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Due to many uncertainties in nonprobabilistic reliability assessment of bridges, the limit state function is generally unknown.
The traditional nonprobabilistic response surface method is a lengthy and oscillating iteration process and leads to difficultly
solving the nonprobabilistic reliability index. This article proposes a nonprobabilistic response surface limit method based on the
interval model. The intention of this method is to solve the upper and lower limits of the nonprobabilistic reliability index and to
narrow the range of the nonprobabilistic reliability index. If the range of the reliability index reduces to an acceptable accuracy,
the solution will be considered convergent, and the nonprobabilistic reliability index will be obtained.The case study indicates that
using the proposed method can avoid oscillating iteration process, make iteration process stable and convergent, reduce iteration
steps significantly, and improve computational efficiency and precision significantly compared with the traditional nonprobabilistic
response surface method. Finally, the nonprobabilistic reliability evaluation process of bridge will be built through evaluating the
reliability of one PC continuous rigid frame bridge with three spans using the proposed method, which appears to be more simple
and reliable when lack of samples and parameters in the bridge nonprobabilistic reliability evaluation is present.

1. Introduction

There are many unavoidable uncertainties in practical struc-
ture engineering. Traditionally, the probability model is
utilized in the structural reliability analysis [1]. Probabilistic
reliability analysis strongly depends on the probability distri-
bution function, which relies on a large number of statistical
data [2]. However, for some important and complicated
structures, many uncertain parameters have little or no sta-
tistical data, which causes difficulties in accurate description
of parameter distribution. In addition, probabilistic reliability
is very sensitive to variations of model parameters. Small
errors in statistical data can lead to considerable errors in the
structure [2, 3].

Because of inadequate data, the probabilistic reliability
is not useful for solving these practical problems. However,
nonprobabilistic reliability can effectively deal with reliability
problems when only few statistical data can be obtained.
A nonprobabilistic convex model was first proposed in the
1990s by Ben-Haim [4, 5]. Ben-Haim and Elishakoff [6]

proposed a nonprobabilistic safety factor tomeasure the non-
probabilistic reliability index using an interval theory. The
nonprobabilistic reliability theories presented by Ben-Haim
[4, 5] and Ben-Haim and Elishakoff [6] were not involved
in probability at all and could overcome the inextricable
difficulties faced by the traditional probability model. There-
fore, nonprobabilistic reliability is an appropriate method
when the available data of uncertainties are limited or absent.
This was illustrated by Guo et al. [7, 8], who contrasted
the probabilistic and nonprobabilistic reliability methods
through modeling concepts, model construction, and for-
mulations for computation. Nonprobabilistic reliability of
structures has become a new, exciting research direction, and
the corresponding research approach has also aroused wide
attention from theory and engineering circles.

In summary, nonprobabilistic reliability analysis was
generally based on the interval model [9, 10] or the convex
model [11–13]. The nonprobabilistic reliability index based
on the interval model is actually the minimum norm of the
coordinate vector in the standardized space, and solving the
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reliability index is an optimum problem with the equality
constraint. For the linear performance functions, the analyt-
ical expression of the nonprobabilistic reliability index can
be easily obtained. However, the performance functions are
generally nonlinear in practical engineering.

For simple nonlinear performance functions, Guo et al.
[7, 8] suggested definition approach, transfer approach, and
optimization approach to solve the nonprobabilistic reliabil-
ity index. For complexly and strongly nonlinear performance
functions, researchers frequently used an optimized iterative
algorithm. For the hyperellipsoidalmodel, the nonprobabilis-
tic reliability index is in accordance with the probabilistic
reliability index in definition, so the design point method,
successfully applied to the probabilistic reliability analysis,
can be used for the nonprobabilistic reliability analysis [14].
For the reliability index defined by the Euclidean norm,
the Most Probable failure Point (MPP) can be obtained
along the normal direction of the limit state surface. For the
nonprobabilistic reliability index based on the interval model
defined by the infinite norm, theMPPmight not be along the
normal direction of the limit state surface.

In order to simplify the search process, other researchers
suggested the one-dimensional optimization method [15, 16]
and the space search algorithm [17]. These two methods are
correct only for the linear performance function, because
only part of the probable failure points is searched for the
nonlinear performance function. If the performance func-
tions are the normalized quadratic expression, the Sequence
Quadratic Programming (SQP) can be used to solve the
nonprobabilistic reliability index based on the interval model
[18]. Recently, the Gradient Projection Method (GPM) was
proposed to solve the nonprobabilistic reliability index [19].
GPM is the general method that is most suitable for the
nonprobabilistic convex model, although the convergence
process during the iteration needs special treatment. The
interval model was used in the structural reliability optimiza-
tion design [20, 21], although this issue is not discussed in this
article in detail.

When the limit state function is not easily obtained, the
above methods are not applicable. Jiang et al. [22] presented
the nonprobabilistic response surface method based on the
interval model, which contributed to solving the nonproba-
bilistic reliability index for the implicit performance function.
Chen et al. [23] used the response surfacemethod to build the
explicit performance function, accepted the interval model
and the ellipsoidal model to compute the nonprobabilistic
reliability index, and compared the results from these two
methods.

Until present, nonprobabilistic reliability analysis based
on the convex model and the interval model has achieved
some positive results and been applied in engineering prac-
tice. A great obstacle is solving the nonprobabilistic reliabil-
ity index. The traditional nonprobabilistic response surface
method is prone to lengthy and oscillating iteration processes,
which leads to difficultly solving the nonprobabilistic reli-
ability index. For these problems, this article will propose
the nonprobabilistic response surface limit method based on
the interval model and build the nonprobabilistic reliability
evaluation process for bridges through evaluation of the

reliability of one PC continuous rigid frame bridge with three
spans.

2. Nonprobabilistic Reliability Index Based on
the Interval Model

Suppose x = {𝑥1, 𝑥2, . . . , 𝑥𝑛} is the set of the basic interval
variables for the structures, where 𝑥𝑖 ∈ 𝑋𝐼𝑖 (𝑖 = 1, 2, . . . , 𝑛).
The performance function is given as

𝑀 = 𝑔 (x) = 𝑔 (𝑥1, . . . , 𝑥𝑛) . (1)

When 𝑔(x) is the continuous function of 𝑥𝑖 (𝑖 = 1, 2,. . . , 𝑛), 𝑀 also is the interval variable. From the perspective
of the nonprobabilistic reliability theory, the hypersurface𝑔(x) = 0 is the failure surface of the structures. When 𝑔(x) <0, the structure is in the failure state; when 𝑔(x) > 0 the
structure is safe.

If 𝑀𝑐 and 𝑀𝑟 represent the mean and dispersion of 𝑀,
respectively, the nonprobabilistic reliability index is estimated
as

𝜂 = 𝑀𝑐𝑀𝑟 ∈
{{{{{{{{{

[1, +∞) Reliable and safe

(−1, 1) Unreliable

(−∞, −1] Failure.
(2)

Based on (2), when 𝜂 > 1, 𝑔(x) > 0 for any 𝑥𝑖 ∈ 𝑋𝐼𝑖 (𝑖 =1, 2, . . . , 𝑛), which means the structure is in the safe state;
when 𝜂 < −1, 𝑔(x) < 0 for any 𝑥𝑖 ∈ 𝑋𝐼𝑖 (𝑖 = 1, 2, . . . , 𝑛), which
means the structure is failed; when −1 ≤ 𝜂 ≤ 1, 𝑔(x) ≥ 0 and𝑔(x) ≤ 0maybe occurs for any𝑥𝑖 ∈ 𝑋𝐼𝑖 (𝑖 = 1, 2, . . . , 𝑛), which
means the structure may be safe or at risk. The greater 𝜂, the
safer the structure.

Standardize the interval variable 𝑥𝑖 through the following
transformation formula:

𝑥𝑖 = 𝑥𝑐𝑖 + 𝑥𝑟𝑖 𝛿𝑖 𝑖 = 1, 2, . . . , 𝑛, (3)

where 𝑥𝑐𝑖 = (𝑥𝑙𝑖 + 𝑥𝑢𝑖 )/2 and 𝑥𝑟𝑖 = (𝑥𝑢𝑖 − 𝑥𝑙𝑖)/2, which represent
the mean and dispersion of 𝑥𝑖, and 𝑥𝑢𝑖 and 𝑥𝑙𝑖 are the upper
and lower values of 𝑥𝑖, respectively. Therefore, the interval
variable sets x = {𝑥1, 𝑥2, . . . , 𝑥𝑛} can be transformed into
the standardized interval variable sets 𝛿 = {𝛿1, 𝛿2, . . . , 𝛿𝑛}.
The region of variation of the standardized interval variable𝛿𝑖 is [−1, 1], and the extended range of 𝛿𝑖 is [−∞, +∞]
[15]. Substitute 𝛿 = {𝛿1, 𝛿2, . . . , 𝛿𝑛} into the failure surface𝑔(x) = 0; then the continuous performance function can be
transformed into the standardized performance function:

𝑀 = 𝑔 (𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝐺 (𝛿1, 𝛿2, . . . , 𝛿𝑛) = 0. (4)

In practice engineering, the performance function is
generally expressed as

𝑀 = 𝑔 (x) = 𝑟 − 𝑠, (5)

where 𝑟 is the resistance and 𝑠 is the load.
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Figure 1: Reliability index of linear function.

(1) For the Linear Performance Function

𝑀 = 𝑛∑
𝑖=1

𝑎𝑖𝑟𝑖 − 𝑛∑
𝑗=𝑚+1

𝑏𝑗𝑠𝑗 = 0. (6)

Standardize 𝑟 and 𝑠: 𝑟 = 𝑅𝑐 +𝑅𝑟𝑢𝑟, 𝑠 = 𝑆𝑐 +𝑆𝑟𝑢𝑠, and then
the linear performance function will be transformed into

𝑀 = 𝑚∑
𝑖=1

𝑎𝑖𝑅𝑟𝑖 𝛿𝑟𝑖 − 𝑛∑
𝑗=𝑚+1

𝑏𝑖𝑆𝑟𝑗𝛿𝑠𝑗 + ( 𝑚∑
𝑖=1

𝑎𝑖𝑅𝑐𝑖 − 𝑛∑
𝑗=𝑚+1

𝑏𝑖𝑆𝑐𝑗)
= 0

(7)

and the nonprobabilistic reliability index is estimated as [24]

𝜂

=
{{{{{{{{{{{

∑𝑚𝑖=1 𝑎𝑖𝑅𝑐𝑖 − ∑𝑛𝑖=𝑚+1 𝑏𝑗𝑆𝑐𝑗∑𝑚𝑖=1 𝑎𝑖 𝑅𝑟𝑖 − ∑𝑛𝑖=𝑚+1 𝑏𝑗 𝑆𝑟𝑗 ,
𝑚∑
𝑖=1

𝑎𝑖𝑅𝑐𝑖 − 𝑛∑
𝑖=𝑚+1

𝑏𝑗𝑆𝑐𝑗 > 0
0, 𝑚∑

𝑖=1

𝑎𝑖𝑅𝑐𝑖 − 𝑛∑
𝑖=𝑚+1

𝑏𝑗𝑆𝑐𝑗 ≤ 0
(8)

which can be also expressed using the geometric illustration
in the two-dimensional surface (Figure 1).

(2) For the Nonlinear Performance Function. The nonproba-
bilistic reliability index based on the interval model is defined
as [16, 24]

𝜂 = min (‖u‖∞) . (9)

Here the interval variables u satisfy 𝐺(𝑢1, 𝑢2, . . . , 𝑢𝑛) = 0,
where ‖u‖∞ is the infinite norm of the vector u; namely,

‖u‖∞ = max (𝑢1 , 𝑢2 , . . . , 𝑢𝑛) . (10)

In practice, the nonprobabilistic reliability index is the
minimum distance from the origin of coordinates to the fail-
ure surface measured by the infinite norm in the regularized
standard space. The above nonprobabilistic reliability index
for the nonlinear performance function can be expressed
using the geometric illustration in the two-dimensional
surface (Figure 2).
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Figure 2: Reliability index of nonlinear function.
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Figure 3: Most Probable failure Point above 45∘ line.

3. Nonprobabilistic Response Surface
Limit Method

3.1. Limit Method Basic Principle. Fan and Chen [25] pointed
out that allMPPs only exist among the extreme points and the
root points of the limit state function. Obviously, the tangent
line must exist at the extreme points of the failure surface.
Taking the two-dimensional case as an example, the square
is used to approximate the performance function curve when
the length of side of the square, with the origin of coordinates
as its center, is increasing from 0. With increased length of
the side of the square, one side of the square will be tangent
with the performance function curve, or one vertex of the
square will intersect with the performance function curve.
The maximum of the absolute values of coordinates for the
earliest intersection is the desired nonprobabilistic reliability
index.

For two-dimensional case, theMPPsmay be in the region
above the 45∘ line, in the region below the 45∘ line, or
on the 45∘ line (the boundary of these two regions). The
limit method will also be discussed for these three cases,
respectively (Figures 3, 4, and 5).

3.2. Response Surface Method. The response surface method
was initially presented by Box and Wilson [26] and was
mainly used to fit the limit state surface when the perfor-
mance function was not known in practical engineering.
Myers and Montgomery [27] perfected the proposed basic
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Figure 4: Most Probable failure Point below 45∘ line.
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Figure 5: Most Probable failure Point on 45∘ line.

principle of the response surface method, which was the
theoretical basis for the development of the response surface
method.

For linear function, the first-order response surface is
generally selected to approximate the real limit state function.
The established response surface function is as follows:

𝑀 = 𝑔 (x) = 𝑎 + 𝑛∑
𝑖=1

𝑏𝑖𝑥𝑖 + ∑
1≤𝑖≤𝑗≤𝑛

𝑐𝑖𝑗𝑥𝑖𝑥𝑗. (11)

For high-order nonlinear function, the quadratic re-
sponse surface is selected to approximate the real limit state
function. The established response surface function is as
follows:

𝑀 = 𝑔 (x) = 𝑎 + 𝑛∑
𝑖=1

𝑏𝑖𝑥𝑖 + 𝑛∑
𝑖=1

𝑐𝑖𝑥2𝑖 . (12)

In (11) and (12), 𝑎, 𝑏𝑗, 𝑐𝑖𝑗, and 𝑐𝑖 are the undetermined
coefficients.

3.3. Nonprobabilistic Response Surface Limit Method. The
task of the nonprobabilistic response surface limit method
is to solve the upper and lower values of the nonprob-
abilistic reliability index. Compared with the traditional
nonprobabilistic response surface method, not only will the
oscillating and nonconvergent phenomenon not appear in
the iteration process of the nonprobabilistic response surface
limit method, but also this iteration process is simpler and
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Figure 6: First iteration.

more rapid. The nonprobabilistic reliability index is finally
obtained by iterating step by step. The basic steps are follows.

(1) Select the mean point as the initial point (𝑥1(0), 𝑥2(0),. . . , 𝑥𝑛(0)) and 2𝑛 points (𝑥1(0), . . . , 𝑥𝑖(0) ± 𝑓𝑥𝑖𝑟, . . . , 𝑥𝑛(0)),
where 𝑥𝑖(0) and 𝑥𝑖𝑟 are the mid-value and dispersion of the
interval variable 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛), respectively, and 𝑓 = 2.

(2) Based on the initial parameters, (2𝑛 + 1) values
for the function 𝑀 can be obtained through the finite
element analysis and numerical simulation. Then (2𝑛 + 1)
undetermined coefficients 𝑎, 𝑏𝑖, 𝑐𝑖 (𝑖 = 1, 2, . . . , 𝑛) can be
obtained by solving the linear equation sets, so the initial
response surface function 𝑀 = 𝑔(x) is known. Further,
the regularized limit state function 𝐺(𝛿) will be obtained by
standardizing the interval variable 𝑥𝑖 (𝑖 = 1, 2, . . . , 𝑛).

(3) Solve all the nonprobabilistic reliability indices 𝜂11 , 𝜂12 ,. . . , 𝜂1𝑛 using the Matlab software. Then obtain the maximum𝜂max
1 which is not larger than the initial value of the parameter𝑓 (if 𝜂11 , 𝜂12 , . . . , 𝜂1𝑛 are all larger than the initial value of the
parameter 𝑓, the selected initial 𝑓 value is small and should
increase the 𝑓 value). This process is also called the first
iteration using the nonprobabilistic response surface limit
method, as shown in Figure 6.

(4) Determine the new parameter points using the
obtained 𝜂max

1 and then compute the nonprobabilistic relia-
bility index until reaching the maximum 𝜂max

2 , which is not
larger than 𝜂max

1 . This process is called the second iteration.
(5) Perform this iteration until the equation has no

solution or the solution of the equation is not smaller than𝜂max
𝑛−1 .Then the nonprobabilistic reliability index 𝜂min (namely,𝜂max
𝑛 ) will be obtained. Actually here 𝜂min is equal to 𝜂max

𝑛−1 .This
process is called the 𝑛th iteration.

(6) Establish the new limit state function based on[𝜂min, 𝜂max
𝑛−2 ]. If and only if there exists 𝜂𝑛+1 or the condition

of convergence can be satisfied, 𝜂𝑛+1 is the final value
of the nonprobabilistic reliability index. The condition of
convergence is as follows:𝜂𝑛+1 − 𝜂max

𝑛
 < 𝜀 𝜂max

𝑛
 (𝜀 = 0.01) . (13)

This final iteration process is also called the (𝑛 + 1)th
iteration using the nonprobabilistic response surface limit
method, as shown in Figure 7.
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Table 1: Comparison of calculation results.

Iterative steps Nonprobabilistic
reliability index Relative error

Analytical method — 1.7191 —
Traditional nonprobabilistic response surface method 5 1.7213 1.27 × 10−3

Presented nonprobabilistic response surface limit method 2 1.7191 0
Note. Relative error is obtained by comparing the nonprobabilistic reliability index calculated using other methods with that calculated using the analytical
method.
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Figure 7: (𝑛 + 1)th iteration.

4. Results and Discussion

4.1. Example 1. Consider the following limit state function
that includes three interval variables 𝑥1, 𝑥2, and 𝑥3:

𝐺 = 11𝑥21 + 7𝑥22 − 4𝑥23 + 3, (14)

where 𝑥1 ∈ [9, 13], 𝑥2 ∈ [4, 6], and 𝑥3 ∈ [6.5, 11.5].
Standardize the limit state function as shown by (14), so

the performance function can be expressed as the following
form again:

𝐺 = 11 (11 + 2 × 𝛿1)2 + 7 (5 + 1 × 𝛿2)2
− 4 (9 + 2.5 × 𝛿3)2 + 3. (15)

First, the global optimal solution method is used, and the
nonprobabilistic reliability index can be computed; that is,𝜂 = 1.7191. Next, the nonprobabilistic reliability index will be
computed using the nonprobabilistic response surface limit
method again. Letting 𝑓 = 2, after selecting the initial point,
the fitted performance function can be given as follows:

𝐺 = 3 + 2.65 × 10−11𝑥1 + 5.75 × 10−11𝑥2 + 1.57
× 10−11𝑥3 + 11𝑥21 + 7𝑥22 − 4𝑥23. (16)

After the regularization of the above fitted performance
function, the nonprobabilistic reliability indices are solved:𝜂 = (−9.6727, −4.7119, 2.2084, 20.6377, 1.7191, 26.512). The
maximum of the nonprobabilistic reliability indices, which

are smaller than 𝑓 = 2, is 1.7191; that is, 𝜂 = 1.7191.
Then letting 𝑓 = 1.7191, after the iterative computations,𝜂 = 1.7191 can be computed again. This result satisfies the
condition of convergence, so the nonprobabilistic reliability
index is finally obtained: 𝜂 = 1.7191.

The nonprobabilistic reliability index computed using the
traditional nonprobabilistic response surface method and
that computed using the presented nonprobabilistic response
surface limit method are summarized in Table 1.

4.2. Example 2. Consider the following limit state function
which includes two interval variables 𝑥1 and 𝑥2:

𝐺 = 𝑥31 + 𝑥32 − 4, (17)

where 𝑥1 ∈ [2, 4] and 𝑥2 ∈ [2.5, 4.5].
Standardize the limit state function as shown by (17), so

the performance function can be expressed as the following
form again:

𝐺 = (3 + 1 × 𝛿1)3 + (3.5 + 1 × 𝛿2)3 − 4. (18)

First, the Gradient Projection Method [19] is used, and
the nonprobabilistic reliability index can be computed; that
is, 𝜂 = 2.0397. Next, the nonprobabilistic reliability index will
be computed using the presented nonprobabilistic response
surface limit method again. After selecting the initial point,
the computation process indicates that there is no solution
with 𝑓 = 2. Then let 𝑓 = 3 again, and after four iterations the
fitted performance function can be given as follows:

𝐺 = −0.3196 − 2.57𝑥1 − 6.103 × 10−11𝑥2 + 2.783
× 10−11𝑥21. (19)

With the above function, the results 𝜂min = 1.962
and 𝜂max = 2.178 can be obtained. Meanwhile, the non-
probabilistic reliability indices can be also solved: 𝜂 =(−2.5383, −2.7875, −3.339, −2.0397). Due to the condition of𝜂min < 𝜂 < 𝜂max, the nonprobabilistic reliability index is𝜂 = 2.0397. Then letting 𝑓 = 2.0397, after the iterative
computations, 𝜂 = 2.0397 can be computed again. This result
satisfies the condition of convergence, so the nonprobabilistic
reliability index is finally determined: 𝜂 = 2.0397.

The nonprobabilistic reliability index computed using the
traditional nonprobabilistic response surface method and
that computed using the nonprobabilistic response surface
limit method are summarized in Table 2.
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Table 2: Comparison of calculation results.

Iterative steps Nonprobabilistic
reliability index Relative error

Analytical method — 2.0397 —
Gradient Projection Method — 2.0397 0
Traditional nonprobabilistic response surface method 10 2.0396 4.9 × 10−5

Presented nonprobabilistic response surface limit method 4 2.0397 0
Note. Relative error is obtained by comparing the nonprobabilistic reliability index calculated using other methods with that calculated using the analytical
method.

b1

b2

p1

p2

Figure 8: Schematic diagram of cantilever beam.

Table 2 indicates that, in solving the high nonlinear prob-
lems, the usage of the proposed nonprobabilistic response
surface limit method will greatly reduce the iterative steps
compared to the traditional nonprobabilistic response sur-
face method. The computational efficiency is significantly
improved when there is no difference in the solving accuracy.

4.3. Example 3. As shown in Figure 8, the concentrated
loads 𝑝1 and 𝑝2 are applied on the cantilever beam, and the
distances of these two concentrated loads from the fixed end
are 𝑏1 and 𝑏2, respectively. Suppose the cantilever beam is
failed when |𝑚max| ≥ 𝑚cr, where 𝑚cr is the critical ultimate
bending moment and 𝑚max is the maximum of the bending
moment of beam. The basic interval variables are 𝑝1 ∈ [4.4,5.6] kN, 𝑝2 ∈ [1.7, 2.3] kN, 𝑏1 ∈ [1.8, 2.2]m, 𝑏2 ∈ [4.5, 5.5]m,
and𝑚cr ∈ [32, 40] kN⋅m.These parameters will be used in the
estimation of the nonprobabilistic reliability for the structure.

Let 𝑓 = 2; the performance function is established using
the quadratic form response surface:

𝐺 = 20 + 𝑥1 − 2𝑥2 − 5𝑥3 − 5𝑥4 − 2𝑥5 + 6.046
× 10−14𝑥21 + 2.591 × 10−12𝑥22 + 9.266 × 10−12𝑥23
+ 2.911 × 10−11𝑥24 + 3.187 × 10−12𝑥25.

(20)

After the regularization of the performance function, the
nonprobabilistic reliability indices are solved: 𝜂 = (2.807,
12.308, 3.721, 22.857, 4.324, −9.412, −3.404, −12.308, −3.721,−2.388, 2.540, 4.848, 1.8391, −6.957, 2.388). The maximum
of the nonprobabilistic reliability indices, which are smaller
than 𝑓 = 2, is 1.8391; that is, 𝜂 = 1.8391. Then letting𝑓 = 1.8391, after the iterative computations, 𝜂 = 1.8391
can be computed again. This result satisfies the condition of
convergence, so the nonprobabilistic reliability index is finally
obtained: 𝜂 = 1.8391.

Let 𝑓 = 2; the performance function is established using
the primary response surface:

𝐺 = 1.1672 + 0.8836𝑥1 + 1.7194𝑥2 − 1.8054𝑥3
− 1.0768𝑥4 + 0.7384𝑥5 − 0.0191𝑥1𝑥2
− 0.0973𝑥1𝑥3 + 0.2446𝑥1𝑥4 − 0.0166𝑥1𝑥5
+ 1.0812𝑥2𝑥3 − 3.3464𝑥2𝑥4 + 0.2995𝑥2𝑥5
+ 2.0012𝑥3𝑥4 − 1.8198𝑥3𝑥5 − 1.837
× 10−14𝑥4𝑥5.

(21)

After the regularization of the performance function, the
nonprobabilistic reliability indices are solved: 𝜂 = (−5.423,
24.616, −2.414, −2.319, 5.003, 6.51, −9.103, 2.421, −33.967,
1.7446, −7.755, 20.966, −220.919, −8.065, 2.546, 4.132, 5.657,−11.984, 2.274, −51.899).Themaximum of the nonprobabilis-
tic reliability indices, which are smaller than 𝑓 = 2, is 1.7446;
that is, 𝜂 = 1.7446. Then letting 𝑓 = 1.7446, after the iterative
computations, 𝜂 = 1.7446 can be computed. These results
satisfy the condition of convergence, so the nonprobabilistic
reliability index is finally obtained: 𝜂 = 1.7446.

The nonprobabilistic reliability index computed using
the one-dimensional optimization algorithm [15, 16] is𝜂 = 1.7446. Finally, the nonprobabilistic reliability indices,
computed using the one-dimensional optimization algo-
rithm, the quadratic form response surface method, and
the primary response surface method, are summarized in
Table 3.

Table 3 indicates that the forms of the response surface
functions have great influence on the final nonprobabilistic
reliability index. The response surface function built greatly
approximates the real limit state function, and the nonproba-
bilistic reliability index obtained greatly approximates the real
value.

4.4. Example 4. A PC (prestressed reinforced concrete) con-
tinuous rigid frame bridge with three spans is investigated.
Three spans are 75m + 130m + 75m, respectively, and the
substructure is twin thin-wall pier.

4.4.1. Nonprobabilistic Reliability Evaluation Process. The
proposed nonprobabilistic response surface limitmethodwill
be used to evaluate the bridge reliability. The measured data
is obtained for building the Finite Element Model (FEM).
The nonprobabilistic reliability index is solved based on
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Table 3: Comparison of calculation results.

Iterative steps Nonprobabilistic
reliability index Relative error

Analytical method — 1.7446 —
One-dimensional optimization algorithm — 1.7446 0
Quadratic form response surface method 2 1.8391 5.4 × 10−2

Primary response surface method 2 1.7446 0
Note. Relative error is obtained by comparing the nonprobabilistic reliability index calculated using other methods with that calculated using the analytical
method.

Table 4: Initial value (before reinforcement).

Compressive strength (MPa) Area of the prestressed tendon (mm) 𝑀 = 𝑅 − 𝑆 (kN⋅m) 𝑅 (kN⋅m) 𝑆 (kN⋅m)
45 140 4294.3 175427.3 179721.6
40 140 12996.5 165715.9 178712.4
50 140 −1072.5 181548.0 180475.5
45 130 −1784.9 169259.3 167474.3
45 150 10282.6 181596.3 191878.9

Field investigation and data collection

FEM modeling analysis

Data processing

Solving nonprobabilistic reliability index

Reliability evaluation

Bridge reinforcing

End

Ok Failed

Figure 9: Reliability evaluation process.

the processed data using the Matlab software. The specific
evaluation process is shown in Figure 9.

4.4.2. Finite Element Model. The measured relative parame-
ters are as follows: height of main beam ℎ ∈ [295, 305] cm;
bridge deck width 𝐵 ∈ [1645, 1655] cm; reinforced concrete
weight 𝛾 ∈ [23, 25] kN/m3; concrete compressive strength𝐶 ∈ [40, 50]MPa; area of the single prestressed tendon 𝐴 ∈[135, 145]mm2.

The sensitivity analysis indicates that concrete compres-
sive strength and area of the single prestressed tendon have
great influence on the bending moment. Therefore, the
reliability analysis will be conducted by selecting concrete
compressive strength 𝐶 and area of the single prestressed
tendon 𝐴 as the variables. The Finite Element Model is
established using the Midas software, as shown in Figure 10.
The maximum resistance and effect values of the control
section will be also computed using the Midas software. The
nonprobabilistic reliability analysis of the structure will be

Figure 10: Finite Element Model.

performed by selecting the midspan section as the control
section.

4.4.3. Reliability Evaluation before Reinforcement. Let 𝑓 = 2;
the initial parameters of themodel, the resistance (𝑅), and the
effect (𝑆) computed using theMidas software are summarized
in Table 4.

Now the proposed nonprobabilistic response surface
limit method is utilized to solve the nonprobabilistic relia-
bility index based on the parameters in Table 4. The fitted
performance function can be given as follows:

𝐺 = 1.09 × 105 − 7.41 × 103𝑥1 + 730.7𝑥2 + 66.7𝑥21
− 0.45𝑥22. (22)

After the regularization of the performance function,
the nonprobabilistic reliability indices are solved: 𝜂 =(4.218, 132.733, 15.425, 0.686). The maximum of the non-
probabilistic reliability indices, which are smaller than 𝑓 =2, is 0.686; that is, 𝜂 = 0.686. Then letting 𝑓 = 0.686,
after the first iterative computations, the iterative results are
summarized in Table 5.

Next the proposed nonprobabilistic response surface
limit method is again utilized to solve the nonprobabilistic
reliability index based on the parameters in Table 5.The fitted
performance function can be given as follows:
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Table 5: First iterative computation results (before reinforcement).

Compressive strength (MPa) Area of the prestressed tendon (mm) 𝑀 = 𝑅 − 𝑆 (kN⋅m) 𝑅 (kN⋅m) 𝑆 (kN⋅m)
45 140 4294.3 175427.3 179721.6
43.29 140 7042.5 171665.5 178708.1
46.72 140 1679.4 178796.7 180476.1
45 136.57 2214.5 173313.5 175528.0
45 143.43 6363.3 177541.4 183904.7

Table 6: Second iterative computation results (before reinforcement).

Compressive strength (MPa) Area of the prestressed tendon (mm) 𝑀 = 𝑅 − 𝑆 (kN⋅m) 𝑅 (kN⋅m) 𝑆 (kN⋅m)
45 140 4294.3 175427.3 179721.6
43.43 140 6838.5 171869.4 178707.9
46.57 140 1829.7 178646.4 180476.1
45 136.86 2403.5 173501.7 175905.2
45 143.14 6199.6 177366.4 183566.0

Table 7: Third iterative computation results (before reinforcement).

Compressive strength (MPa) Area of the prestressed tendon (mm) 𝑀 = 𝑅 − 𝑆 (kN⋅m) 𝑅 (kN⋅m) 𝑆 (kN⋅m)
45 140 4294.3 175427.3 179721.6
43.45 140 6809.7 171898.2 178707.9
46.55 140 1849.9 178626.2 180476.1
45 136.91 2437.0 173518.8 175955.8
45 143.1 6166.3 177349.3 183515.7

𝐺 = 3.22 × 104 − 3.84 × 103𝑥1 + 733.8𝑥2 + 25.3𝑥21
− 0.46𝑥22. (23)

After the regularization of the performance function as
shown by (23), the nonprobabilistic reliability indices are
obtained: 𝜂 = (12.36, 131.24, 46.64, 0.628). The maximum
of the nonprobabilistic reliability indices, which are smaller
than 𝑓 = 0.686, is 0.628; that is, 𝜂 = 0.628. Then letting 𝑓 =0.628, after the second iterative computations, the iterative
results are summarized in Table 6.

Next the presented nonprobabilistic response surface
limit method is again utilized to solve the nonprobabilistic
reliability index based on the parameters in Table 6.The fitted
performance function can be given as follows:

𝐺 = 3.85 × 104 − 3.05 × 103𝑥1 + 398.6𝑥2 + 16.1𝑥21
+ 0.74𝑥22. (24)

After the regularization of the performance function
as shown by (24), the nonprobabilistic reliability indices
are computed: 𝜂 = (19.768, −82.202, 58.167, 0.619). The
maximum of the nonprobabilistic reliability indices, which
are smaller than𝑓 = 0.628, is 0.619; that is, 𝜂 = 0.619.Then let𝑓 = 0.619, after the third iterative computations, the iterative
results are summarized in Table 7.

Next the proposed nonprobabilistic response surface
limit method is again utilized to solve the nonprobabilistic

reliability index based on the parameters in Table 7.The fitted
performance function can be given as follows:

𝐺 = 3.07 × 104 − 2.93 × 103𝑥1 + 476𝑥2 + 14.8𝑥21
− 0.45𝑥22. (25)

After the regularization of the performance function
as shown by (25), the nonprobabilistic reliability indices
are computed: 𝜂 = (21.680, −133.413, 67.108, 0.618). The
maximum of the nonprobabilistic reliability indices, which
are smaller than 𝑓 = 0.619, is 0.618; that is, 𝜂 = 0.618. Here(0.619 − 0.618)/0.618 = 0.0016 < 0.01, which satisfies the
condition of convergence. In summary, the nonprobabilistic
reliability index is finally determined, which is 𝜂 = 0.618.
4.4.4. Reliability Evaluation after Reinforcement. According
to 𝜂 = 0.618 < 1, the bridge is unreliable. Then 16 bundles of
the external prestressed tendon are adopted to reinforce the
unreliable bridge, and the nonprobabilistic reliability index
for the reinforced bridge is solved again.

Let 𝑓 = 2; the initial parameters of the model, the
resistance (𝑅), and the effect (𝑆) computed using the Midas
software are summarized in Table 8.

Next the proposed nonprobabilistic response surface
limit method is again utilized to solve the nonprobabilistic
reliability index based on the parameters in Table 8.The fitted
performance function can be given as follows:

𝐺 = 1.15 × 105 − 7.62 × 103𝑥1 + 783.1𝑥2 + 68.7𝑥21
− 0.49𝑥22. (26)
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Table 8: Initial value (after reinforcement).

Compressive strength (MPa) Area of the prestressed tendon (mm) 𝑀 = 𝑅 − 𝑆 (kN⋅m) 𝑅 (kN⋅m) 𝑆 (kN⋅m)
45 140 10879.6 179122.2 190001.8
40 140 19787.6 169093.5 188881.1
50 140 5404.2 185434.4 190838.6
45 130 4377.0 172708.7 177085.7
45 150 17283.8 185534.1 202817.9

Table 9: First iterative computation results (after reinforcement).

Compressive strength (MPa) Area of the prestressed tendon (mm) 𝑀 = 𝑅 − 𝑆 (kN⋅m) 𝑅 (kN⋅m) 𝑆 (kN⋅m)
45 140 10879.6 179122.2 190001.8
40.52 140 18633.3 170246.9 188880.2
49.48 140 5796.5 185042.3 190838.8
45 131.05 5053.5 173378.8 178432.3
45 148.96 16625.6 184865.4 201490.9

After the regularization of the performance function as
shown by (26), the nonprobabilistic reliability indices are
computed: 𝜂 = (4.19, 131.191, 14.579, 1.791). The maximum
of the nonprobabilistic reliability indices, which are smaller
than 𝑓 = 2, is 1.791; that is, 𝜂 = 1.791. Then letting 𝑓 = 1.791,
after the first iterative computations, the iterative results are
summarized in Table 9.

Next the proposed nonprobabilistic response surface
limit method is again utilized to solve the nonprobabilistic
reliability index based on the parameters in Table 9.The fitted
performance function can be given as follows:

𝐺 = 1.09 × 105 − 7.42 × 103𝑥1 + 797.3𝑥2 + 66.5𝑥21
− 0.54𝑥22. (27)

After the regularization of the performance function as
shown by (27), the nonprobabilistic reliability indices are
computed: 𝜂 = (4.307, 119.671, 15.147, 1.785). The maxi-
mum of the nonprobabilistic reliability indices, which are
smaller than 𝑓 = 1.791, is 1.785; that is, 𝜂 = 1.785. Here(1.791 − 1.785)/1.785 = 0.0034 < 0.01 satisfies the condition
of convergence. In summary, the nonprobabilistic reliability
index is finally determined; that is, 𝜂 = 1.785, which indicates
that the bridge is reliable.

5. Conclusions

This article is the first to successfully propose a nonproba-
bilistic response surface limit method to perform nonprob-
abilistic reliability analysis for the structures based on the
interval model. Using this method, nonprobabilistic reliabil-
ity analysis can be performedwith the conditions of unknown
performance function and data shortage. Compared with the
traditional nonprobabilistic response surface method, there
are two other main advantages of the proposedmethod: (1) it
effectively avoids the tedious and oscillating iteration process;(2) it greatly enhances computational efficiency and precision
and obtains the nonprobabilistic reliability index rapidly.The
complete nonprobabilistic reliability evaluation process for

the bridge was illustrated and built through evaluating the
reliability of one PC continuous rigid frame bridge with three
spans. The results indicated that the reliability level of the
selected PC continuous rigid frame bridge with three spans
was very low, so that reinforcement measures were needed to
improve the performance of this bridge.The further reliability
estimation for the reinforced bridge demonstrated that the
reliability level of the reinforced bridge was greatly improved,
and the reinforcements were effective. In summary, this study
illustrated the effectiveness and feasibility of the proposed
nonprobabilistic response surface limit method in the bridge
nonprobabilistic reliability estimation through theoretical
analysis and example verification.
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