic inventory
management problems, the interested reader may further
refer to [20–24].

Most of the extensions of inventorymanagement problem
have been made in the probabilistic framework, where
uncertain parameters are characterized by random variables.
However, in some cases, there are not enough data to deter-
mine the exact probability distribution of random variable
because of economic reason or technical difficulty. In such
a case, the variable is approximately specified based on the
experiences and subjective judgments of the experts in related
fields, so fuzzy inventory management problem is also an
active research area. Fuzzy set theory was applied in the early
inventorymanagement literature [25, 26]. In the area of fuzzy
MSIMP, Mandal and Roy [27] considered a multiproduct
displayed inventory model under shelf-space constraint in
fuzzy environment, where the demand rate of a product was
considered as a function of the displayed inventory level.
Under fuzzy demand environment, Ji and Shao [28] studied
the MSIMP and formulated three kinds of models. Dutta
[29] formulated a fuzzy MSIMP model whose objective was
to maximize the total profit by considering fuzzy demands.
In fuzzy-stochastic environment, Saha et al. [30] developed
multiproduct multiobjective supply chain models with bud-
get and risk constraints, where themanufacturing costs of the
items were fuzzy variables and the demands for the products
were random variables. Based on credibility measure, Guo

[31] proposed two single-period inventory models, where
the uncertain demands were characterized by discrete and
continuous possibility distributions, respectively. Tian and
Guo [32] formulated a credibilistic optimization model for
a single-product single-period inventory problem with two
suppliers.

The work mentioned above studied inventory manage-
ment problem under the assumption that the exact possibility
distribution of fuzzy variable was available, which motivates
us to study the MSIMP from a new perspective. The motiva-
tion of this paper is based on the following considerations.
First, shorter product life cycles and growing innovation
rates make the market demand extremely variable. In this
case, the distribution information about market demand is
only partially available. It is reasonable to assume that the
exact possibility distribution is embodied in a zonal area
for a practical MSIMP, so the interval-valued fuzzy variable
is introduced to characterize uncertain market demand.
Second, the optimal order quantities for different products
are heavily influenced by the carbon emission constraint. In
some practical inventorymanagement problems, it is difficult
to determine the exact carbon emission during logistic
activities. Under credibilistic carbon emission constraint, a
parametric credibilistic optimization model is developed for
MSIMP. To the best of our knowledge, this issue has not been
addressed in the literature.

This paper studies MSIMP by parametric credibilistic
optimization method, where uncertain market demand and
uncertain carbon emission are characterized by generalized
PIV possibility distributions. Decision makers can make
informed decisions based on a tradeoff model between the
mean total profit and the second-ordermoment of total profit
under budget constraint and uncertain carbon emission
constraint. The strength of the proposed method is that the
distributions of market demand and carbon emission can be
tailored to the partial information at hand. That is, when
the distribution information about uncertain parameters is
partially available, the proposed method is more convenient
for modeling uncertain demand and carbon emission in a
practical MSIMP. The proposed credibilistic optimization
method differs from the existing MSIMP literature in the
following several aspects. (i) A novel method is introduced
to model the perturbation distributions of uncertain demand
and carbon emission, which is different from the existing
literature. (ii) For PIV fuzzy variable, its lambda selection
variable is introduced as its representative; the possibility
distribution of lambda selection can traverse the entire
support of the PIV fuzzy variable as the lambda parameter
varies its values. (iii) On the basis of L-Smultiple integral, two
new optimization indexes, mean and second-order moment,
about the total profit are defined to build a parametric cred-
ibilistic optimization model under credibilistic constraint
of carbon emission. (iv) A domain decomposition method
is designed to divide the original credibilistic optimization
model into several equivalent parametric programming sub-
models, which can be solved by conventional optimization
software.

The remainder of this paper is organized as follows.
After introducing some basic concepts in fuzzy possibility
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theory, Section 2 discusses the properties about generalized
PIV fuzzy variable and its selection variable. In Section 3,
a new parametric credibilistic optimization model is first
developed for MSIMP, where uncertain demand and uncer-
tain carbon emission are characterized by variable possibility
distributions. Then the equivalent deterministic model of
the proposed parametric credibilistic optimization model
is discussed in this section. A new domain decomposition
method is also designed in this section to find the optimal
order quantities. In Section 4, some numerical experiments
are conducted to demonstrate the validity of the proposed
credibilistic optimizationmethod. Section 5 gives the conclu-
sion of the paper.

2. Generalized PIV Fuzzy Variables

First, in this section, some basic concepts in fuzzy possibility
theory are recalled [33–36].

Let Γ be the universe of discourse,P(Γ) the power set ofΓ, and P̃os: P(Γ) 󳨃→ R([0, 1]) a fuzzy possibility measure.
The triplet (Γ,P(Γ), P̃os) is called a fuzzy possibility space.

Let 𝜉 be a type 2 fuzzy variable defined on the space(Γ,P(Γ), P̃os). If, for any 𝑟 ∈ R, the secondary possibility
distribution function 𝜇𝜉(𝑟) = P̃os{𝜉 = 𝑟} is a subinterval[𝜇𝜉𝐿(𝑟; 𝜃𝑙), 𝜇𝜉𝑈(𝑟; 𝜃𝑟)] of [0, 1], then 𝜉 is called a PIV fuzzy vari-
able, where 𝜃𝑙, 𝜃𝑟 ∈ [0, 1] are two parameters characterizing
the degree of uncertainty that 𝜉 takes the value 𝑟.

A type 2 fuzzy variable 𝜉 is called a generalized PIV
normal fuzzy variable [36], if its secondary possibility distri-
bution is the subinterval

[(1 − 𝜃𝑙) 𝑒−(𝑟−𝜇)2/2𝜎2 , 𝑒−(𝑟−𝜇)2/2𝜎2 + (1 − 𝑒−(𝑟−𝜇)2/2𝜎2) 𝜃𝑟] (1)

of [0, 1] for 𝑟 ∈ R, where 𝜇 ∈ R, 𝜎 > 0 and 𝜃𝑙, 𝜃𝑟 ∈ [0, 1] are
two parameters characterizing the degree of uncertainty that𝜉 takes on the value 𝑟. When 𝜃𝑙 = 𝜃𝑟 = 0, the corresponding
fuzzy variable is denoted by 𝜉𝑛, whose possibility distribution
is called the nominal possibility distribution of 𝜉. In the
following, 𝜉 ∼ 𝑛(𝜇, 𝜎2; 𝜃𝑙, 𝜃𝑟) means that 𝜉 is a generalized
PIV normal fuzzy variable.

A type 2 fuzzy variable 𝜂 is called a generalized PIV
triangular fuzzy variable [36], if its secondary possibility
distribution is the subinterval [(𝑟 − 𝑟1)/(𝑟2 − 𝑟1) − 𝜃𝑙((𝑟 −𝑟1)/(𝑟2 − 𝑟1)), (𝑟 − 𝑟1)/(𝑟2 − 𝑟1) + 𝜃𝑟((𝑟2 − 𝑟)/(𝑟2 − 𝑟1))] of[0, 1], for 𝑟 ∈ [𝑟1, 𝑟2], and the subinterval [(𝑟3 − 𝑟)/(𝑟3 −𝑟2) − 𝜃𝑙((𝑟3 − 𝑟)/(𝑟3 − 𝑟2)), (𝑟3 − 𝑟)/(𝑟3 − 𝑟2) + 𝜃𝑟((𝑟 −𝑟2)/(𝑟3 − 𝑟2))] of [0, 1] for 𝑟 ∈ [𝑟2, 𝑟3], where 𝑟1 < 𝑟2 <𝑟3 are real numbers and 𝜃𝑙, 𝜃𝑟 ∈ [0, 1] are two parameters
characterizing the degree of uncertainty that 𝜂 takes on the
value 𝑟. When 𝜃𝑙 = 𝜃𝑟 = 0, the corresponding fuzzy variable
is denoted by 𝜂𝑛, whose possibility distribution is called
the nominal possibility distribution of 𝜂. In the following,𝜂 ∼ Tri(𝑟1, 𝑟2, 𝑟3; 𝜃𝑙, 𝜃𝑟) means that 𝜂 is a generalized PIV
triangular fuzzy variable.

For a PIV fuzzy variable, its lambda selection is defined in
[34]. Assume that 𝜉 is a PIV fuzzy variable with the secondary
possibility distribution 𝜇𝜉(𝑟) = [𝜇𝜉𝐿(𝑟; 𝜃𝑙), 𝜇𝜉𝑈(𝑟; 𝜃𝑟)]. For any𝜆 ∈ [0, 1], a fuzzy variable 𝜉𝜆 is called a lambda selection

of 𝜉 if 𝜉𝜆 has the following generalized parametric possibility
distribution:

𝜇𝜉𝜆 (𝑟; 𝜃𝑙, 𝜃𝑟) = (1 − 𝜆) 𝜇𝜉𝐿 (𝑟; 𝜃𝑙) + 𝜆𝜇𝜉𝑈 (𝑟; 𝜃𝑟) . (2)

Obviously, the possibility distribution of lambda selection
variable depends on the parameter 𝜆. That is, the possibility
distribution of lambda selection variable can traverse the
entire support of PIV fuzzy variable as the lambda parameter
varies its value in the interval [0, 1].

Based on L-S integral [37], the mean value of a fuzzy
variable 𝜉 is defined as

𝐸 (𝜉) = ∫
(−∞,+∞)

𝑟 dCr {𝜉 ≤ 𝑟} , (3)

where the credibility Cr{𝜉 ≤ 𝑟} is computed by

Cr {𝜉 ≤ 𝑟} = 12 {sup
𝑥∈R

𝜇𝜉 (𝑥; 𝜃𝑙, 𝜃𝑟) + sup
𝑥≤𝑟

𝜇𝜉 (𝑥; 𝜃𝑙, 𝜃𝑟)
− sup
𝑥>𝑟

𝜇𝜉 (𝑥; 𝜃𝑙, 𝜃𝑟)} .
(4)

In addition, the second-order moment of a fuzzy variable𝜉 is defined as

𝑀(𝜉) = ∫
(−∞,+∞)

[𝑟 − 𝐸 (𝜉)]2 dCr {𝜉 ≤ 𝑟} , (5)

where 𝐸(𝜉) is the mean value of 𝜉 defined by (3).
For lambda selection variable, its mean value and second-

order moment are important optimization indices in the
MSIMP. The following theorems establish their analytical
expressions, which will be used in the rest of the paper. For
the sake of presentation, the proofs of the following theorems
are provided in the appendix.

Theorem1. Let 𝜉𝜆 be a lambda selection of the generalized PIV
normal fuzzy variable 𝑛(𝜇, 𝜎2; 𝜃𝑙, 𝜃𝑟). Then the mean value of
the lambda selection 𝜉𝜆 is

𝐸 (𝜉𝜆) = 𝜔𝜇, (6)

where 𝜔 = 1 − (1 − 𝜆)𝜃𝑙 − 𝜆𝜃𝑟.
Theorem 2. Let 𝜂𝜆 be a lambda selection of the generalized
PIV triangular fuzzy variable (𝑟1, 𝑟2, 𝑟3; 𝜃𝑙, 𝜃𝑟). Then the mean
value of the lambda selection 𝜂𝜆 is

𝐸 (𝜂𝜆) = [1 − (1 − 𝜆) 𝜃𝑙] 𝑟1 + 2𝑟2 + 𝑟34
+ 14𝜆𝜃𝑟 (𝑟1 − 2𝑟2 + 𝑟3) .

(7)

Theorem 3. Let 𝜉𝜆 be a lambda selection of the generalized
PIV normal fuzzy variable 𝑛(𝜇, 𝜎2; 𝜃𝑙, 𝜃𝑟). Then the second-
order moment of the lambda selection 𝜉𝜆 is

𝑀(𝜉𝜆) = 𝜔 [2𝜎2 + (𝜔 − 1)2 𝜇2] . (8)
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Theorem 4. Let 𝜂𝜆 be a lambda selection of the general-
ized PIV triangular fuzzy variable (𝑟1, 𝑟2, 𝑟3; 𝜃𝑙, 𝜃𝑟). Then the
second-order moment of the lambda selection 𝜂𝜆 is

𝑀(𝜂𝜆)
= 12𝜆𝜃𝑟 [(𝑟1 − 𝑚)2 + (𝑟3 − 𝑚)2]

+ 1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟6 (𝑟2 − 𝑟1) [(𝑟2 − 𝑚)3 − (𝑟1 − 𝑚)3]
+ 1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟6 (𝑟3 − 𝑟2) [(𝑟3 − 𝑚)3 − (𝑟2 − 𝑚)3] ,

(9)

where𝑚 = 𝐸(𝜂𝜆).
In the next section, the distribution information about

uncertain demand and uncertain carbon emission is partially
available and characterized by generalized PIV normal fuzzy
variable and triangular fuzzy variable, respectively.

3. Credibilistic Optimization
Model for MSIMP

In order to model MSIMP, some necessary notations are
provided in the following subsection.

3.1. Notations

Fixed Parameters

𝑛: number of products𝑖: product index, 𝑖 = 1, 2, . . . , 𝑛𝑐𝑖: procurement cost for unit product 𝑖𝑔𝑖: goodwill cost for unit unmet demand of product 𝑖𝑝𝑖: retailer’s sales price for unit product 𝑖𝑠𝑖: salvage value for unit residual product 𝑖𝜃𝑙𝑖: downward perturbation degree of nominal possi-
bility distribution for product 𝑖𝜃𝑟𝑖: upward perturbation degree of nominal possibil-
ity distribution for product 𝑖𝜆𝑖: lambda selection parameter of demand distribu-
tion for product 𝑖𝜇𝜆𝑖 : mean value of the lambda selection variable for
product 𝑖𝐷𝑖: largest market demand for product 𝑖𝐵: total investment amount𝐾: total carbon emission allowance from government𝛽: predetermined confidence level𝑁+: the set of nonnegative integers

Decision Variables

𝑄𝑖: retailer’s order quantity for product 𝑖

Uncertain Parameters

𝜉𝑖: uncertain market demand with variable possibility
distribution

𝜂𝑖: uncertain carbon emission due to logistic activities
for product 𝑖
𝜋: uncertain profit for retailer

3.2. Credibilistic OptimizationModel and Its Equivalent Deter-
ministic Form. In this subsection, aMSIMP is studied, where
the uncertain demand and uncertain carbon emission are
characterized by generalized PIV fuzzy variables. At the
beginning of selling season, the retailer is interested in deter-
mining the order quantity𝑄𝑖 for product 𝑖 to satisfy customer
demand for each product. For product 𝑖, the distribution
information of uncertain demand is only partially known
based on the experts’ experiences or subjective judgments.
Assume that the uncertain demand for product 𝑖 (𝑖 =1, 2, . . . , 𝑛) is characterized by generalized PIV normal fuzzy
variable 𝜉𝑖 = 𝑛(𝜇𝑖, 𝜎2𝑖 ; 𝜃𝑙𝑖, 𝜃𝑟𝑖), 𝑖 = 1, 2, . . . , 𝑛, and the largest
market demand for product 𝑖 is no more than 𝐷𝑖. At the end
of the period, if 𝑄𝑖 ≥ 𝜉𝑖, then 𝑄𝑖 − 𝜉𝑖 units are salvaged for a
per-unit revenue 𝑠𝑖, and if𝑄𝑖 < 𝜉𝑖, then 𝜉𝑖−𝑄𝑖 units represent
lost sales cost for a per-unit cost 𝑔𝑖.

The profit for the retailer stemming from the sales of
product 𝑖 is represented as

𝜋 (𝑄𝑖, 𝜉𝑖) = (𝑝𝑖 − 𝑐𝑖) 𝜉𝑖 − (𝑐𝑖 − 𝑠𝑖) (𝑄𝑖 − 𝜉𝑖)+
− (𝑝𝑖 − 𝑐𝑖 + 𝑔𝑖) (𝜉𝑖 − 𝑄𝑖)+ (10)

for 𝑖 = 1, 2, . . . , 𝑛, respectively.
The profit function for product 𝑖 cannot be directly

maximized because it is a fuzzy variable. In order to transform
the fuzzy objective into a crisp one, the mean profit of𝜋(𝑄𝑖, 𝜉𝑖) is computed by

𝐸 [𝜋 (𝑄𝑖, 𝜉𝑖)] = ∫
[0,𝐷𝑖]

𝜋 (𝑄𝑖, 𝑟) dCr {𝜉𝑖 ≤ 𝑟} . (11)

Since 𝜉𝑖 has an interval-valued possibility distribution,
robust optimization method (see [38–41]) can be used to
model the MSIMP.

In this paper, the lambda selection variable 𝜉𝜆𝑖 is employed
to represent the generalized PIV fuzzy variable 𝜉𝑖. In this case,
the mean value of profit 𝜋(𝑄𝑖, 𝜉𝜆𝑖 ) is computed by

𝐸 [𝜋 (𝑄𝑖, 𝜉𝜆𝑖 )] = ∫
[0,𝐷𝑖]

𝜋 (𝑄𝑖, 𝑟) dCr {𝜉𝜆𝑖 ≤ 𝑟}
= (𝑝𝑖 + 𝑔𝑖 − 𝑐𝑖) ℎ𝑖𝑄𝑖

− (𝑝𝑖 + 𝑔𝑖 − 𝑠𝑖) ∫𝑄𝑖
0

Cr {𝜉𝜆𝑖 ≤ 𝑟} d𝑟
− 𝑔𝑖𝜇𝜆𝑖 ,

(12)
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where

ℎ𝑖 = Cr {𝜉𝜆𝑖 ≤ 𝐷𝑖} ,
𝜇𝜆𝑖 = ∫

[0,𝐷𝑖]
𝑟 dCr {𝜉𝜆 ≤ 𝑟}

= 𝐷𝑖Cr {𝜉𝜆𝑖 ≤ 𝐷𝑖} − ∫𝐷𝑖
0

Cr {𝜉𝜆𝑖 ≤ 𝑟} d𝑟.
(13)

Furthermore, the second-order moment of profit𝜋(𝑄𝑖, 𝜉𝜆𝑖 ) is computed by

𝑀[𝜋 (𝑄𝑖, 𝜉𝜆𝑖 )] = ∫
[0,𝐷𝑖]

{𝜋 (𝑄𝑖, 𝑟)
− 𝐸 [𝜋 (𝑄𝑖, 𝑟)]}2 dCr {𝜉𝜆𝑖 ≤ 𝑟}
= ℎ [(𝑐𝑖 − 𝑝𝑖 − 𝑔𝑖)2 𝑄2𝑖 + 2𝑔𝑖𝐷𝑖 (𝑐𝑖 − 𝑝𝑖 − 𝑔𝑖) 𝑄𝑖
+ 𝑔2𝑖𝐷𝑖2] + 2 {[𝑐𝑖 (𝑝𝑖 − 𝑠𝑖) + 𝑠2𝑖 ]𝑄𝑖 − 𝑝𝑖𝑠𝑖}

⋅ ∫𝑄𝑖
0

Cr {𝜉𝜆𝑖 ≤ 𝑟} d𝑟 + 2𝑔𝑖𝑄𝑖 (𝑝𝑖 + 𝑔𝑖 − 𝑐𝑖)
⋅ ∫𝐷𝑖
𝑄𝑖

Cr {𝜉𝜆𝑖 ≤ 𝑟} d𝑟 − 2 [(𝑝𝑖 − 𝑠𝑖)2 + 𝑔𝑖2]
⋅ ∫𝑄𝑖
0

𝑟Cr {𝜉𝜆𝑖 ≤ 𝑟} d𝑟 − 2𝑔2𝑖 ∫𝐷𝑖
𝑄𝑖

𝑟Cr {𝜉𝜆𝑖 ≤ 𝑟} d𝑟
+ 𝑚2𝑖 (ℎ𝑖 − 2) ,

(14)

where𝑚𝑖 = 𝐸[𝜋(𝑄𝑖, 𝜉𝜆𝑖 )].
As a result, the total profit of the retailer in MSIMP is

Π(𝑄, 𝜉𝜆) = 𝑛∑
𝑖=1

𝜋 (𝑄𝑖, 𝜉𝜆𝑖 ) . (15)

Based on L-Smultiple integral, themean total profit of the
retailer is computed by

𝐸 [Π (𝑄, 𝜉𝜆)] = ∫ ⋅ ⋅ ⋅ ∫
R𝑛

Π(𝑄, 𝜉𝜆) d (Cr {𝜉𝜆1 ≤ 𝑟} × ⋅ ⋅ ⋅ × Cr {𝜉𝜆𝑛 ≤ 𝑟}) , (16)

while the second-order moment of the total profit is
computed by

𝑀[Π(𝑄, 𝜉𝜆)] = ∫ ⋅ ⋅ ⋅ ∫
R𝑛

{Π (𝑄, 𝜉𝜆) − 𝐸 [Π (𝑄, 𝜉𝜆)]}2 d (Cr {𝜉𝜆1 ≤ 𝑟} × ⋅ ⋅ ⋅ × Cr {𝜉𝜆𝑛 ≤ 𝑟}) . (17)

In order to find the optimal order quantity𝑄𝑖, the retailer
should take into account the allocation of emission allowance𝐾, which will be received before the selling season. It is well-
known that transportation mode has a significant influence
on carbon emission per ton-mile. For product 𝑖, it is usually
difficult to determine the exact carbon emission during
logistic activities. Based on the retailer’ experience, assume
that the carbon emission for product 𝑖 (𝑖 = 1, 2, . . . , 𝑛) is
characterized by generalized PIV triangular fuzzy variable𝜂𝑖 ∼ Tri(𝑟1𝑖, 𝑟2𝑖, 𝑟3𝑖; 𝜃𝑙𝑖, 𝜃r𝑖).

According to [36], ∑𝑛𝑖=1 𝑄𝑖𝜂𝑖 is also a generalized PIV
triangular fuzzy variable; its lambda selection variable is
denoted as (∑𝑛𝑖=1 𝑄𝑖𝜂𝑖)𝜆.

Undermean-moment optimization criterion, a new para-
metric credibilistic optimization model for the MSIMP is
formally built as

max
𝑄

𝐸 [Π (𝑄, 𝜉𝜆)] − 𝛾√𝑀[Π (𝑄, 𝜉𝜆)] (𝐸-𝑀 1) (18)

s.t. Cr
{{{( 𝑛∑
𝑖=1

𝑄𝑖𝜂𝑖)
𝜆 ≤ 𝐾}}} ≥ 𝛽 (19)

𝑛∑
𝑖=1

𝑐𝑖𝑄𝑖 ≤ 𝐵 (20)

0 ≤ 𝑄𝑖 ≤ 𝐷𝑖, 𝑖 = 1, 2, . . . , 𝑛 (21)

𝑄𝑖 ∈ 𝑁+, 𝑖 = 1, 2, . . . , 𝑛. (22)

Objective function (18) in model (𝐸-𝑀 1) is to maximize
the tradeoff between the mean total profit and the standard
second-order moment of the total profit, where 𝛾 is some
nonnegative constant that reflects the decisionmaker’s degree
of risk aversion. Constraint (19) means that the carbon
emission due to logistic activities is less than the total
carbon emission 𝐾 with a predetermined confidence level𝛽. Constraint (20) represents the fact that the investment
amount on total production cost has an upper limit on the
maximum investment. Constraints (21) and (22) ensure that
decision variables𝑄𝑖 (𝑖 = 1, 2, . . . , 𝑛) are nonnegative integers
in a reasonable range.

In order to solve model (𝐸-𝑀 1), its equivalent determin-
isticmodel is discussed in the following theorem. For the sake
of presentation, the proof of the following theorem is also
provided in the appendix.
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Theorem 5. Let 𝜂𝑖 be mutually independent fuzzy variables.
Thenmodel (E-M 1) is equivalent to the following deterministic
programming model:

max
𝑄

Π𝑒 (𝑄) − 𝛾√Π𝑚 (𝑄) (E-M 2) (23)

s.t. ( 𝑛∑
𝑖=1

𝑄𝑖𝜂𝑖)
𝜆

inf

(𝛽) ≤ 𝐾 (24)

𝑛∑
𝑖=1

𝑐𝑖𝑄𝑖 ≤ 𝐵 (25)

0 ≤ 𝑄𝑖 ≤ 𝐷𝑖, 𝑖 = 1, 2, . . . , 𝑛 (26)

𝑄𝑖 ∈ 𝑁+, 𝑖 = 1, 2, . . . , 𝑛, (27)

where

Π𝑒 (𝑄) = 𝑛∑
𝑖=1

(𝑚𝑖∏
𝑘 ̸=𝑖

ℎ𝑘) ,
ℎ𝑖 = Cr {𝜉𝜆𝑖 ≤ 𝐷𝑖} , 𝑚𝑖 = 𝐸 [𝜋 (𝑄𝑖, 𝜉𝜆𝑖 )] ,

Π𝑚 (𝑄) = 𝑛∑
𝑖=1

[
[∏
𝑘 ̸=𝑖

ℎ𝑘 ∫
[0,𝐷𝑖]

{𝜋 (𝑄𝑖, 𝑟)}2 dCr {𝜉𝜆𝑖 ≤ 𝑟}

+ (∏
𝑘 ̸=𝑖

ℎ𝑘𝑚𝑖)
2( 𝑛∏
𝑘=1

ℎ𝑘 − 2)]
]

+ ∏
𝑘 ̸=𝑖 ̸=𝑗

ℎ𝑘 [[∑
𝑗 ̸=𝑖

𝑚𝑖𝑚𝑗(1 − 𝑛∏
𝑘=1

ℎ𝑘)
2]
] .

(28)

In Theorem 5, model (𝐸-𝑀 2) is a parametric pro-
gramming model with respect to parameter 𝜆. The value
of parameter lambda determines the location and shape of
the possibility distribution of selection variable. According
to the definition of lambda selection variable, parameter𝜆 may change its value from 0 to 1. It is highlighted that
the possibility distribution of lambda selection variable can
traverse the entire support of PIV fuzzy variables as the
lambda parameter changes its value in the interval [0, 1]. For
any given 𝜆 ∈ [0, 1], the corresponding integer programming
model (𝐸-𝑀 2) can be solved by conventional optimization
software.

3.3. Domain Decomposition Method. Note that the analytical
expressions of Π𝑒(𝑄) and √Π𝑚(𝑄) include the integral∫𝑄𝑖
0

Cr{𝜉𝜆𝑖 ≤ 𝑟}d𝑟. According to the definition of Cr{𝜉 ≤
𝑟}, the integral ∫𝑄𝑖

0
Cr{𝜉𝜆𝑖 ≤ 𝑟}d𝑟 is a piecewise function

with respect to 𝑄𝑖. Since decision makers do not know in
advance which subregion the global optimal solution locates
in, to solve 2𝑛 submodels by optimization software to obtain2𝑛 local optimal solutions is required. By comparing the
objective values of the obtained local optimal solutions, the
global optimal solutions, 𝑄∗𝑖 , 𝑖 = 1, 2, . . . , 𝑛, can be found.

Given the values of distribution parameters 𝜃𝑙𝑖, 𝜃𝑟𝑖, and 𝜆𝑖,
the process of domain decompositionmethod is summarized
as follows.

Step 1. Solve parametric programming submodels of model
(E-M 2) by software Matlab 7.1. Let 0 ≤ 𝑄1𝑖 ≤ 𝜇𝑖, 𝜇𝑖 ≤𝑄2𝑖 ≤ 𝑀𝑖, 𝑖 = 1, 2, . . . , 𝑛. Given a set of values 𝑄𝑘𝑖𝑡, 𝑘 = 1 or2, 𝑖 = 1, 2, . . . , 𝑛, 𝑡 = 1, 2, . . . , 2𝑛, denote the corresponding
local optimal solutions as 𝑄∗𝑖𝑡, 𝑖 = 1, 2, . . . , 𝑛.
Step 2. Compare the local objective values V𝑡 = 𝐸[𝜋(𝑄, 𝜉𝜆)]
at local optimal solution 𝑄∗𝑖𝑡 and find the global maximum
profit by the following formula:

V𝑙 = max
1≤𝑡≤2𝑛

V𝑡, (29)

where 𝐸[𝜋(𝑄, 𝜉𝜆)] is the mean profit of 𝜋(𝑄, 𝜉𝜆).
Step 3. Return𝑄∗𝑖𝑙 as the global optimal solution tomodel (𝐸-𝑀 2) with the global optimal value 𝐸[𝜋(𝑄∗𝑖𝑙 , 𝜉𝜆)].

In the next section, the effectiveness of the proposed
domain decomposition method is demonstrated by a practi-
cal multiproduct single-period inventory management prob-
lem.

4. Numerical Experiments

4.1. Problem Statement. In order to illustrate the proposed
credibilistic optimization model (E-M 2), a two-product
single-period inventory problem is providedwith generalized
PIV normal demand variables. The retailer’s optimal strategy
will be obtained by the proposed credibilistic optimization
method. Before a hot summer, the retailer needs to order
two kinds of products: air-conditioning (Product 1) and
evaporative air cooler (Product 2). The retailer is interested
in determining the order quantity of air-conditioning𝑄1 and
the order quantity of evaporative air cooler 𝑄2 to satisfy
customer demand. For product 𝑖 (𝑖 = 1, 2), the distribution
information of uncertain demand is partially available based
on the experts’ experiences. Suppose that the uncertain
demand 𝜉𝑖 for product 𝑖 follows generalized PIV normal
possibility distribution 𝑛(𝜇𝑖, 𝜎2𝑖 ; 𝜃𝑙𝑖, 𝜃𝑟𝑖), 𝑖 = 1, 2. Based on
the practical background of inventory problem, the largest
market demand for product 𝑖 is nomore than𝐷𝑖. At the end of
the period, if𝑄𝑖 ≥ 𝜉𝑖, then𝑄𝑖 −𝜉𝑖 units are salvaged for a per-
unit revenue 𝑠𝑖, and if𝑄𝑖 < 𝜉𝑖, then 𝜉𝑖 −𝑄𝑖 units represent lost
sales cost for a per-unit cost𝑔𝑖. In view of the carbon emission
constraint, the retailer receives the allocation of emission
allowance𝐾 = 251000 grams before the summer. For product𝑖 (𝑖 = 1, 2), the distribution information about the unit
carbon emission during logistic activities is partially available
based on the experts’ experiences. Assume that the unit
carbon emissions for two products follow generalized PIV tri-
angular possibility distributions Tri(85, 100, 110; 0.25, 0.15)
and Tri(40, 50, 65; 0.25, 0.15), respectively. Due to logistic
activities, the sum of emissions is less than the predetermined
total emission 𝐾 with confidence level 𝛽 = 0.9. Additionally,
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Table 1: Parameters for a two-product single-period inventory problem.

Product 𝑖 𝑐𝑖 ($) 𝑝𝑖 ($) 𝑠𝑖 ($) 𝑔𝑖 ($) 𝜉𝑖 𝐷𝑖
Product 1 220 300 205 90 𝑛(800, 552; 0.3, 0.25) 3000
Product 2 105 160 90 55 𝑛(2400, 752; 0.15, 0.2) 6000

Table 2: The local optimal solutions with different domains of 𝑄1 and 𝑄2.
The range of 𝑄1 The range of 𝑄2 𝑄∗1 𝑄∗2 𝐸∗0 ≤ 𝑄1 ≤ 800 0 ≤ 𝑄2 ≤ 2400 800 2378 115885.790 ≤ 𝑄1 ≤ 800 2400 ≤ 𝑄2 ≤ 6000 800 2400 116558.62800 ≤ 𝑄1 ≤ 3000 0 ≤ 𝑄2 ≤ 2400 814 2400 117240.53800 ≤ 𝑄1 ≤ 3000 2400 ≤ 𝑄2 ≤ 6000 813 2410 117491.83
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Figure 1: The optimal order quantities of product 1 and product 2 with 𝜆2 = 0.6.

the available maximum investment for the retailer is 𝐵 =
$432000. The other pertinent data for the products are given
in Table 1.

4.2. Computational Results. In numerical experiments, it is
assumed that 𝜆1 = 0.6, 𝜆2 = 0.8, and 𝛾 = 0.3. According
to the proposed domain decomposition method, the feasible
region of the above inventory management problem can
be decomposed into four disjoint subregions of decision
variables 𝑄𝑖, 𝑖 = 1, 2. Matlab 7.1 optimization software is
employed to solve the corresponding parametric program-
ming submodels. The numerical experiments are conducted
on a personal computer (Lenovowith Intel Pentium(R)Dual-
Core E5700 3.00GHz CPU and RAM 4.00GB) by using
the Microsoft Windows 10 operating system. The compu-
tational results are reported in Table 2. By comparing the
obtained local optimal solutions, the global optimal solution(𝑄∗1 , 𝑄∗2 ) = (813, 2410) is found with the maximum mean
total profit 117491.83.
4.3. Sensitivity Analysis for Parameter Lambda. By the mean-
ings of parameters 𝜆1 and 𝜆2, the two parameters determine
the location and shape about the possibility distribution of
selection variable in the support of uncertain demand and

uncertain carbon emission. A decision maker may prescribe
the values of parameters 𝜆1 and 𝜆2 based on his experience
or knowledge. If the decision maker cannot identify the
values of parameters 𝜆1 and 𝜆2, he may generate randomly
their values from some prescribed subintervals of [0, 1]. In
our experiments, to identify the influence of perturbation
distribution on solution results, the optimal solutions are
first computed by adjusting the selection parameter 𝜆1 in the
optimization problemwith fixed 𝜆2 = 0.6.When 𝜆1 increases
its value from 0.1 to 1 with step 0.1, the computational
results about the optimal order quantities of product 1 and
product 2 are plotted in Figure 1, and the corresponding
mean total profits are plotted in Figure 2. From Figures
1 and 2, it is found that the optimal order quantities and
mean total profit vary while the selection parameter 𝜆1
varies. Specifically, the optimal order quantity of product 1 is
monotone decreasing with respect to parameter 𝜆1, while the
optimal order quantity of product 2 is monotone increasing
with respect to parameter 𝜆1. As a result, themean total profit
is monotone increasing with respect to parameter 𝜆1.

In the following, the optimal solutions are computed
by adjusting the selection parameter 𝜆2 in the optimization
problem with fixed 𝜆1 = 0.6. When 𝜆2 increases its value
from 0.1 to 1 with step 0.1, the computational results of the
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Figure 2: The mean total profit.

optimal order quantities of product 1 and product 2 are
plotted in Figure 3, and the corresponding mean total profits
are plotted in Figure 4. From Figures 3 and 4, it is concluded
that the optimal order quantity of product 1 is monotone
increasing with respect to parameter 𝜆2, while the optimal
order quantity of product 2 is monotone decreasing with
respect to parameter 𝜆2. As a result, the mean total profit is
monotone decreasing with respect to parameter 𝜆2.

The above computational results demonstrate that the
optimal order quantities of product 1 and product 2 depend
heavily on the location parameters 𝜆1 and 𝜆2. That is,
the optimal order quantities of our multiproduct single-
period inventory problem depend heavily on the possibility
distribution of uncertain demand.

4.4. Comparison Study

4.4.1. Comparing with Stochastic Optimization Method. In
this subsection, the credibilistic optimization method is
compared with stochastic optimization method, where the
stochastic demands of product 1 and product 2 follow normal
probability distributions N(800, 552) and N(2400, 752),
respectively. According to the stochastic optimization
method for MSIMP, the optimal order quantities for product
1 and product 2 are 815 and 2407 with the maximum mean
profit 189530. The solution result is totally different from
our credibilistic optimal solutions reported in Figures 1
and 3. Compared with our credibilistic optimal solutions,
the optimal solutions 815 and 2407 to stochastic model are
not feasible solutions to the deterministic programming
model in Theorem 5. That is, the stochastic optimal solution
does not satisfy carbon emission constraint (24) and the
investment amount constraint (25).

4.4.2. Comparing with Fuzzy Optimization Method under
Fixed Possibility Distribution. In this subsection, the credi-
bilistic optimization method is compared with fuzzy opti-
mization method, where the uncertain demands of product
1 and product 2 follow fixed possibility distributions. For

the sake of comparison, the fixed possibility distributions are
taken as the nominal possibility distributions of uncertain
demands corresponding to 𝜃𝑙𝑖 = 𝜃𝑟𝑖 = 0, 𝑖 = 1, 2. By
solving the fuzzy optimization model, the obtained nom-
inal optimal order quantities are 800 and 2400 with the
nominal maximum mean total profit 183748.85. Obviously,
the nominal maximum mean total profit is larger than the
optimal mean total profits obtained in Figures 2 and 4. The
computational results imply that a small perturbation of the
nominal possibility distributionmay heavily affect the quality
of optimal solution.

To further analyze the influence of the perturbation
parameters, some additional experiments are conducted
with different values of perturbation parameters 𝜃𝑙𝑖 and 𝜃𝑟𝑖.
The computational results are reported in Tables 3–6, in
which the robust value is defined as the reduction from the
nominal optimal profit to the optimal profits with different
values of perturbation parameters.The computational results
imply that the robust value is increasing with respect to
perturbation parameters 𝜃𝑙 or 𝜃𝑟; that is, the larger the
perturbation parameter, the larger the uncertainty degree
embedded in the generalized PIV possibility distribution
of uncertain demand. The decision makers can adjust the
values of perturbation parameters according to their obtained
distribution information. As a consequence, the considered
MSIMP depends heavily on the location parameter 𝜆 and
perturbation parameter 𝜃. For practical inventory man-
agement problems, if decision makers cannot identify the
values of parameters 𝜆 and 𝜃, they may generate randomly
their values from some prescribed subintervals of [0, 1]. The
computational results demonstrate the advantages of variable
possibility distributions over fixed possibility distributions.

The comparison studies described in Sections 4.4.1 and
4.4.2 lead to the following observations.

Firstly, stochastic optimization method for MSIMP is
based on the assumption that the market demands are
of stochastic nature, and the probability distributions of
uncertain parameters are available. When the probability
distributions of uncertain market demands cannot be deter-
mined, the stochastic optimizationmethod cannot be used to
determine the optimal order quantities.

Secondly, in fuzzy MSIMP, it is usually assumed that the
nominal possibility distributions of uncertain parameters can
be determined exactly and a small perturbation of nominal
possibility distribution will not affect significantly the solu-
tion quality. The comparison study shows that the robust
value is increasing with respect to perturbation parameters.
The decision makers should adjust the values of perturbation
parameters according to their obtained distribution informa-
tion.

Finally, it should be highlighted that under given per-
turbation parameters the optimal order quantities depend
heavily on the values of location parameter lambda. The
proposed parametric credibilistic optimization method is
capable of detecting cases when perturbation distributions
can heavily affect the quality of the nominal solution. In
these cases, the decision makers should employ the proposed
credibilistic optimization method to find the optimal order
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Figure 3: The optimal order quantities of product 1 and product 2 with 𝜆1 = 0.6.

Table 3: The influence of perturbation parameter 𝜃𝑙1 with 𝜃𝑟1 = 0.25, 𝜃𝑙2 = 0.15, and 𝜃𝑟2 = 0.2.
𝜃𝑙1 𝑄∗1 𝑄∗2 Themean total profit The robust value
0.05 810 2415 134003.40 49745.45
0.10 809 2416 130918.55 52830.30
0.15 809 2417 127886.71 55862.14
0.20 808 2417 124771.49 58977.36
0.30 806 2417 118548.70 65200.15

Table 4: The influence of perturbation parameter 𝜃𝑟1 with 𝜃𝑙1 = 0.3, 𝜃𝑙2 = 0.15, and 𝜃𝑟2 = 0.2.
𝜃𝑟1 𝑄∗1 𝑄∗2 Themean total profit The robust value
0.05 818 2400 131554.32 52194.53
0.15 816 2406 125167.66 58581.19
0.18 813 2409 123169.52 60579.33
0.25 806 2417 118548.70 65200.15
0.35 800 2421 111953.16 71795.69

Table 5: The influence of perturbation parameter 𝜃𝑙2 with 𝜃𝑙1 = 0.3, 𝜃𝑟1 = 0.25, and 𝜃𝑟2 = 0.2.
𝜃𝑙2 𝑄∗1 𝑄∗2 Themean total profit The robust value
0.10 807 2419 121531.99 62216.86
0.15 806 2417 118548.70 65200.15
0.20 804 2414 115493.36 68255.49
0.25 800 2411 112352.60 71396.25
0.30 800 2406 109349.89 74398.96

Table 6: The influence of perturbation parameter 𝜃𝑟2 with 𝜃𝑙1 = 0.3, 𝜃𝑟1 = 0.25, and 𝜃𝑙2 = 0.15.
𝜃𝑟2 𝑄∗1 𝑄∗2 Themean total profit The robust value
0.10 800 2422 126656.59 57092.26
0.15 800 2420 122469.12 61279.73
0.20 806 2417 118548.70 65200.15
0.25 812 2412 114563.42 69185.43
0.30 816 2400 110287.01 73461.84
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Figure 4: The mean total profit.

quantities, which may immunize against the effect of pertur-
bation distribution.

5. Conclusions

In this paper, the MSIMP has been studied from a new
perspective. The major new results include the following
several aspects.

(i) When the distribution information about uncertain
demand and uncertain carbon emission was partially avail-
able, these uncertain parameters were characterized by gen-
eralized PIV fuzzy variables. For their selection variables, the
analytical expressions of themean and second-ordermoment
have been established.

(ii) Two new indexes, mean and second-order moment,
about the total profit were defined based on L-Smultiple inte-
gral, and their analytical expressions have been established.
Furthermore, a new parametric credibilistic optimization
model was developed for MSIMP.

(iii) The equivalent deterministic model of the proposed
credibilistic MSIMP has been established. According to
the structural characteristics of the equivalent deterministic
model, a domain decompositionmethodwas designed to find
the optimal order quantities.

(iv) In numerical experiments, the proposed optimization
method was compared with stochastic optimization method
and fuzzy optimization method under fixed possibility dis-
tribution. The computational results demonstrated that a
small perturbation of the demand distribution could make
the nominal optimal solution infeasible and thus practically
meaningless. In this case, the decision makers should employ
the proposed credibilistic optimization method to find the
optimal order quantities, which may immunize against the
effect of perturbation distribution.

The developed parametric credibilistic optimization
model for MSIMP addressed the effect of perturbation possi-
bility distributions. In themodel process, the generalized PIV
fuzzy variables were represented by their lambda selections.
For a practical MSIMP, based on the uncertain distribution
sets of generalized PIV fuzzy variables, distributionally robust
optimization method will be studied in our future research.
Extension to considering decision makers’ risk tolerance
fuzziness [42] for the MSIMP is another interesting research
direction. In addition, hybrid uncertainty and their solution
method [43] can be introduced to tackle the MSIMP.

Appendix

Proofs of Main Theorems

Proof of Theorem 1. Since 𝜉 ∼ 𝑛(𝜇, 𝜎2; 𝜃𝑙, 𝜃𝑟), the generalized
possibility distribution of 𝜉𝜆 is

𝜇𝜉𝜆 (𝑟; 𝜃𝑙, 𝜃𝑟) = 𝑒−(𝑟−𝜇)2/2𝜎2 [1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟]
+ 𝜆𝜃𝑟. (A.1)

According to the definition of credibility measure [44], the
credibility Cr{𝜉𝜆 ≤ 𝑟} is computed by

Cr {𝜉𝜆 ≤ 𝑟} = 12 {sup
𝑥∈R

𝜇𝜉𝜆 (𝑥; 𝜃𝑙, 𝜃𝑟)
+ sup
𝑥≤𝑟

𝜇𝜉𝜆 (𝑥; 𝜃𝑙, 𝜃𝑟) − sup
𝑥>𝑟

𝜇𝜉𝜆 (𝑥; 𝜃𝑙, 𝜃𝑟)} ,
(A.2)

which can generate a measure using the method discussed in
[45]. By calculation, one has

Cr {𝜉𝜆 ≤ 𝑟} =
{{{{{{{{{{{

1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟2 𝑒−(𝑟−𝜇)2/2𝜎2 + 𝜆𝜃𝑟2 , 𝑟 ∈ (−∞, 𝜇)
1 − (1 − 𝜆) 𝜃𝑙 − 1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟2 𝑒−(𝑟−𝜇)2/2𝜎2 − 𝜆𝜃𝑟2 , 𝑟 ∈ [𝜇, +∞) .

(A.3)

According to (3) and (A.3), one has

𝐸 (𝜉𝜆) = ∫
(−∞,+∞)

𝑟 dCr {𝜉𝜆 ≤ 𝑟}
= ∫
(−∞,𝜇)

𝑟 d{1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟2 𝑒−(𝑟−𝜇)2/2𝜎2

+ 𝜆𝜃𝑟2 } + ∫
[𝜇,+∞)

𝑟 d{1 − (1 − 𝜆) 𝜃𝑙
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− 1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟2 𝑒−(𝑟−𝜇)2/2𝜎2 − 𝜆𝜃𝑟2 } = [1
− (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟] 𝜇 = 𝜔𝜇.

(A.4)

The proof of theorem is complete.

Proof ofTheorem2. Since 𝜂 ∼ Tri(𝑟1, 𝑟2, 𝑟3; 𝜃𝑙, 𝜃𝑟), the general-
ized possibility distribution of the lambda selection variable𝜂𝜆 is

𝜇𝜂𝜆 (𝑟, 𝜃)

=
{{{{{{{{{{{{{

𝜆𝜃𝑟 + (𝑟 − 𝑟1) [1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟]𝑟2 − 𝑟1 , 𝑟 ∈ [𝑟1, 𝑟2]
𝜆𝜃𝑟 + (𝑟3 − 𝑟) [1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟]𝑟3 − 𝑟2 , 𝑟 ∈ [𝑟2, 𝑟3] .

(A.5)

According to the definition of credibilitymeasure, one has

Cr {𝜂𝜆 ≤ 𝑟} =
{{{{{{{{{{{{{{{{{{{

0, 𝑟 ∈ (−∞, 𝑟1)
12𝜆𝜃𝑟 + (𝑟 − 𝑟1) [1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟]2 (𝑟2 − 𝑟1) , 𝑟 ∈ [𝑟1, 𝑟2)
1 − (1 − 𝜆) 𝜃𝑙 − 12 {𝜆𝜃𝑟 + (𝑟3 − 𝑟) [1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟]𝑟3 − 𝑟2 } , 𝑟 ∈ [𝑟2, 𝑟3)
1 − (1 − 𝜆) 𝜃𝑙 𝑟 ∈ [𝑟3, +∞) .

(A.6)

By calculation, one has

𝐸 (𝜂𝜆) = ∫
[𝑟1 ,𝑟3]

𝑟 dCr {𝜂𝜆 ≤ 𝑟}
= ∫
[𝑟1 ,𝑟1]

𝑟 dCr {𝜂𝜆 ≤ 𝑟}
+ ∫
(𝑟1 ,𝑟2]

𝑟 dCr {𝜂𝜆 ≤ 𝑟}
+ ∫
(𝑟2 ,𝑟3)

𝑟 dCr {𝜂𝜆 ≤ 𝑟}

+ ∫
[𝑟3 ,𝑟3]

𝑟 dCr {𝜂𝜆 ≤ 𝑟}
= [1 − (1 − 𝜆) 𝜃𝑙] 𝑟1 + 2𝑟2 + 𝑟34

+ 14𝜆𝜃𝑟 (𝑟1 − 2𝑟2 + 𝑟3) .
(A.7)

The proof of theorem is complete.

Proof of Theorem 3. According to (5) and (6), the second-
order moment of 𝜉𝜆 is computed as follows:

𝑀(𝜉𝜆) = ∫
(−∞,+∞)

[𝑟 − 𝜔𝜇]2 dCr {𝜉𝜆 ≤ 𝑟}
= ∫
(−∞,𝜇)

[𝑟 − 𝜔𝜇]2 d{1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟2 𝑒−(𝑟−𝜇)2/2𝜎2 + 𝜆𝜃𝑟2 }
+ ∫
[𝜇,+∞)

[𝑟 − 𝜔𝜇]2 d{1 − (1 − 𝜆) 𝜃𝑙 − 1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟2 𝑒−(𝑟−𝜇)2/2𝜎2 − 𝜆𝜃𝑟2 }
= 𝜔2 {∫

(−∞,𝜇)
[𝑟 − 𝜔𝜇]2 d {𝑒−(𝑟−𝜇)2/2𝜎2} − ∫

[𝜇,+∞)
[𝑟 − 𝜔𝜇]2 d {𝑒−(𝑟−𝜇)2/2𝜎2}} = 𝜔 [2𝜎2 + (𝜔 − 1)2 𝜇2] .

(A.8)

The proof of theorem is complete.

Proof of Theorem 4. In the following, the mean value of 𝜂𝜆 is
denoted as𝑚; that is,𝑚 = 𝐸(𝜂𝜆). According to (5) and (7), the

second-order moment of the lambda selection variable 𝜂𝜆 is
computed by

𝑀(𝜂𝜆) = ∫
[𝑟1 ,𝑟4]

[𝑟 − 𝐸 (𝜂𝜆)]2 dCr {𝜂𝜆 ≤ 𝑟}
= ∫
(𝑟1 ,𝑟2)

[𝑟 − 𝑚]2 d{12𝜆𝜃𝑟 + (𝑟 − 𝑟1) [1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟]2 (𝑟2 − 𝑟1) }
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+ ∫
(𝑟2 ,𝑟3)

[𝑟 − 𝑚]2 d{1 − (1 − 𝜆) 𝜃𝑙 − 12 [𝜆𝜃𝑟 + (𝑟3 − 𝑟) [1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟]𝑟3 − 𝑟2 ]} + 12𝜆𝜃𝑟 (𝑟1 − 𝑚)2
+ 12𝜆𝜃𝑟 (𝑟3 − 𝑚)2

= 12𝜆𝜃𝑟 [(𝑟1 − 𝑚)2 + (𝑟3 − 𝑚)2] + 1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟6 (𝑟2 − 𝑟1) [(𝑟2 − 𝑚)3 − (𝑟1 − 𝑚)3]
+ 1 − (1 − 𝜆) 𝜃𝑙 − 𝜆𝜃𝑟6 (𝑟3 − 𝑟2) [(𝑟3 − 𝑚)3 − (𝑟2 − 𝑚)3] .

(A.9)

The proof of theorem is complete.

Proof ofTheorem 5. First, objective function (18) is equivalent
tomaximizingΠ𝑒(𝑄)−𝛾√Π𝑚(𝑄). By calculation themultiple
L-S integrals, one has

Π𝑒 (𝑄) = 𝐸 [Π (𝑄, 𝜉𝜆)]
= ∫ ⋅ ⋅ ⋅ ∫

R𝑛

𝑛∑
𝑖=1

𝜋 (𝑄𝑖, 𝑟) d (Cr {𝜉𝜆1 ≤ 𝑟} × ⋅ ⋅ ⋅ × Cr {𝜉𝜆𝑛 ≤ 𝑟})

= 𝑛∑
𝑖=1

∫ ⋅ ⋅ ⋅ ∫
R𝑛

𝜋 (𝑄𝑖, 𝑟) d (Cr {𝜉𝜆1 ≤ 𝑟} × ⋅ ⋅ ⋅ × Cr {𝜉𝜆𝑛 ≤ 𝑟})

= 𝑛∑
𝑖=1

(𝑚𝑖∏
𝑘 ̸=𝑖

ℎ𝑘) .
(A.10)

Similarly, the second-order moment of the total profit is
computed by

Π𝑚 (𝑄) = 𝑀[Π (𝑄, 𝜉𝜆)] = ∫ ⋅ ⋅ ⋅ ∫
R𝑛

{ 𝑛∑
𝑖=1

[𝜋 (𝑄𝑖, 𝑟) − 𝑚𝑖∏
𝑘 ̸=𝑖

ℎ𝑘]}
2

d (Cr {𝜉𝜆1 ≤ 𝑟} × ⋅ ⋅ ⋅ × Cr {𝜉𝜆𝑛 ≤ 𝑟})
= 𝑛∑
𝑖=1

∫ ⋅ ⋅ ⋅ ∫
R𝑛

[𝜋 (𝑄𝑖, 𝑟) − 𝑚𝑖∏
𝑘 ̸=𝑖

ℎ𝑘]
2

d (Cr {𝜉𝜆1 ≤ 𝑟} × ⋅ ⋅ ⋅ × Cr {𝜉𝜆𝑛 ≤ 𝑟})
+ ∑
𝑖 ̸=𝑗

∫ ⋅ ⋅ ⋅ ∫
R𝑛

(𝜋 (𝑄𝑖, 𝑟) − 𝑚𝑖∏
𝑘 ̸=𝑖

ℎ𝑘)(𝜋(𝑄𝑗, 𝑟) − 𝑚𝑗∏
𝑘 ̸=𝑗

ℎ𝑘) d (Cr {𝜉𝜆1 ≤ 𝑟} × ⋅ ⋅ ⋅ × Cr {𝜉𝜆𝑛 ≤ 𝑟})

= 𝑛∑
𝑖=1

[
[∏
𝑘 ̸=𝑖

ℎ𝑘 ∫
[0,𝐷𝑖]

{𝜋 (𝑄𝑖, 𝑟)}2 dCr {𝜉𝜆𝑖 ≤ 𝑟} + (𝑚𝑖∏
𝑘 ̸=𝑖

ℎ𝑘)
2( 𝑛∏
𝑘=1

ℎ𝑘 − 2)]
] + ∏
𝑘 ̸=𝑖 ̸=𝑗

ℎ𝑘 [[∑
𝑖 ̸=𝑗

𝑚𝑖𝑚𝑗(1 − 𝑛∏
𝑘=1

ℎ𝑘)
2]
] .

(A.11)

Next, the equivalence between constraint (19) and con-
straint (24) is discussed. Since 𝜂𝑖 (1 ≤ 𝑖 ≤ 𝑛) are mutually
independent generalized PIV fuzzy variables, according to
[36], one has
𝑛∑
𝑖=1

𝑄𝑖𝜂𝑖 = Tri( 𝑛∑
𝑖=1

𝑄𝑖𝑟1𝑖, 𝑛∑
𝑖=1

𝑄𝑖𝑟2𝑖, 𝑛∑
𝑖=1

𝑄𝑖𝑟3𝑖; 𝜃𝑙, 𝜃𝑟) , (A.12)

where 𝜃𝑙 = max1≤𝑖≤𝑛𝜃𝑙𝑖 and 𝜃𝑟 = max1≤𝑖≤𝑛𝜃𝑟𝑖.
Since the credibility Cr{𝜉 ≤ 𝑟} is a monotone increasing

function, Cr{(∑𝑛𝑖=1 𝑄𝑖𝜂𝑖)𝜆 ≤ 𝐾} ≥ 𝛽 is equivalent to

𝐾 ≥ inf
{{{𝑥 | Cr{{{( 𝑛∑

𝑖=1

𝑄𝑖𝜂𝑖)
𝜆 ≤ 𝑥}}} ≥ 𝛽}}} ; (A.13)

that is, 𝐾 ≥ (∑𝑛𝑖=1 𝑄𝑖𝜂𝑖)𝜆inf (𝛽). The proof of theorem is
complete.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this article.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (no. 61773150).

References

[1] G. Hadley and T. M. Whitin, Analysis of Inventory Systems,
Prentice-Hall, Englewood Cliffs, NJ, USA, 1963.

[2] S. Nahmias and C. P. Schmidt, “An efficient heuristic for the
multi-item newsboy problem with a single constraint,” Naval
Research Logistics Quarterly, vol. 31, no. 3, pp. 463–474, 1984.



Mathematical Problems in Engineering 13

[3] H.-S. Lau andA.H. L. Lau, “Themulti-productmulti-constraint
newsboy problem: Applications, formulation and solution,”
Journal of Operations Management, vol. 13, no. 2, pp. 153–162,
1995.

[4] S. J. Erlebacher, “Optimal and heuristic solutions for the multi-
item newsvendor problem with a single capacity constraint,”
Production Engineering Research and Development, vol. 9, no. 3,
pp. 303–318, 2000.

[5] I. Moon and E. A. Silver, “The multi-item newsvendor problem
with a budget constraint and fixed ordering costs,” Journal of the
Operational Research Society, vol. 51, no. 5, pp. 602–608, 2000.

[6] L. Abdel-Malek, R. Montanari, and D. Meneghetti, “The capac-
itated newsboy problem with random yield: The Gardener
Problem,” International Journal of Production Economics, vol.
115, no. 1, pp. 113–127, 2008.

[7] G. Zhang, “The multi-product newsboy problem with supplier
quantity discounts and a budget constraint,” European Journal
of Operational Research, vol. 206, no. 2, pp. 350–360, 2010.

[8] B. Zhang and S.Du, “Multi-product newsboy problemwith lim-
ited capacity and outsourcing,” European Journal of Operational
Research, vol. 202, no. 1, pp. 107–113, 2010.

[9] L. L. Abdel-Malek and R. Montanari, “On the multi-product
newsboy problem with two constraints,” Computers & Opera-
tions Research, vol. 32, no. 8, pp. 2095–2116, 2005.

[10] D. Huang, H. Zhou, and Q.-H. Zhao, “A competitive multiple-
product newsboy problem with partial product substitution,”
Omega , vol. 39, no. 3, pp. 302–312, 2011.
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