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In the framework of Jaeger’s model for heat transfer in dry surface grinding, series expansions for calculating the temperature
field, assuming constant, linear, triangular, and parabolic heat flux profiles entering into the workpiece, are derived. The numerical
evaluation of these series is considerably faster than the numerical integration of Jaeger’s formula and as accurate as the latter. Also,
considering a constant heat flux profile, a numerical procedure is proposed for the computation of the maximum temperature as a
function of the Peclet number and the depth below the surface. This numerical procedure has been used to evaluate the accuracy
of Takazawa’s approximation.

1. Introduction

Straight grinding is a machining process that produces a
smooth finish on a flat surface of a workpiece. In this process,
there are hard abrasive grits stuck to the peripheral area
of the grinding wheel, which perform the cutting when it
rotates at high speed, removing the surface layer of the
workpiece (see Figure 1). Also, the workpiece moves at a
certain feed rate V𝑑 with respect to the wheel and contacts
the latter at the grinding area, which is 2ℓ wide (see Table 1
for the nomenclature used). Jaeger’s model [1, Sect. 10.7.VII]
is commonly used to calculate the temperature field in dry
grinding. In this model, a two-dimensional approach is
considered, in which the coordinate system is fixed to the
wheel and centered on the middle of the grinding area, as
shown in Figure 1. In surface grinding, the cutting depth 𝑎
is small, whereby the grinding area is assumed to be flat in
Jaeger’s model.

The time-dependent temperature field 𝑇(𝑡, 𝑥, 𝑦) of the
workpiece in Jaeger’s model satisfies the convective heat
equation [1, §1.7(2)]

𝜕𝑇𝜕𝑡 = 𝑘(𝜕2𝑇𝜕𝑥2 + 𝜕2𝑇𝜕𝑦2 ) + V𝑑
𝜕𝑇𝜕𝑥 , (1)

subjected to the initial condition,𝑇 (0, 𝑥, 𝑦) = 𝑇∞, (2)

and to the boundary condition

𝑘0 𝜕𝑇𝜕𝑦 (𝑡, 𝑥, 0) = −𝑞𝑓 (𝑥) 𝜃 (ℓ − 𝑥) 𝜃 (ℓ + 𝑥) , (3)

where 𝜃(𝑥) denotes the Heaviside function and 𝑓(𝑥) is the
dimensionless heat flux profile going to the workpiece, which
is normalized to unity,

12ℓ ∫
ℓ

−ℓ
𝑓 (𝑥) 𝑑𝑥 = 1. (4)

The temperature field in the stationary regime is reached
when 𝜕𝑇/𝜕𝑡 = 0; thus it does not depend on 𝑡, and it is
denoted as 𝑇(𝑥, 𝑦). In the stationary regime, the solution of
the above equations (1)–(3) is given by [2, Eqn. 6-1]

𝑇 (𝑥, 𝑦) = 𝑇∞ + 𝑞𝜋𝑘0 ∫
ℓ

−ℓ
𝑓 (𝑢) exp(−V𝑑 (𝑥 − 𝑢)2𝑘 )

⋅ 𝐾0 ( V𝑑2𝑘√(𝑥 − 𝑢)2 + 𝑦2)𝑑𝑢,
(5)

where𝐾0(𝑧) denotes themodified Bessel function of the second
kind of zero order [3, Chap. 51].

Figure 2 shows the usual heat flux profiles 𝑓(𝑥) consid-
ered in the literature: constant [4, 5], linear [6–8], triangular
[9, 10], and parabolic [11, 12].
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Table 1: Nomenclature of symbols.

Symbol Meaning SI units𝑘0 Thermal conductivity Wm−1 K−1𝑘 Thermal diffusivity m2 s−1𝑇 Workpiece temperature K𝑇∞ Room temperature K
V𝑑 Feed rate m s−12ℓ Contact length m𝑞 Average heat flux within contact length Wm−2𝑎 Cutting depth m
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x

y
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Figure 1: Straight grinding setup.
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Figure 2: Usual heat flux profiles considered in the literature.

We can rewrite (5) in dimensionless form, setting the
following dimensionless quantities: T = 𝜋𝑘0(𝑇 − 𝑇∞)/(𝑞𝑠),𝑋 = 𝑥/𝑠, 𝑌 = 𝑦/𝑠, and 𝐿 = ℓ/𝑠 (Peclet number), where

𝑠 = 2𝑘
V𝑑

(6)

is a characteristic length. Thereby,

T (𝑋, 𝑌) = ∫𝑋+𝐿
𝑋−𝐿

𝑓 (𝑠 [𝑋 − 𝑢]) 𝑒−𝑢𝐾0 (√𝑢2 + 𝑌2) 𝑑𝑢. (7)

On the one hand, on the surface, that is, 𝑌 = 0, (7) is
reduced to

T (𝑋, 0) = ∫𝑋+𝐿
𝑋−𝐿

𝑓 (𝑠 [𝑋 − 𝑢]) 𝑒−𝑢𝐾0 (|𝑢|) 𝑑𝑢, (8)

and when 𝑓(𝑥) is an analytic function, closed form expres-
sions for the dimensionless temperature on the surface can
be obtained [13]:

T (𝑋, 0) = ∞∑
𝑛=0

𝑓(𝑛) (𝑠𝑋)𝑛! (−𝑠)𝑛 Jg𝑛 (𝑢)󵄨󵄨󵄨󵄨𝑋+𝐿𝑢=𝑋−𝐿 , (9)

where

Jg𝑛 (𝑥)
= {{{

𝑒𝑥𝑥𝑛+1 {𝐾0 (|𝑥|) Ψ𝑛 (𝑥) + 𝐾1 (|𝑥|) Φ𝑛 (𝑥)} , 𝑥 ̸= 0
0, 𝑥 = 0

(10)

where

Ψ𝑛 (𝑥) = 1𝑛 + 1 [[1

− 𝑛2𝑛 + 1 3𝐹1(
1, 1 − 𝑛, −1 − 𝑛12 − 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
12𝑥)]] ,

Φ𝑛 (𝑥) = sgn (𝑥)2𝑛 + 1 3𝐹1( 1, −𝑛, −𝑛
−𝑛 + 12

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
12𝑥) ,

(11)

polynomials in 1/𝑥. For instance, for a constant heat flux
profile,

T0 (𝑋, 0) = Jg0 (𝑢)󵄨󵄨󵄨󵄨−𝑋+𝐿𝑢=−𝑋−𝐿 , (12)

and according to (10)-(11), we have

Jg0 (𝑥)
= {{{

𝑥𝑒𝑥 [𝐾0 (|𝑥|) + sign (𝑥)𝐾1 (|𝑥|)] , 𝑥 ̸= 0
0, 𝑥 = 0.

(13)

It is worth noting that the 𝑥-axis given in [13] is just in the
opposite direction as the one given in Figure 1. For coherence,
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all the formulas in this paper are referred to the coordinate
systemgiven in Figure 1. From the results given in [13], similar
formulas to (12) can be derived for other heat flux profiles
normalized to unity (4). For instance, considering a linear
heat flux profile, we have

T1 (𝑋, 0) = 12𝐿 {(𝑋 + 𝐿) Jg0 (𝑢) + Jg1 (𝑢)}−𝑋+𝐿𝑢=−𝑋−𝐿 . (14)

Also, for a parabolic heat flux profile, we obtain

T2 (𝑋, 0) = 34𝐿2 [(𝑋 + 𝐿)2 Jg0 (𝑢) − 2 (𝑋 + 𝐿) Jg1 (𝑢)
+ Jg2 (𝑢)]−𝑋+𝐿𝑢=−𝑋−𝐿

, (15)

and, for a triangular one,

T󳵻 (𝑋, 0)
= 2 (𝐻𝐿 (𝑋)1 − 𝜆 − 𝐻−𝐿 (𝑋)1 + 𝜆 + 2𝜆𝜆2 − 1𝐻𝜆𝐿 (𝑋)) ,

(16)

where

𝐻Λ (𝑋) = Jg0 (Λ − 𝑋) (1 − 𝑋Λ) − 1Λ Jg1 (Λ − 𝑋) . (17)

On the other hand, considering a constant heat flux
profile, (18) is reduced to [14]

T0 (𝑋, 𝑌) = ∫𝑋+𝐿
𝑋−𝐿

𝑒−𝑢𝐾0 (√𝑢2 + 𝑌2) 𝑑𝑢. (18)

Takazawa [15] provides the following approximation to
(18) for the maximum temperature reached at a given depth𝑌 below the surface,

T0,max (𝑌, 𝐿) ≈ 3.1𝐿0.53exp (−0.69𝐿−0.37𝑌) . (19)

Expression (19) comes from the numerical evaluation of
(18) and a parameter fitting of the maximum temperature.
Takazawa uses (19) to estimate how the hardness of the
workpiece changes beneath its surface

The scope of this paper is two-folded. On the one hand,
we derive some series expansions to calculate the integral
given in (7) for the heat flux profiles considered above (see
Figure 2). It turns out that the numerical evaluation of
T(𝑋, 𝑌) by using these series is considerably faster than the
numerical integration of (7). On the other hand, we will
provide a numerical procedure to calculateT0,max(𝑌, 𝐿) that
allowus to evaluate the accuracy of Takazawa’s approximation
(19).

This paper is organized as follows. Section 2 provides
particular expressions of (7) for the different heat flux profiles
considered above, that is, constant, linear, triangular, and
parabolic. Section 3 is devoted to the calculation of the Taylor
series of𝐾](√𝑢2 + 𝑦2)(𝑢2+𝑦2)−]/2, whereby, taking ] = 0, we
get the main factor of the integrand given in (7). In Section 4,
we use the result of the previous section to express T(𝑋, 𝑌)
as a series expansion for the different heat flux profiles

considered in this paper. From these series expansions, we
can recover the results given in (12) and (14)–(16) for the
dimensionless temperature on the surface, that is, T(𝑋, 0).
As an example of this consistency test, we derive the latter for
the case of a constant heat flux profile. Section 5 describes a
quite efficient numerical procedure to calculateT0,max(𝑌, 𝐿).
In Section 6, we present some numerical simulations in order
to compare the performance of the numerical integration of
Jaeger’s formula (7) with the series expansions derived in
Section 4 for the different heat flux profiles considered. Also,
we evaluate the accuracy of Takazawa’s approximation (19) as
a function of 𝑌 and 𝐿. Finally, we collect our conclusions in
Section 7.

2. Temperature Field for
Usual Heat Flux Profiles

Consider now that 𝑓(𝑥) is an analytic function within the
contact area between the workpiece and the wheel; that is,𝑥 ∈ [−ℓ, ℓ],

𝑓 (𝑠𝑋 − 𝑠𝑢) = ∞∑
𝑚=0

𝑓(𝑚) (𝑠𝑋)𝑚! (−𝑠𝑢)𝑚 . (20)

Therefore, inserting (20) in (7)

T (𝑋, 𝑌) = ∞∑
𝑚=0

𝑓(𝑚) (𝑠𝑋)𝑚! (−𝑠)𝑚 𝐽𝑚 (𝑢)󵄨󵄨󵄨󵄨𝑋+𝐿𝑢=𝑋−𝐿 , (21)

where we have set

𝐽𝑚 (𝑥) = ∫𝑥
0
𝑢𝑚𝑒−𝑢𝐾0 (√𝑢2 + 𝑌2) 𝑑𝑢,

𝑚 = 0, 1, 2, . . . . (22)

For a constant heat flux profile,

𝑓0 (𝑥) = 1, (23)

thus (21) is reduced to

T0 (𝑋, 𝑌) = 𝐽0 (𝑢)󵄨󵄨󵄨󵄨𝑋+𝐿𝑢=𝑋−𝐿 . (24)

Taking into account the normalization condition (4), for
a linear heat flux profile, we have

𝑓1 (𝑥) = 1 + 𝑥ℓ ; (25)

hence

T1 (𝑋, 𝑌) = 1𝐿 [(𝑋 + 𝐿) 𝐽0 (𝑢) − 𝐽1 (𝑢)]𝑋+𝐿𝑢=𝑋−𝐿 . (26)

For a triangular heat profile

𝑓Δ (𝑥) = {{{{{
21 + 𝜆 (1 + 𝑥ℓ ) , 𝑥 ∈ (−ℓ, ℓmax)21 − 𝜆 (1 − 𝑥ℓ ) , 𝑥 ∈ (ℓmax, ℓ) , (27)
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where ℓmax ∈ [−ℓ, ℓ] denotes the location of the apex in
the triangular profile and 𝜆 is the following dimensionless
parameter (see Figure 2):

𝜆 = ℓmaxℓ ∈ [−1, 1] . (28)

Notice that when the heat flux occurs in an arbitrary
interval, say 𝑥 ∈ (𝑎, 𝑏), the dimensionless temperature is
given by

T (𝑋, 𝑌)
= ∫𝑋−𝐴

𝑋−𝐵
𝑓 (𝑠 [𝑋 − 𝑢]) 𝑒−𝑢𝐾0 (√𝑢2 + 𝑌2) 𝑑𝑢, (29)

where 𝐴 = 𝑎/𝑠 and 𝐵 = 𝑏/𝑠 are both dimensionless
parameters. Since the heat equation is linear, the temperature
field that 𝑓Δ(𝑥) generates in the workpiece is given by the
superposition of both parts of (27). Therefore, taking into
account (29), we have

TΔ (𝑋, 𝑌) = 21 + 𝜆
⋅ ∫𝑋+𝐿
𝑋−𝜆𝐿

(1 + 𝑋 − 𝑢𝐿 ) 𝑒−𝑢𝐾0 (√𝑢2 + 𝑌2) 𝑑𝑢
+ 21 − 𝜆
⋅ ∫𝑋−𝜆𝐿
𝑋−𝐿

(1 − 𝑋 − 𝑢𝐿 ) 𝑒−𝑢𝐾0 (√𝑢2 + 𝑌2) 𝑑𝑢.

(30)

We can rewriteTΔ(𝑋, 𝑌) as follows:
TΔ (𝑋, 𝑌) = T𝜆,𝐿 (𝑋, 𝑌) −T−𝜆,−𝐿 (𝑋, 𝑌) , (31)

where we have set
T𝜆,𝐿 (𝑋, 𝑌)

= 2𝐿 (1 + 𝜆) {(𝑋 + 𝐿) 𝐽0 (𝑢) − 𝐽1 (𝑢)}𝑋+𝐿𝑢=𝑋−𝜆𝐿 . (32)

Finally, for a parabolic heat flux profile,

𝑓2 (𝑥) = 34 (1 + 𝑥ℓ )
2 , (33)

whereby

T2 (𝑋, 𝑌) = 34𝐿2 [(𝑋 + 𝐿)2 𝐽0 (𝑢) − 2 (𝑋 + 𝐿) 𝐽1 (𝑢)
+ 𝐽2 (𝑢)]𝑋+𝐿𝑢=𝑋−𝐿

. (34)

3. Taylor Expansion of the Integrand

In order to calculate 𝐽𝑚(𝑥), which is defined as an integral in
(22), consider this more general form of the same integral,

I
±
𝑚 (], 𝑦, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = ∫𝑏

𝑎
𝑒±𝑢𝑢𝑚𝐾] (√𝑢2 + 𝑦2)

(𝑢2 + 𝑦2)]/2 𝑑𝑢; (35)

thereby

𝐽𝑚 (𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = I
−
𝑚 (0, 𝑌, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 . (36)

To expand I±
𝑚(], 𝑧, 𝑎, 𝑏) in series, we calculate first the

Taylor series of 𝐾](√𝑢2 + 𝑦2)(𝑢2 + 𝑦2)−]/2. For this purpose,
according to [16, Eqn. 1.14.1(4)], we have this formula for the𝑛th derivative

𝐷𝑛 [𝑧−]/2𝐾] (√𝑧)] = (−12)
𝑛 ( 1√𝑧)

𝑛+]𝐾𝑛+] (√𝑧) . (37)

Since the Taylor expansion of an analytic function is

𝑓 (𝑥 + ℎ) = ∞∑
𝑛=0

𝑓(𝑛) (ℎ)𝑛! 𝑥𝑛 = ∞∑
𝑛=0

𝑓(𝑛) (𝑥)𝑛! ℎ𝑛, (38)

according to (37), we have

𝐾] (√𝑥 + ℎ)(𝑥 + ℎ)]/2 = 1ℎ]/2
∞∑
𝑛=0

1𝑛! ( −12√ℎ)
𝑛𝐾𝑛+] (√ℎ) 𝑥𝑛 (39)

= 1𝑥]/2
∞∑
𝑛=0

1𝑛! ( −12√𝑥)
𝑛𝐾𝑛+] (√𝑥) ℎ𝑛. (40)

To calculate the radius of convergence of (39), let us set

𝑏𝑛 = 1𝑛! ( −12√ℎ)
𝑛𝐾𝑛+] (√ℎ) 𝑥𝑛, (41)

so, applying the ratio test, we have to determinatewhen𝑅 < 1,
where

𝑅 = lim
𝑛→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑏𝑛+1𝑏𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 𝑥2√ℎ lim

𝑛→∞

1𝑛 + 1 𝐾𝑛+]+1 (√𝑥)𝐾𝑛+] (√𝑥) . (42)

By using the asymptotic formula [17, Eqn. 10.41.2],

𝐾𝜇 (𝑧) ≈ √ 𝜋2𝜇 ( 𝑒𝑧2𝜇)
−𝜇 , 𝜇 󳨀→ ∞, (43)

we calculate (42) as

𝑅 = 𝑥ℎ𝑒−1 lim𝑛→∞√𝑛 + ] + 1√𝑛 + ]𝑛 + 1 (1 + 1𝑛 + ]
)𝑛+]

= 𝑥ℎ ,
(44)

wherewehave taken the definition of number 𝑒 = lim𝑛→∞(1+1/𝑛)𝑛 [18, Eqn. 1.2].Therefore, (39) converges absolutelywhen𝑥 < ℎ. Notice that we can convert (39) into (40) exchanging𝑥 and ℎ, so (40) converges absolutely when 𝑥 > ℎ.



Mathematical Problems in Engineering 5

Finally, taking ℎ = 𝑢2 and𝑥 = 𝑦2 in (39) and (40), bearing
in mind what we have said about the radius of convergence,
we arrive at

𝐾] (√𝑢2 + 𝑦2)
(𝑢2 + 𝑦2)]/2

=
{{{{{{{{{{{{{{{{{

1|𝑢|]
∞∑
𝑛=0

1𝑛! ( −𝑦22 |𝑢|)
𝑛𝐾𝑛+] (|𝑢|) , 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 < |𝑢|

1󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨]
∞∑
𝑛=0

1𝑛! ( −𝑢22 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨)
𝑛𝐾𝑛+] (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨) , 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 > |𝑢| .

(45)

The case |𝑦| = |𝑢| is not essential for our purpose, since
we are going to insert in (35) the expansions given in (45) and
then integrate term by term.

4. Series Expansion of the Temperature Field

In order to insert (45) in (35) and integrate term by term, let
us define the following functions:

I
±
𝑚,upper (], 𝑦, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎
= ∞∑
𝑛=0

(−𝑦2/2)𝑛𝑛! ∫𝑏
𝑎
𝑒±𝑢𝑢𝑚𝐾𝑛+] (|𝑢|)|𝑢|𝑛+] 𝑑𝑢, |𝑢| > 𝑦, (46)

I
±
𝑚,lower (], 𝑦, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎
= 1𝑦]

∞∑
𝑛=0

(−2𝑦)−𝑛𝑛! 𝐾𝑛+] (𝑦) ∫𝑏
𝑎
𝑒±𝑢𝑢2𝑛+𝑚𝑑𝑢,

|𝑢| < 𝑦.
(47)

We consider hereafter 𝑎 < 𝑏. Also, according to Figure 1,𝑦 ≥ 0; thus, we have dropped the absolute value for 𝑦 in (46)
and (47).

4.1. Calculation ofI±
𝑚,upper. For the calculation of the integral

given in (46), define the following function:

ℎ±𝑚 (𝛼, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = ∫𝑏
𝑎
𝑒±𝑢𝑢𝑚𝐾𝛼 (|𝑢|)|𝑢|𝛼 𝑑𝑢, (48)

so that, we can rewrite (46) as

I
±
𝑚,upper (], 𝑦, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎
= ∞∑
𝑛=0

(−𝑦2/2)𝑛𝑛! ℎ±𝑚 (𝑛 + ], 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 .
(49)

First, note that, performing the change of variables 𝑢 →−𝑢 on the LHS of (48), we obtain

ℎ±𝑚 (𝛼, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = (−1)𝑚+1 ∫−𝑏
−𝑎

𝑒∓𝑢𝑢𝑚𝐾𝛼 (|𝑢|)|𝑢|𝛼 𝑑𝑢
= (−1)𝑚+1 ℎ∓𝑚 (𝛼, 𝑢)󵄨󵄨󵄨󵄨󵄨−𝑏𝑢=−𝑎 ;

(50)

thus

I
±
𝑚,upper (], 𝑦, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎
= (−1)𝑚+1 I∓

𝑚,upper (], 𝑦, 𝑢)󵄨󵄨󵄨󵄨󵄨−𝑏𝑢=−𝑎 . (51)

Also, when 𝑎, 𝑏 > 0,
ℎ±𝑚 (𝛼, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = ∫𝑏

𝑎
𝑒±𝑢𝑢𝑚−𝛼𝐾𝛼 (𝑢) 𝑑𝑢

= ∫𝑏
𝑎
𝑒±𝑢𝑢𝑚+𝛽𝐾𝛽 (𝑢) 𝑑𝑢,

(52)

where we have set 𝛽 = −𝛼 and applied the property 𝐾](𝑧) =𝐾−](𝑧) [19, Eqn. 5.7.10]. For the calculation of ℎ±𝑚(𝛼, 𝑢), we
found in the literature [13]

∫𝑧
0
𝑒±𝑥𝑥]+𝑛𝐾] (𝑥) 𝑑𝑥 = 𝑒±𝑧𝑧]+𝑛+1 × {{{

𝐾] (𝑧)2] + 𝑛 + 1 [[1− 𝑛2] + 2𝑛 + 1
⋅ 3𝐹1( 1, 1 − 𝑛, −1 − 𝑛 − 2]12 − 𝑛 − ]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
±12𝑧)]]

± 𝐾1+] (𝑧)2] + 2𝑛 + 1 3𝐹1(
1, −𝑛, −𝑛 − 2]
−𝑛 + 12 − ]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
±12𝑧)}}}

+ (∓1)𝑛+1 2]+𝑛 𝑛!Γ (] + 𝑛 + 1) Γ (2] + 𝑛 + 1)Γ (2] + 2𝑛 + 2) .

(53)

Therefore,

ℎ±𝑚 (𝛼, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = 𝑒±𝑢𝑢1+𝑚−𝛼 { 𝐾𝛼 (𝑢)1 + 𝑚 − 2𝛼 [1
− 𝑚𝑃𝛼𝑚 (𝑢)1 + 2 (𝑚 − 𝛼)] ± 𝐾𝛼−1 (𝑢)𝑄𝛼𝑚 (𝑢)1 + 2 (𝑚 − 𝛼) }󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏

𝑢=𝑎

,
𝑎, 𝑏 > 0,

(54)

where we have defined the following polynomials in 1/𝑢:
𝑃𝛼𝑚 (𝑢) = 3𝐹1( 1, 1 − 𝑚, 2𝛼 − 𝑚 − 112 − 𝑚 + 𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
±12𝑢)

= ∞∑
𝑠=0

(1 − 𝑚)𝑠 (2𝛼 − 𝑚 − 1)𝑠(1/2 − 𝑚 + 𝛼)𝑠 (±12𝑢)
𝑠 ,

𝑄𝛼𝑚 (𝑢) = 3𝐹1( 1, −𝑚, 2𝛼 − 𝑚12 − 𝑚 + 𝛼
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
±12𝑢)

= ∞∑
𝑠=0

(−𝑚)𝑠 (2𝛼 − 𝑚)𝑠(1/2 − 𝑚 + 𝛼)𝑠 (±12𝑢)
𝑠 .

(55)

Note that the degree of polynomial 𝑃𝛼𝑚 is 𝑚 + 1 and of
polynomial 𝑄𝛼𝑚 is 𝑚. According to Section 2, we need to
calculate 𝐽𝑚 for 𝑚 = 0, 1, 2; thus we are going to derive
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particular expressions of I±
𝑚,upper for ] = 0 and 𝑚 = 0, 1, 2,

when 𝑎, 𝑏 > 0. Thereby, taking ] = 0, (49) is reduced to

I
±
𝑚,upper (0, 𝑦, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = ∞∑

𝑛=0

(−𝑦2/2)𝑛𝑛! ℎ±𝑚 (𝑛, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 . (56)

In the case 𝑛 = 0, according to (54)-(55), we have
ℎ±0 (𝑛, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = 𝑒±𝑢𝑢1−𝑛𝐾𝑛 (𝑢) ± 𝐾𝑛−1 (𝑢)1 − 2𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏

𝑢=𝑎

,
𝑎, 𝑏 > 0. (57)

Similarly, for𝑚 = 1, (54) is reduced to

ℎ±1 (𝑛, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎
= 𝑒±𝑢𝑢1−𝑛𝐾𝑛 (𝑢) 𝑢 − 𝐾𝑛−1 (𝑢) (1 ∓ 𝑢)3 − 2𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏

𝑢=𝑎

,
𝑎, 𝑏 > 0.

(58)

Finally, for𝑚 = 2, we arrive at

ℎ±2 (𝑛, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = 𝑒±𝑢𝑢1−𝑛 × 𝐾𝑛 (𝑢) [(3 − 2𝑛) 𝑢 ± 2] 𝑢 ± 𝐾𝑛−1 (𝑢) [(3 − 2𝑛) 𝑢2 + 4 (1 − 𝑛) (1 ∓ 𝑢)](3 − 2𝑛) (5 − 2𝑛)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏

𝑢=𝑎

, 𝑎, 𝑏 > 0. (59)

4.2. Calculation ofI±
𝑚,lower. For the calculation of the integral

given in (47), we apply the definition of the lower incomplete
gamma function [3, Eqn. 45:3:1]:

𝛾 (], 𝑥) = ∫𝑥
0
𝑡]−1𝑒−𝑡𝑑𝑡, (60)

so that, straightforwardly, we obtain

∫𝑏
𝑎
𝑒−𝑢𝑢2𝑛+𝑚𝑑𝑢 = 𝛾 (2𝑛 + 𝑚 + 1, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 , (61)

and, performing the change of variables 𝑢 → −𝑢, we have
∫𝑏
𝑎
𝑒𝑢𝑢2𝑛+𝑚𝑑𝑢 = (−1)𝑚+1 𝛾 (2𝑛 + 𝑚 + 1, 𝑢)󵄨󵄨󵄨󵄨󵄨−𝑏𝑢=−𝑎 . (62)

Taking into account (61) and (62), we rewrite (47) as

I
±
𝑚,lower (], 𝑦, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = (∓1)𝑚+1𝑦]

∞∑
𝑛=0

(−2𝑦)−𝑛𝑛! 𝐾𝑛+] (𝑦)
⋅ 𝛾 (2𝑛 + 𝑚 + 1, 𝑢)󵄨󵄨󵄨󵄨∓𝑏𝑢=∓𝑎 ,

(63)

which, for ] = 0, is reduced to

I
±
𝑚,lower (0, 𝑦, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = (∓1)𝑚+1 ∞∑

𝑛=0

(−2𝑦)−𝑛𝑛! 𝐾𝑛 (𝑦)
⋅ 𝛾 (2𝑛 + 𝑚 + 1, 𝑢)󵄨󵄨󵄨󵄨∓𝑏𝑢=∓𝑎 , max (|𝑎| , |𝑏|) < 𝑦.

(64)

4.3. Calculation of I±
𝑚. Applying the property given in (51),

we have six different cases for the calculation ofI±
𝑚 in terms

of I±
𝑚,upper and I±

𝑚,lower. For the sake of clarity, here we use
the following simplified notation:I±

𝑚|𝑏𝑎 = I±
𝑚(], 𝑦, 𝑢)|𝑏𝑢=𝑎.

I
±
𝑚
󵄨󵄨󵄨󵄨𝑏𝑎 =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

I±
𝑚,upper

󵄨󵄨󵄨󵄨󵄨𝑏𝑎 , 𝑎 > 𝑦
(−1)𝑚+1I∓

𝑚,upper
󵄨󵄨󵄨󵄨󵄨−𝑏−𝑎 , 𝑏 < −𝑦

I±
𝑚,lower

󵄨󵄨󵄨󵄨󵄨𝑦𝑎 + I±
𝑚,upper

󵄨󵄨󵄨󵄨󵄨𝑏𝑦 , 𝑏 > 𝑦, |𝑎| < 𝑦
(−1)𝑚+1I∓

𝑚,upper
󵄨󵄨󵄨󵄨󵄨−𝑦−𝑎 + I±

𝑚,lower
󵄨󵄨󵄨󵄨󵄨𝑦−𝑦 + I±

𝑚,upper
󵄨󵄨󵄨󵄨󵄨𝑏𝑦 , 𝑎 < −𝑦, 𝑏 > 𝑦

I±
𝑚,lower

󵄨󵄨󵄨󵄨󵄨𝑏𝑎 , max (|𝑎| , |𝑏|) < 𝑦
(−1)𝑚+1I∓

𝑚,upper
󵄨󵄨󵄨󵄨󵄨−𝑦−𝑎 + I±

𝑚,lower
󵄨󵄨󵄨󵄨󵄨𝑏−𝑦 , 𝑎 < −𝑦, |𝑏| < 𝑦

(65)

that can be reduced to only three cases,
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I
±
𝑚
󵄨󵄨󵄨󵄨𝑏𝑎 =

{{{{{{{{{{{{{{{{{{{

I±
𝑚,upper

󵄨󵄨󵄨󵄨󵄨𝑏𝑎 , 𝑎 > 𝑦
(−1)𝑚+1I∓

𝑚,upper
󵄨󵄨󵄨󵄨󵄨−𝑏−𝑎 , 𝑏 < −𝑦

{{{{{
(−1)𝑚+1I∓

𝑚,upper
󵄨󵄨󵄨󵄨󵄨−𝑦min(−𝑎,−𝑦)

+ I±
𝑚,lower

󵄨󵄨󵄨󵄨󵄨min(𝑏,𝑦)
max(𝑎,−𝑦)+I±

𝑚,upper
󵄨󵄨󵄨󵄨󵄨max(𝑦,𝑏)
𝑦

,
{{{
𝑎 < 𝑦,
𝑏 > −𝑦.

(66)

Recalling that 𝑦 ≥ 0, note that in (65) the integration
limits ofI𝑚,upper are always both positive, so that we can use
(56) in combinationwith (57), (58), or (59), for its calculation.

4.4. Calculation of T(𝑋, 𝑌). Now, we collect the previous
results in order to calculate the dimensionless temperature
fieldT(𝑋, 𝑌) for the different heat flux profiles considered in
the Introduction. First, consider a constant heat flux profile;
thereby, according to (24) and (36), we have

T0 (𝑋, 𝑌) = I
−
0 (0, 𝑌, 𝑢)󵄨󵄨󵄨󵄨𝑋+𝐿𝑢=𝑋−𝐿 . (67)

Notice that, taking𝑚 = 0 in (51), we have

I
±
0,upper (], 𝑦, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = − I

∓
0,upper (], 𝑦, 𝑢)󵄨󵄨󵄨󵄨󵄨−𝑏𝑢=−𝑎 . (68)

Also, from (56) and (57), we obtain the following series
for positive integration limits 𝑎, 𝑏:

I
±
0,upper (0, 𝑦, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎
= ∞∑
𝑛=0

(−𝑦2/2)𝑛𝑛! 𝑒±𝑢𝑢1−𝑛𝐾𝑛 (𝑢) ± 𝐾𝑛−1 (𝑢)1 − 2𝑛
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏

𝑢=𝑎

,
𝑎, 𝑏 > 0.

(69)

According to (68), we can extend (69) for negative values
of the integration limits 𝑎, 𝑏, defining the following function:

I0upper (𝑌, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = I
−
0,upper (0, 𝑌, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = sgn (𝑎)

⋅ ∞∑
𝑛=0

(−𝑌2/2)𝑛𝑛!
⋅ 𝑒−sgn(𝑎)𝑢𝑢1−𝑛𝐾𝑛 (𝑢) − sgn (𝑎)𝐾𝑛−1 (𝑢)1 − 2𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
|𝑏|

𝑢=|𝑎|

,
𝑎𝑏 > 0.

(70)

Similarly, from (64), define

I0lower (𝑌, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = I
−
0,lower (0, 𝑌, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎

= ∞∑
𝑛=0

𝐾𝑛 (𝑌)(−2𝑌)𝑛 𝑛! 𝛾 (2𝑛 + 1, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 .
(71)

For a linear heat flux profile, according to (26) and (36),
we have

T1 (𝑋, 𝑌)
= 1𝐿 [(𝑋 + 𝐿)I−

0 (0, 𝑌, 𝑢) −I
−
1 (0, 𝑌, 𝑢)]𝑋+𝐿𝑢=𝑋−𝐿 , (72)

and, applying (51), we have

1𝐿 [(𝑋 + 𝐿)I±
0,upper (0, 𝑌, 𝑢) −I

±
1,upper (0, 𝑌, 𝑢)]𝑏𝑢=𝑎

= 1𝐿 [− (𝑋 + 𝐿)I∓
0,upper (0, 𝑌, 𝑢)

−I
∓
1,upper (0, 𝑌, 𝑢)]𝑏𝑢=𝑎 .

(73)

Now, taking into account (56), (57) and (58), we can
rewrite (73) as

1𝐿 [(𝑋 + 𝐿)I±
0,upper (0, 𝑌, 𝑢) −I

±
1,upper (0, 𝑌, 𝑢)]𝑏𝑢=𝑎

= 1𝐿
∞∑
𝑛=0

(−𝑦2/2)𝑛𝑛! 𝑒±𝑢𝑢1−𝑛
× [𝐾𝑛 (𝑢) ( 𝑋 + 𝐿1 − 2𝑛 − 𝑢3 − 2𝑛)
+ 𝐾𝑛−1 (𝑢) ( 1 ∓ 𝑢3 − 2𝑛 ± 𝑋 + 𝐿1 − 2𝑛)]

𝑏

𝑢=𝑎
, 𝑎, 𝑏 > 0.

(74)

Again, according to (73), we can extend (74) for negative
values of the integration limits 𝑎, 𝑏, defining

I1upper (𝑋, 𝑌, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = 1𝐿 [(𝑋 + 𝐿)I−
0,upper (0, 𝑌, 𝑢)

−I
−
1,upper (0, 𝑌, 𝑢)]𝑏𝑢=𝑎 = 1𝐿

∞∑
𝑛=0

(−𝑌2/2)𝑛𝑛!
⋅ 𝑒−sgn(𝑎)𝑢𝑢1−𝑛 [𝐾𝑛 (𝑢) ( sgn (𝑎) (𝑋 + 𝐿)1 − 2𝑛 − 𝑢3 − 2𝑛)
+ 𝐾𝑛−1 (𝑢) (1 + sgn (𝑎) 𝑢3 − 2𝑛 − 𝑋 + 𝐿1 − 2𝑛)]

|𝑏|

𝑢=|𝑎|

,
𝑎𝑏 > 0.

(75)
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Similarly, from (64), define

I1lower (𝑌, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = 1𝐿 [(𝑋 + 𝐿)I−
0,lower (0, 𝑌, 𝑢)

−I
−
1,lower (0, 𝑌, 𝑢)]𝑏𝑢=𝑎 = 1𝐿

∞∑
𝑛=0

(−2𝑌)−𝑛𝑛! 𝐾𝑛 (𝑌)
⋅ [(𝑋 + 𝐿) 𝛾 (2𝑛 + 1, 𝑢) − 𝛾 (2𝑛 + 2, 𝑢)]𝑏𝑢=𝑎 .

(76)

By using the recursion formula [3, Eqn 45:5:1]

𝛾 (] + 1, 𝑥) = ]𝛾 (], 𝑥) − 𝑥]𝑒−𝑥, (77)

we reduce (76) to

I1lower (𝑌, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = 1𝐿
∞∑
𝑛=0

(−2𝑌)−𝑛𝑛! 𝐾𝑛 (𝑌)
⋅ [(𝑋 + 𝐿 − 2𝑛 − 1) 𝛾 (2𝑛 + 1, 𝑢) + 𝑢2𝑛+1𝑒−𝑢]𝑏

𝑢=𝑎
.

(78)

For the parabolic case, we can follow similar steps as in
the linear case, arriving at

I2upper (𝑋, 𝑌, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = 34𝐿2
∞∑
𝑛=0

(−𝑌2/2)𝑛𝑛! 𝑒−sgn(𝑎)𝑢𝑢1−𝑛
⋅ {𝐾𝑛 (𝑢) [sgn (𝑎) (𝑋 + 𝐿)21 − 2𝑛

− 2𝑢3 − 2𝑛 ( 15 − 2𝑛 + 𝑋 + 𝐿) + sgn (𝑎) 𝑢25 − 2𝑛 ]
+ 𝐾𝑛−1 (𝑢) [− (𝑋 + 𝐿)21 − 2𝑛
+ 2 (1 + sgn (𝑎) 𝑢)3 − 2𝑛 (𝑋 + 𝐿 − 2 (1 − 𝑛)5 − 2𝑛 )
− 𝑢25 − 2𝑛]}

|𝑏|

𝑢=|𝑎|

, 𝑎𝑏 > 0,
(79)

I2lower (𝑌, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = 34𝐿2
∞∑
𝑛=0

𝐾𝑛 (𝑌)(−2𝑌)𝑛 𝑛! {𝛾 (2𝑛 + 1, 𝑢)
⋅ [(𝑋 + 𝐿)2 + 2 (2𝑛 + 1) (𝑛 + 1 − 𝑋 − 𝐿)]
+ [2 (𝑋 + 𝐿 − 𝑛 − 1) − 𝑢] 𝑢2𝑛+1𝑒−𝑢}𝑏

𝑢=𝑎
.

(80)

Finally, taking into account (66) and using the above
results for I𝑚upper and I𝑚lower, the dimensionless temperature
fieldT𝑚(𝑋, 𝑌) for𝑚 = 0, 1, 2, is calculated as follows:

T𝑚 (𝑋, 𝑌) = I𝑚 (𝑋, 𝑌, 𝑢)󵄨󵄨󵄨󵄨𝑋+𝐿𝑢=𝑋−𝐿 , (81)

where

I𝑚
󵄨󵄨󵄨󵄨𝑏𝑎 =

{{{{{{{{{{{{{{{

I𝑚upper
󵄨󵄨󵄨󵄨󵄨𝑏𝑎 , {{{

𝑎 > 𝑌 or

𝑏 < −𝑌
I𝑚upper

󵄨󵄨󵄨󵄨󵄨−𝑌min(𝑎,−𝑌)
+ I𝑚lower

󵄨󵄨󵄨󵄨min(𝑏,𝑌)
max(𝑎,−𝑌) + I𝑚upper

󵄨󵄨󵄨󵄨󵄨max(𝑌,𝑏)
𝑌

, {{{
𝑎 < 𝑌,
𝑏 > −𝑌.

(82)

Therefore,

T𝑚 (𝑋, 𝑌)

=
{{{{{{{{{{{

I𝑚upper
󵄨󵄨󵄨󵄨󵄨𝑋+𝐿𝑋−𝐿

, |𝑋| > |𝑌 + 𝐿|
{{{
I𝑚upper

󵄨󵄨󵄨󵄨󵄨−𝑌min(𝑋−𝐿,−𝑌)
+ I𝑚lower

󵄨󵄨󵄨󵄨min(𝑋+𝐿,𝑌)
max(𝑋−𝐿,−𝑌)

+ I𝑚upper
󵄨󵄨󵄨󵄨󵄨max(𝑌,𝑋+𝐿)
𝑌

, |𝑋| < |𝑌 + 𝐿| ,
(83)

For the case of a triangular heat flux profile, according to
(32) and (36) and taking into account (72) and (81), we have

T𝜆,𝐿 (𝑋, 𝑌) = 2𝐿 (1 + 𝜆) {(𝑋 + 𝐿)I−
0 (0, 𝑌, 𝑢)

−I
−
1 (0, 𝑌, 𝑢)}𝑋+𝐿𝑢=𝑋−𝜆𝐿 = 21 + 𝜆 I1 (𝑋, 𝑌, 𝑢)󵄨󵄨󵄨󵄨𝑋+𝐿𝑢=𝑋−𝜆𝐿 .

(84)

It is worth noting that I1|𝑏𝑎 is calculated properly with the
formulas given for I1upper and I1lower in (75) and (78) when

𝑎 < 𝑏. Therefore, care has to be taken when we compute
the dimensionless temperature for the triangular case as
TΔ(𝑋, 𝑌) = T𝜆,𝐿(𝑋, 𝑌) −T−𝜆,−𝐿(𝑋, 𝑌), as stated in (31).

Notice also that, in order to calculate the dimensionless
temperatureT(𝑋, 𝑌), we need to compute the series given in
(70), (75), and (79) for I𝑚upper and (71), (78), and (80) for I

𝑚
lower.

These series are all alternating series, which converges slowly
when |𝑢| ≈ 𝑌. However, we can accelerate the convergence
of these alternating series by using Cohen-Villegas-Zagier
algorithm [20]. This algorithm approximates an alternating
series 𝑆 = ∑∞𝑘=0(−1)𝑘𝑎𝑘 as a weighted sum of the first 𝑛 values
of 𝑎𝑘 by using a “Padé type approximation,” as long as 𝑎𝑘 is
a reasonable well-behaved sequence. We will see in Section 6
that we need a small number of terms 𝑛 in order to get a good
accuracy.

4.5. Temperature on the Surface. As mentioned before in the
Introduction,T(𝑋, 0) can be calculated in closed form for the
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heat flux profiles considered in this paper. All these results can
be obtained from the results of Section 4 taking 𝑌 = 0. As a
consistency test, we are going to derive here the expression
given in (12) for a constant heat flux profile. For this purpose,
note that when 𝑦 = 0, the series given for I±

0,lower, that is,
(47), vanishes; thus, according to (35), we have

I
±
0 (], 0, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = I

±
0,upper (], 0, 𝑢)󵄨󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 . (85)

Now, taking 𝑦 = 0 in (69) and applying the property𝐾](𝑧) = 𝐾−](𝑧) [19, Eqn. 5.7.10], (85) is reduced to

I
±
0 (0, 0, 𝑢)󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 = 𝑢𝑒±𝑢 [𝐾0 (𝑢) ± 𝐾1 (𝑢)]󵄨󵄨󵄨󵄨𝑏𝑢=𝑎 ,

𝑎, 𝑏 > 0. (86)

According to the limiting forms [17, Eqn. 10.3.2-3],

𝐾] (𝑧) ≈ 12Γ (]) (𝑧2)
−] , 𝑧 󳨀→ 0, Re ] > 0,

𝐾0 (𝑧) ≈ − log 𝑧, 𝑧 󳨀→ 0, (87)

we have
lim
𝑢→0+

𝑢𝑒±𝑢 [𝐾0 (𝑢) ± 𝐾1 (𝑢)] = ±1, (88)

so that

I
±
0 (0, 0, 𝑢)󵄨󵄨󵄨󵄨𝑧𝑢=0 = 𝑧𝑒±𝑧 [𝐾0 (𝑧) ± 𝐾1 (𝑧)] ∓ 1,

𝑧 > 0, (89)

lim
𝑧→0+

I
±
0 (0, 0, 𝑢)󵄨󵄨󵄨󵄨𝑧𝑢=0 = 0. (90)

Now, according to (85), apply (51), exchange the integra-
tion limits, and take into account (89), to arrive at

I
±
0 (0, 0, 𝑢)󵄨󵄨󵄨󵄨−𝑧𝑢=0 = −I∓

0 (0, 0, 𝑢)󵄨󵄨󵄨󵄨𝑧𝑢=0
= −𝑧𝑒∓𝑧 [𝐾0 (𝑧) ∓ 𝐾1 (𝑧)] ∓ 1,

𝑧 > 0;
(91)

thus, performing the change 𝑧 → −𝑧,
I
±
0 (0, 0, 𝑢)󵄨󵄨󵄨󵄨𝑧𝑢=0 = 𝑧𝑒±𝑧 [𝐾0 (−𝑧) ∓ 𝐾1 (−𝑧)] ∓ 1,

𝑧 < 0. (92)

Collecting the results (89), (90), and (92), we arrive at

I
±
0 (0, 0, 𝑢)󵄨󵄨󵄨󵄨𝑧𝑢=0
= {{{

𝑧𝑒±𝑧 [𝐾0 (|𝑧|) ± sgn (𝑧)𝐾1 (|𝑧|)] ∓ 1, 𝑧 ̸= 0
0, 𝑧 = 0.

(93)

Finally, according to (67) and applying again (51), the
dimensionless temperature on the surface is

T0 (𝑋, 0) = I
−
0 (0, 0, 𝑢)󵄨󵄨󵄨󵄨𝑋+𝐿𝑢=𝑋−𝐿

= I
+
0 (0, 0, 𝑢)󵄨󵄨󵄨󵄨−𝑋+𝐿𝑢=−𝑋−𝐿 , (94)

which is equivalent to (12), taking into account (93). There-
fore, for the computation of the temperature field with the
series expansions given above, we will use directly the closed
form formulas given in (12) and (14)–(16).

5. Maximum Temperature Beneath the Surface

As aforementioned in the Introduction, we present in this
section a numerical method to compute the maximum
temperature as a function of the Peclet number 𝐿 and the
dimensionless depth𝑌 below the surface, that is,T0,max(𝑌, 𝐿).
For this purpose, note that the integrand of (18) is positive,
since ∀𝑧 > 0, 𝐾0(𝑧) > 0 [19, Note 38]. Therefore,

T0 (𝑋, 𝑌) = ∫𝑋+𝐿
𝑋−𝐿

𝑒−𝑢𝐾0 (√𝑢2 + 𝑌2) 𝑑𝑢 > 0,
𝑋 ∈ R. (95)

Also, directly from (95), we have

lim
𝑋→±∞

T0 (𝑋, 𝑌) = 0. (96)

The behavior ofT0(𝑋, 𝑌) given in (95) and (96) is shown
graphically in Figure 3. Moreover, for each 𝑌, T0(𝑋, 𝑌)
exhibits and unique extreme value that matches the max-
imum value. Therefore, we can search for the maximum
temperature at a given depth 𝑌 looking for the extreme value
ofT0(𝑋, 𝑌) as a function of𝑋, solving for𝑋max the equation

𝜕T0 (𝑋max, 𝑌)𝜕𝑋 = 0. (97)

By using Leibniz’s theorem for differentiation of integrals
[17, Eqn. 1.5.22]

𝑑𝑑𝑥 ∫𝛽(𝑥)
𝛼(𝑥)

𝑓 (𝑥, 𝑦) 𝑑𝑦 = 𝑓 (𝑥, 𝛽 (𝑥)) 𝛽󸀠 (𝑥)
− 𝑓 (𝑥, 𝛼 (𝑥)) 𝛼󸀠 (𝑥)
+ ∫𝛽(𝑥)

𝛼(𝑥)

𝜕𝑓𝜕𝑥𝑑𝑦.
(98)

Equation (97) reads as

𝑒−𝐿𝐾0 (√(𝑋max + 𝐿)2 + 𝑌2)
= 𝑒𝐿𝐾0 (√(𝑋max − 𝐿)2 + 𝑌2) ,

(99)

which has to be solved numerically. Taking as initial iteration
point 𝑋(0)max = 0, Newton’s method for root searching
converges quite rapidly. Notice that 𝑋max = 𝑋max(𝑌, 𝐿); thus
the maximum temperatureT0,max is calculated as a function
of the dimensionless depth 𝑌 and the Peclet number 𝐿,

T0,max (𝑌, 𝐿) = T0 (𝑋max (𝑌, 𝐿) , 𝑌) . (100)

In Section 6, we compare this numerical approach with
Takazawa’s approximation (19).
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Table 2: Simulation parameters in SI units.

Data 1 Data 2 Data 3

Workpiece
Material Sapphire Steel Titanium𝑘0 46 61 13𝑘 1.51 × 10−5 1.78 × 10−5 4.23 × 10−6

Grinding regime

2ℓ 1.4 × 10−3 2.5 × 10−3 2.66 × 10−3𝑞 1.4 × 107 3.5 × 107 5.89 × 107
V𝑑 3.3 × 10−2 0.15 0.53𝑇∞ 300 300 300

Dimensionless parameters 𝐿 0.76 5.27 83.4𝑌0.1 (𝐿) 1.68 4.42 17.6
0(X, Y)

Y

X

0

0.5

1

1.5

2 4−4−6 −2−8

1

2

3

4

5

6

Figure 3:T0(𝑋, 𝑌) for different dimensionless depths 𝑌 and Peclet
number 𝐿 = 3.
6. Numerical Results

In this section, we compare the performance of the numerical
evaluation of the temperature field by using the integral
form (7) with the series expansion derived in Section 4,
namely, (83) and (84). Also, we analyze the accuracy of
Takazawa’s approximation for the maximum temperature
(19), by using the numerical method derived in Section 5.
For both purposes, we need to define first the characteristic
dimensionless depth of the temperature field in dry grinding.

6.1. Characteristic Dimensionless Depth. According to the
one-dimensional approximation, the depth of thermal pen-
etration for dry grinding is given by

𝛿𝑝 = 2𝑔−1 (𝑝)√𝑘2ℓ
V𝑑
, (101)

where the function 𝑔−1(𝑝) is the inverse function of the
following function:

𝑔 (𝑥) = 𝑒−𝑥2 − √𝜋𝑥 erfc (𝑥) , (102)

and 𝑝 is the percentage at which the temperature falls
at depth 𝛿𝑝 with respect to the surface temperature (i.e.,

at 𝛿0.1 below the surface, the temperature is 10% of the
surface temperature). Equation (101) provides a very good
approximation to the two-dimensional depth of thermal
penetration for moderate values of 𝑝, that is, 0.3 ≲ 𝑝 ≤ 1,
and the heat flux profiles presented in Figure 2. This depth
of thermal penetration 𝛿𝑝 is useful to set the characteristic
domain of the temperature field, and thereby to compare the
performance of the integral formwith the series expansion of
the temperature field.

From (101), we define the characteristic dimensionless
depth as

𝑌𝑝 (𝐿) = 𝛿𝑝𝑠 = 2𝑔−1 (𝑝)√𝐿, (103)

where we remember that 𝑠 is the characteristic length given
in (6). This characteristic dimensionless depth 𝑌𝑝(𝐿) is very
useful to analyze the accuracy of Takazawa’s approximation
for the maximum temperature (19).

6.2. Temperature Field Computation. Table 2 shows three sets
of parameters (in SI units) for the numerical simulations.
Data set 1 considers a carbon steel workpiece AISI 1020 [21]
and data set 2 considers aluminum oxide, Al2O3 (sapphire),
as workpiece material [22]. Also, data set 3 considers a
titanium alloyVT20workpiece, whose thermal properties are
given in [23]. The grinding regime for this simulation can be
found in [24].These simulation parameters have been chosen
in order to cover a wide range of Peclet numbers 𝐿. The
characteristic dimensionless depth𝑌0.1(𝐿) of the temperature
field is given as well for the three data sets.

Figure 4 shows the temperature field for data set 1, where
we have considered as plot area

𝐷 = [−1.5ℓ, 1.5ℓ] × [0, 𝛿0.1] . (104)

In order to compare the performance of the numerical
integration of (7) and the numerical evaluation of the series
expansions given in Section 4 for the calculation of the
temperature field, we have set the time ratio 𝜏 as the ratio
between the computation time of the numerical integration𝑡integration and the series expansion 𝑡series,

𝜏 = 𝑡integration𝑡series . (105)
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Table 3: Relative distances Δ𝐷 and time ratios 𝜏 between the integration method and the series method, where 𝑛 denotes the number of
terms taken in the series approximation.

Heat flux Data 1 Data 2 Data 3

Constant
Δ𝐷 2.34 × 10−8 4.26 × 10−7 2.86 × 10−5𝜏 7.43 7.47 7.45𝑛 8 8 10

Linear
Δ𝐷 3.41 × 10−8 7.57 × 10−7 2.56 × 10−5𝜏 6.40 6.15 5.45𝑛 8 8 10

Triangular
Δ𝐷 2.34 × 10−8 7.01 × 10−7 2.56 × 10−5𝜏 17.16 17.10 11.73𝑛 8 8 10

Parabolic
Δ𝐷 4.26 × 10−8 1.07 × 10−6 2.33 × 10−5𝜏 5.06 5.50 1.63𝑛 8 8 10

T (x, y) (K)

525

475

425

375

3250.0000

0.0005

0.0010

0.0015

y
(m

)

−0.0005 0.0000 0.0005 0.0010−0.0010

x (m)

Figure 4: Temperature field for data set 1 and a constant heat flux
profile.

𝑡integration ≈ 10–25 s for plotting the temperature field
(i.e., Figure 4) running an 8 kernel i7 CPU computer with
MATHEMATICA� on Linux platform. However, this time
could be increased by a factor of 2–5 times in the numerical
control of the grinding machines; thus a time ratio 𝜏 ≥ 2
would be worthwhile.

Also, to compare both temperature fields, we have consid-
ered the following distance between two nonnegative scalar
fields 𝑓 and 𝑔, integrable in a certain connected open set𝐷 ⊆ R𝑛 [25]

Δ𝐷 (𝑓, 𝑔)

=
{{{{{{{{{{{{{

∫
𝐷

󵄨󵄨󵄨󵄨󵄨𝑓 (󳨀→𝑥) − 𝑔 (󳨀→𝑥)󵄨󵄨󵄨󵄨󵄨 𝑑𝑉∫
𝐷
[𝑓 (󳨀→𝑥) + 𝑔 (󳨀→𝑥)] 𝑑𝑉, for 𝑔 ̸= 0

0, 𝑓 = 𝑔 = 0.
(106)

This distance Δ𝐷 is applicable to the temperature field
since, according to (95); the latter is a positive quantity. In
[25], it is proved that 0 ≤ Δ𝐷(𝑓, 𝑔) ≤ 1, whereinΔ𝐷(𝑓, 𝑔) = 0
means that 𝑓 and 𝑔 are overlapped within the integration
domain 𝐷, and Δ𝐷(𝑓, 𝑔) = 1 means that both functions are
relatively infinitely far one from each other. Table 3 shows the
distancesΔ𝐷 between the temperature fields computed by the
numerical integration of (7) and the numerical evaluation of
the corresponding series (83) and (84), taking as integration
domain (104).

To evaluate numerically the alternating series 𝑆 =∑∞𝑘=0(−1)𝑘𝑎𝑘 given in (70), (75), and (79) for I𝑚upper and (71),
(78), and (80) for I𝑚lower, we have taken 𝑛 = 8 terms in the
Cohen-Villegas-Zagier algorithm [20] for data sets 1 and 2
and 𝑛 = 10 for data set 3. In particular, we have used the2𝐴 algorithm, which consists first of computing and storing
in memory the polynomial

𝐴𝑛 (sin2𝑡) = 12𝑛𝑛!𝐷𝑛 (sin𝑛2𝑡) , (107)

and then we apply the following procedure.

Algorithm 1 (2𝐴). Let 𝐴𝑛(𝑥) = ∑𝑛𝑘=0 𝑏𝑘𝑥𝑘. Set 𝑑 = −𝐴𝑛(−1);𝑐 = −𝑑; 𝑠 = 0. For 𝑘 = 0 up to 𝑘 = 𝑛 − 1, repeat: 𝑐 = 𝑏𝑘 − 𝑐;𝑠 = 𝑠 + 𝑐𝑎𝑘. Output: 𝑠/𝑑.
It is worth noting that there is a typo in the algorithm

published in [20], where 𝑑 is given as 𝐴𝑛(−1).
Table 3 shows the time ratios for the three data sets.

We can see that the computation of the corresponding
series expansions of Section 4 is considerably faster than the
numerical integration. This is especially true for a triangular
heat flux profile, for which we have set 𝜆 = 0.5 (similar
results are found for different values of𝜆). Also, bothmethods
provide very similar temperature fields, since Δ𝐷 ≪ 1. This
is especially true for low Peclet numbers.

6.3. Takazawa’s Approximation Analysis. We can compare
the exact value given in (100) with the approximation given
by Takazawa in (19). Figure 5 shows this comparison for
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Figure 5:T0,max(𝑌) for intermediate Peclet numbers.
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Figure 6: Accuracy of Takazawa’s approximation.

different values of the Peclet number. We can appreciate
that, regardless of the value of the Peclet number, Takazawa’s
approximation deviates from the exact value for large 𝑌.

In order to measure the accuracy of Takazawa’s approx-
imation (19), we can compute the relative distance Δ𝐷 of
(19) with respect to the numerical value (100) as a function
of the Peclet number 𝐿, taking as integration domain 𝐷 =[0, 𝑌0.1(𝐿)]. Figure 6 presents this computation, showing that
the accuracy of Takazawa’s approximation is in general poor,
especially for low Peclet numbers. Therefore, despite the fact
Takazawa’s formula being extremely easy to compute, proba-
bly it is better to use the numerical method given in (100),
since the numerical evaluation of 𝑋max(𝑌, 𝐿) is very rapid,
and the computation of T(𝑋, 𝑌) is quite fast by using the
series expansionmethod described in Section 4. For instance,
Figure 5 is plotted in ≈0.87 s by using MATHEMATICA and
an Intel i7 CPU.

7. Conclusions

In the framework of Jaeger’s model for heat transfer in dry
surface grinding, we consider the integral formula for the
dimensionless temperature field of the workpiece, assuming
themost common heat flux profiles reported in the literature.

On the one hand, series expansions of the temperature
field in dry grinding for the heat flux profiles considered
have been calculated. By using the Cohen-Villegas-Zagier
algorithm for computing alternating series, the numerical
evaluation of these series expansions is considerably faster
than the numerical integration of the integral form given in
Jaeger’s model for a wide range of Peclet numbers. The latter
is especially true in the case of a triangular heat flux profile,
for which the series method is ≈17 times faster than the
numerical integration. Also, these series expansions provide
an evaluation of the temperature field as accurate as the
integral form within the domain where the temperature rise
is more significant. The latter is especially true for low Peclet
numbers.

On the other hand, considering a constant heat flux
profile, a numerical procedure for the computation of the
maximum temperature as a function of the Peclet number
and the depth below the surface has been proposed. This
numerical procedure has been used to evaluate the accuracy
of Takazawa’s approximation.
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