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As modern engineering design usually involves dependence of one discipline on another, multidisciplinary system analysis (MDSA)
plays an important role in the multidisciplinary simulation and design optimization on coupled systems. The paper proposes an
MDSA method based on minimal feedback variables (MDSA_MF) to enhance the solving efficiency. There are two phases in the
method. In phase 1, design structural matrix (DSM) is introduced to represent a coupled system, and each off-diagonal element
is denoted by a coupling variable set; then an optimal sequence model is built to obtain a reordered DSM with minimal number
of feedback variables. In phase 2, the feedback in the reordered DSM is broken, so that the coupled system is transformed into
one directed acyclic graph; then, regarding the inputs depending on the broken feedback as independent variables, a least-squares
problem is constructed to minimize the residuals of these independents and corresponding outputs to zero, which means the
multidisciplinary consistence is achieved. Besides, the MDSA_MF method is implemented in a multidisciplinary platform called
FlowComputer. Several examples of coupled systems are modeled and solved in the platform using several MDSA methods. The

results demonstrate that the proposed method could enhance the solving efficiency of coupled systems.

1. Introduction

Engineering design generally involves multidisciplinary
dependence relationships of one discipline on another. For
coupled system, these dependent relationships among the
disciplines make up one or more loops. Thus, multidisci-
plinary system analysis (MDSA) is required to achieve the
output-input consistence of all the dependence relationships
by iteratively executing discipline analyses. Accordingly, an
optimization on a coupled system using general nonlinear
optimization methods could be time-consuming.

To enhance the solving efficiency, various multidisci-
plinary design optimization (MDO) frameworks [1-3] are
proposed to handle the discipline couplings by decomposi-
tion and coordination strategies. Some MDO frameworks, for
example, individual discipline feasible (IDF) [4] and collabo-
rative optimization (CO) [5], eliminate the discipline cou-
plings and enforce the multidisciplinary consistence at the
final solution. These methods, however, could not obtain a
multidisciplinary feasible solution when the optimization is

interrupted. Other types of MDO frameworks, for exam-
ple, multidisciplinary feasible (MDF) [4], concurrent sub-
space optimization (CSSO) [6], and bilevel integrated sys-
tem synthesis (BLISS) [7], try to reduce the number of
MDSA processes using different strategies while ensuring the
multidisciplinary feasibility during the whole optimization
process. Thus, the solving efficiency of MDSA could be
essential to enhance the MDO process on coupled systems.
Furthermore, different multidisciplinary analysis and opti-
mization strategies under uncertainty are developed to han-
dle the stochastic and/or epistemic uncertainties in coupled
engineering problems [8-10]. A likelihood-based approach
is proposed to estimate the probability density function of
coupling variables [11] and is further extended to handle
the model uncertainty [12] and the uncertainty propaga-
tion in high dimensional coupled systems [13]. Gibbs sam-
pling and sequential importance resampling techniques are
introduced to reduce the computational cost for decoupled
multidisciplinary uncertainty analysis [14, 15]. These MDSA
methods under uncertainty generally guarantee statistical
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multidisciplinary consistence, rather functional consistence.
The present paper is focused on enhancing the solving
efficiency of deterministic MDSA.

Several methods can be used to perform MDSA for cou-
pled systems. Fixed point iteration (FPI) is a common-used
method for MDSA [16]. When certain convergence condi-
tion is satisfied, a multidisciplinary feasible solution could
be obtained. However, the FPI method converges slowly,
which could lead to numerous discipline simulations [17, 18].
Newton-like methods [16] could achieve rapid convergence
in that derivative information is used. The methods might
fail to converge when solving from a bad starting point. Non-
linear least-squares (NLS) method [19] could be regarded as a
generic MDSA method. It constructs a least-squares problem
to minimize the sum of residuals of coupling relationships
to zero and to obtain a multidisciplinary feasible solution.
The constructed least-squares problem for MDSA can be
solved flexibly by related NLS methods, or other general
optimization algorithms.

Various engineering design platforms are developed to
provide integrated multidisciplinary design environments.
These platforms could integrate discipline design tools,
define coupled system models, and perform multidisciplinary
system analysis and design optimization on engineering
problems [20, 21]. Commercial software tools, for example,
ModelCenter [22], iSIGHT [23], and VisualDOC [24], are
mainly focused on the integration of discipline tools and the
capability of diverse design exploration methods [25, 26].
Some simple MDO frameworks, for example, IDF [4] and
CO [5], can be implemented directly based on optimizer-like
components and wrapped analysis components within some
commercial tools [23, 27]. Several open source platforms, for
example, DAKOTA [28], pyMDO [29], and openMDAO [30],
could support automatic implementation of several MDO
frameworks and their variants from specific problem descrip-
tions [31, 32]. Some MDSA methods, or generic MDSA
solvers, are provided in some of the platforms. ModelCenter
provides a Converger component based on FPI method
to achieve the convergence between the guessed variables
and the calculated variables. The Gauss-Seidel iteration is
the default algorithm to perform MDSA in pyMDO [29].
Within OpenMDAO, BroydenSolver and FixedPointlterator
are provided to perform the iterative system analysis [31].
Within other MDO platforms, however, implementation of
MDSA is generally provided by users. Furthermore, with the
number of coupling variables increasing, the MDSA could be
too large to be solved efficiently. These generic solvers might
have difficulties in performing MDSA on the coupled systems
with large number of couplings.

The paper proposed an MDSA method based on minimal
feedback variables (MDSA_MF) to enhance the solving effi-
ciency. The method includes two phases. In phase 1, design
structural matrix (DSM) is introduced to represent a coupled
system, and each off-diagonal element is denoted by a cou-
pling variable set mapping from one discipline into another.
Then, an optimal discipline sequence model is constructed
to minimize the number of feedback variables by reordering
the discipline sequence, and obtain a reordered DSM with
minimal feedback variables. In phase 2, the feedback in
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the lower triangle of the reordered DSM is broken, so that
the coupled system is transformed into a directed acyclic
graph in terms of graph theory. Then, regarding the input
variables depending on the broken feedback as independent
variables, a least-squares problem with respect to these new
independent inputs is constructed to minimize the sum of
residuals of the independents and the corresponding outputs.
When the objective of the least-squares problem is minimized
to zero, the multidisciplinary consistence of the broken
couplings is achieved. Besides, the implementation of the
MDSA_MF method in a multidisciplinary design platform,
called FlowComputer, is presented. Discipline integration
based on Commercial-off-the-shelf (COTS) is provided to
integrate discipline components, and a graphical user inter-
face with dragging-and-dropping operations and visual data
displayed is presented.

The rest of the paper is organized as follows. The next
section lists the general MDSA methods used in the paper.
Section 3 describes the DSM representation of coupled
systems, proposes an optimal discipline sequence model to
minimize the number of feedback variables, and presents the
procedure of the MDSA_MF method. Section 4 describes the
implementation of the MDSA_MF method in a multidisci-
plinary design platform. In Section 5, test cases of coupled
systems are implemented in FlowComputer, and numerical
results are investigated. Conclusions and future work are
presented in the final section.

2. Related Methods of Multidisciplinary
System Analysis

A large engineering design system usually involves a series
of disciplines depending on one another. Such a multidisci-
plinary system can be generally stated as formulation (1).

V1= 01 (K yp Y3es W)

V2= 2 (X ¥ ¥3sees V)
)

V= Y (K Y1 Yas v Y1) »

where 7 is the number of disciplines in the multidisciplinary
system, X is the independent input vector, and y; is the output
variable of the ith discipline. The equation y; = (X, y;)
represents the ith discipline in the coupled system, where
the notation X represents the vector of independent input
variables [x, x,, ..., %,,]%; yjis the input variable depending
on the jth discipline and is usually called coupling variable.
As the disciplines are dependent on one another, one or
more execution loops exist. For a nonlinear system, the mul-
tidisciplinary consistence of coupling variables could not be
satisfied if all of the disciplines are executed only once. There-
fore, some iterative system analysis process is required. In this
section, several iterative methods for MDSA are described.

2.1. Fixed Point Iteration. Fixed point iteration (FPI) method
uses the original equations of the system as the iterative func-
tions from a starting point of coupling variables [16]. Jacobi
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iteration and Gauss-Seidel iteration are the typical FPI meth-
ods. The former uses the values of the coupling variables from
previous iteration to evaluate the outputs, and the disciplines
could be run in parallel. The latter uses the recent evaluated
values of other disciplines from current iteration as much as
possible, and the disciplines are executed sequentially [33]. In
most cases, the Gauss-Seidel iteration could converge faster
than Jacobi iteration, for the newly updated values from cur-
rent iteration might be more near to the solution. Formula-
tions (2) and (3) state the iterative equations of Jacobi iteration
and Gauss-Seidel iteration, respectively.

y 0 =y (x9"), 2)

where X is the independent input vector, y*® = [ 52 ®), yz(k),

ces yn(k)]T is the output vector of the previous iteration, and
(k+1) _

yED = [y, D,y G0y ®DIT s the output vector of
the current iteration.
(k+1) (k) (k) (k)
yl :yl(X,yz :y3 ,...,yn )
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35 = 5 (X35, 09, 2,9)
(3)
(k+1) (k+1) (k+1) (k+1)
7Y =y, (X 7, 5, 0,y M),

where X is the independent input vector, y,*) is the output
of the ith discipline from the previous iteration, and yi(k”) is

the output of the ith discipline during the current iteration.

2.2. Newton-Like Method. Newton-like methods convert the
original coupled system into its residual form as formulation
(4) and determine the next iterative point using the residual
values and the corresponding derivative from the current
point [16].

V) =0,

R, ()’2>)’2 (X> Y V3o >)’n)) =0,

Ry (v 01 (X, 955 35 - -
(4)

’yn—l)) = 0’

where R, represents the residual form of the ith discipline, n is
the number of disciplines, X is the independent input vector,
and y; represents the coupling variable.

The Newton-Raphson iterative equations [16] are pre-
sented as formulation (5).

y<k+1) _ y(k) B [] (X’ y(k))]_l R (X, y(k)), (5)

R, (yn’ Vn (X> Vi Vare--

where y® is the vector of coupling variables from the pre-
vious iteration, y(k“)
of the current iteration, and J(X, y(k)) is the Jacobi matrix of
the discipline residuals to the coupling variables during the

previous iteration.

is the output vector of coupling variables

2.3. Nonlinear Least-Squares Methods. Nonlinear least-
squares (NLS) methods [19] break the coupling relationships
and construct a least-squares objective, which minimizes the
sum of squares of the residuals of the broken couplings, to
find a multidisciplinary feasible solution. The least-squares
problem is as formulation (6):

Find y/

. ©)
min 3| = .

where n represents the number of coupling variables, y; is the
output variable of the ith discipline, and y;" is the unknown
design variable, corresponding to the input variable of a
broken coupling relation depending on y;. Here, y; is deter-
mined by formulation (7).

Yi=Y (X’)’jt)> j#i (7)

The NLS algorithms, or other optimization algorithms,
could be used to solve the least-squares problem, which
makes the multidisciplinary problem more flexible to be
solved. As each least-squares term is constructed with respect
to a coupling variable, the number of unknown design vari-
ables is equal to the number of the least-squares terms.

3. The Framework of MDSA_MF

3.1. Discipline Dependence Representation of Coupled Systems.
Design Structure Matrix (DSM) [34] is usually used to
represent the dependence of one discipline on another in a
coupled system. In the matrix, diagonal elements represent
the disciplines, which might be analytical functions, specific
disciplines, subsystems, components, black-boxes, or other
objects. Each element in upper triangle represents a feed-
forward coupling relationship between associated disciplines,
and each one in lower triangle represents a feedback. Because
the DSM representation is the adjacency matrix of the
discipline dependence graph, a coupled system is generally
a directed cyclic graph. Formulation (8) shows the general
matrix representation.

—Y11 Yy, - Y1nq
Y21 Yzz an

Y = , )
_Ynl Yn2 Ynn_

where 1 represents the number of disciplines, Y}; represents
the ith discipline, and Y;; represents the dependence relation-
ship of the jth discipline on the ith discipline.

The coupling relationships represented by the off-
diagonal elements can be different expressions. A Boolean
value, that is, “1” or “0,” can represent whether one discipline
depends on another [35, 36]. The Boolean DSM could
also be employed to model and solve Boolean Dynamical
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FIGURE 1: The DSM representations of an example system.

Systems [37, 38]. Derivative information could quantitatively
indicate the influence of one discipline on another at a
given point [39, 40]. And a natural number can represent
the number of variables mapping from one discipline into
another [41].

In the present paper, each oft-diagonal element is repre-
sented by a collection of variables mapping from an output of
one discipline into an input of another discipline. To simplify
the collection, a set of output variables is often used. This
representation can be converted into a Boolean value, or
the number of feedback variables. Also, the representation
can be extended to include other information about the
corresponding coupling.

3.2. The Optimal Discipline Sequence Model. In engineering
designs, the MDSA problem could be too large to be solved
efficiently when the number of coupling variables is large. In
this case, a part of the couplings, for example, the feedback
couplings, could be selected to construct a least-squares
problem as Section 2.3 to implement the MDSA. Accordingly,
the selected couplings are broken and the coupled system is
transformed into one without feedback couplings. In terms
of graph theory, one directed acyclic graph of the system is
obtained.

The size of the least-squares problem depends on
the number of selected feedback variables. With different
sequence of diagonal elements, the feedback couplings in the
lower triangle could be different. Several DSM-based optimi-
zation methods are proposed to reorder the discipline
sequence [39, 42-44]. These methods try to minimize the
number of feedback coupling loops [45, 46], or minimize
an integrated objective taking other factors, for example,
time, cost, and modularity, into account [43, 47]. Partitioning
a coupled system into several small subsystems is another
objective to reduce the complexity of the problems [41, 44].

The paper is focused on minimizing the number of
feedback variables to reduce the MDSA problem size. The
objective is to reduce the number of all the feedback variables
in the lower triangle of DSM. Each off-diagonal element
of the DSM is represented by a variable set consisting of

feed-forward or feedback variables between two disciplines.
Figure 1 shows the DSM representation of an example system
with three disciplines. With the initial DSM as Figure 1(a),
there are two feedback variables, y, and y;. With the reorder-
ed DSM as Figure 1(b), there is only one feedback variable, y, .

Figure 2 shows the Boolean DSM representation of the
aforementioned example. Both the initial Boolean DSM
and the reordered Boolean DSM have two feedback marks.
However, less feedback variables could be selected with the
reordered DSM.

To minimize the number of feedback variables in the
lower triangle, an optimal sequence problem is stated as for-
mulation (9).

JUvs

i=2 j=1

) 9)

where 7 is the number of disciplines in a complex system and
Y;; is a feedback variable set mapping from discipline i into

discipline j. [JI, U’];ll Y;; represents the union set of all the
variable sets in lower triangle, and |Y'| denotes the number of
elements in set Y.

3.3. MDSA_MF Procedure. The optimal discipline sequence
model described in previous subsection is used to obtain a
reordered DSM with the minimal number of feedback vari-
ables. The feedback variables in the lower triangle are selected
to construct a least-squares problem to minimize the sum of
residuals of the feedback couplings to zero and achieve the
multidisciplinary consistence. The problem is stated as fol-
lows.

Find

o (10
min Y [ly° - x5,

i1

where n represents the number of the selected coupling
variables, y; is the output variable of the ith discipline, and y;°
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FIGURE 2: The Boolean DSM representations of an example system.

is the unknown design variable, passed on to corresponding
discipline input with respect to the broken coupling.

As the feedback is removed, the disciplines are executed
sequentially. The outputs with respect to the selected feedback
are determined by formulation (11).

Yi=Yi (X’ yjs’yk)’ j> i k<i, (11)

where y;” is the selected design variable, y; is the output of the
ith discipline, and y; is the output of the kth discipline ahead
of the ith discipline in the execution sequence of disciplines.

In addition, some coupled systems could be divided
into several strongly connected components. Each strongly
connected component is a directed cyclic subgraph of the
system. However, there is no interdependence relationship
between any two strongly connected components. Thus, the
system denoting each strongly connected component as a
block is a directed acyclic graph, and the strongly connected
components can be solved sequentially. The method of
searching strongly connected component could aid in the
discipline ordering [48].

Figure 3(a) shows the initial DSM representation of an
example coupled system. The system can be divided into two
strongly connected components and four individual nodes.
Figure 3(b) shows the reordered DSM. A discipline can be
regarded as a strongly connected component if the discipline
is not coupled to other disciplines.

The procedure of MDSA_MF is presented as follows.

Step 1. Search strongly connected components, and divide
the system into a series of strongly connected components.
Tarjan depth first search algorithm [49] is used to search
strongly connected components.

Step 2. Topologically order the strongly connected compo-
nents to generate the solving sequence.

Step 3. For each strongly connected component, reorder
the discipline sequence to obtain a sub-DSM with minimal
number of feedback variables by formulation (9).

Step 4. Solve the strongly connected components sequen-
tially, and if some components do not depend on each

other, they could be executed in parallel. For each strongly
connected component, it is solved as follows.

Step 4.1. Identify the feedback variables, break the feedback,
and generate evaluation functions using the subsystem with-
out feedback.

Step 4.2. Construct a least-squares objective with respect to
the residuals of broken couplings.

Step 4.3. Initialize the inputs of broken couplings with given
starting values, or the current values of the corresponding
outputs.

Step 4.4. Solve the least-squares problem as formulation (10).

Step 4.5. Pass on the output values to the corresponding
inputs of the next subsystem, and turn to Step 4.1.

Step 5. Complete solving, and present outputs.

4. System Design and Implementation

In the section, the implementation of MDSA_MF in a visual
and intuitive multidisciplinary platform, called FlowCom-
puter, is presented to integrate different discipline models;
define the dependence relationships and solve coupled sys-
tems.

Component objects and link objects are developed to
define data and process models of coupled systems. A
component object represents a discipline, or a data processing
node, and executes some discipline analysis or computes a
series of outputs from given inputs. A link object describes
the variable mappings from one component to another. And
the proposed MDSA_MF method is implemented to solve the
coupled system modeled in FlowComputer.

4.1. Discipline Integration Based on COTS Wrapping. Com-
mercial-off-the-shelf (COTS) wrapping techniques are devel-
oped to integrate commercial software tools, or legacy codes.
One of the major COTS wrapping approaches to discipline
integration is the In-Process-Out (IPO) method, in which
input files (I), process program (P), and output files (O) are
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FIGURE 3: An example DSM of a coupled system.

used to integrate discipline tools. Input variables and output
variables are stored in the input files and the output files,
respectively. Process program is typically a discipline analysis
tool, or a BAT file including a serial of discipline tool com-
mand lines, which reads values of input variables from input
files, executes the corresponding analysis, and writes values
of outputs into output files. Then, FlowComputer is able
to integrate discipline simulation codes by wrapping input
variables and output variables from input files and output files
and specifying process programs and other supporting files.
Currently, most discipline analysis tools, like Ansys, Nastran,
Adams, Abqus, Fluent, Ansoft, and so on, can be integrated by
this approach. And a Generic Wrapper component is provided
to integrate various discipline analysis tools, especially the
legacy simulation codes.

For some cases that input and output variables are
embedded in discipline models; another approach, plug-in
method, is used to extract input and output variables from
the model file of a third-party software tool by its API
interface. Similarly, FlowComputer sets inputs to the model
file, updates the model, and extracts outputs by the API
interface. Now, discipline tools, including MATLAB, Pro/E,
CATIA, and Excel, are integrated using this approach.

In addition, Expression component is also provided to
compute a set of explicit expressions from given inputs.

4.2. Feedback Based Representation of Couplings. Link objects
are designed to represent the dependence of one discipline
on another. A link object consists of a source component, a
destination component, and a set of variable mappings from
the former to the latter. Thus, the couplings in a multidis-
ciplinary system could be presented as a collection of link
objects.

To represent the coupling relationships, a type of feedback
links is introduced to facilitate the modeling and solving
of coupled systems. During the process of creating variable
links, if a dependence loop is detected, the last constructed
link is marked as a feedback link. DSM representation could
intuitively exhibit the coupling relationships in a complex sys-
tem. In the present study, the collection of link objects is used
to represent the couplings, and DSM representation is used
to intuitively exhibit the dependence relationships. Each link

object represents a dependence relationship corresponding to
an off-diagonal element of the DSM representation.

4.3. MDSA Implementation. Searching algorithm of strongly
connected components and discipline reordering algorithm
are used to analyze coupled systems, and all the iterative
methods for MDSA described in Section 2 are available to
solve coupled systems, or strongly connected components.
By default, the MDSA_MF method is used to construct the
least-squares objective, and the hybrd solver from Minpack
package [50] is selected to solve the least-squares problem.

4.4. Introduction to the User Interface. The main user inter-
face of FlowComputer, shown as Figure 4, is composed of
flow view, components tree view, components class view, and
components list view. According to a selected component
class in the component class view, available components are
displayed in the component list view. The components can be
dragged and dropped into the flow view to integrate disci-
pline models, and the relationship between two components
can be defined by dragging-and-dropping operations. All
components are displayed as a tree in the components tree
view. Once a coupled system model is well defined, it can
be executed automatically and monitored visually, and results
can be shown graphically.

Dependence relationships between any two components
could be constructed visually. Mapping viewer shown as
Figure 5 is provided to define, edit, and display variable
mappings between any two disciplines. Two component trees
are listed on the left and the right of the mapping viewer, and
link lines indicating mappings are drawn from the variables
on the left tree to input variables on the right tree. Users
can drag-and-drop any variable on the left tree onto an input
variable on the right tree to define a map from the former
variable to the latter. The default map relation is that the right
variable is equal to the left one.

The DSM representations of a coupled system in Flow-
Computer are shown as Figure 6. There are nine disciplines,
represented by nine blocks on the diagonal. The solid con-
nection lines in the upper triangle represent the feed-forward
couplings, and the dashed lines in the lower triangle represent
the feedback.
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5. Case Studies

In this section, two coupled systems are modeled and
solved in FlowComputer. The MDSA method based on all
couplings (MDSA_AC), the MDSA method based on initial
feedback variables (MDSA_IF), and the MDSA_MF method
are investigated. Different iterative algorithms, including FP1I,
the Newton method, and the hybrd solver, are employed
within each MDSA method. The number of function calls
to disciplines is recorded to evaluate the solving efficiency,
and the 2-norm of discipline residuals to the final solution, as
formulation (12), is used to evaluate the accuracy of different
methods.

r=ly" -y Xy)l, (12)

where 7 is the 2-norm of discipline residuals, X represents the
independent input variable vector with given values, and y*
represents the final solution of the coupling variables.

5.1. Test Case 1. The test case is modified from the scalable
problem [51] and is stated as follows:
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(b) The reordered DSM

FIGURE 6: The screenshot of the DSM representation of a coupled system.
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where x; and z are the independent variables and y; is the
output of the ith discipline.

This coupled system with 20 disciplines has 21 indepen-
dent inputs and 20 coupling variables. The DSM of the system
is shown as Figure 7. The disciplines are coded with ascend
digital numbers from 1 to 20. Each diagonal box with a
number represents one discipline, and each black dot in the
oft-diagonal represents a coupling variable, marked on the left
or on the right. The system is a strongly connected graph, and
the reordered DSM with minimal feedback variables is shown
as Figure 8.

Table 1 shows the solving results starting from the inde-
pendent variables z = 1 and x; = 1 and the coupling variables
y; = 10. Here, each discipline is treated as a black-box simu-
lation. The gradients required by the Newton method and
the hybrd solver are computed via forward difference method
with a relative step size of 107°. The Newton method and
the hybrd solver would terminate if the 2-norm of discipline
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FIGURE 8: The reordered DSM with minimal feedback variables in
test Case 1.

residuals is less than 107'°. For the FPI method, the termi-
nation criteria are satisfied when the 2-norm of the distance
between consecutive solutions is less than 10", Starting from
other values of the independent variables and other initial
values of the coupling variables, similar results are obtained.

The data in Table 1 indicate that the coupled system
is successfully solved using all the MDSA methods. For a
given iterative method, for example, the hybrd solver, the
MDSA_MF uses the fewest function calls to disciplines,
followed by the MDSA_IF. And for the MDSA method based
on the same selected couplings, for example, MDSA_ME,
the hybrd solver uses the fewest discipline evaluations. The
coupled system has 20 coupling variables. As shown in
Figures 7 and 8, 13 feedback variables, ys, ¥4, Y6, Vs> Yo» V10>
V3> Var Voo Vs» Vo V1> and g, are selected for MDSA_IF,
and six coupling variables, y,, ¥s, Vs, Vo> Y12, and yy,, are
selected for MDSA_ME. Sequentially, MDSA_MF uses less
function calls to compute the derivative information. As the
Jacobi matrix of the discipline residuals to coupling variables
at each iterate is computed by the finite difference method, the
Newton method uses more function calls to the disciplines.

Figure 9 shows the convergence histories of the 2-norm
of discipline residuals. Similarly, for a given iterative method,
for example, hybrd solver, MDSA_MF uses the fewest iterates,
followed by MDSA_IF. The Newton methods converge to the
final solution by the fastest speed, for derivative information
is used at each iterate. However, the discipline evaluations
increase when the finite difference method is used to compute
derivative information.

5.2. Test Case 2. The second test case, from [39], is stated as
formulation (14).

1/2 )1/2

t, = 23.521 ()" +45.122 (x,) "% +0.9352 (y,

- 0.2835v,,

log(2-norm of discipline residuals)

1072t @ .

10 20 30 40 50 60 70
Iteration

—&— MDSA_AC, FPI
—— MDSA_IF, FPI
—e— MDSA_ME FPI

v MDSA_AC, Newton method

#-- MDSA_IE Newton method

* - MDSA_ME Newton method
—=— MDSA_AC, hybrd solver
—4— MDSA_IF, hybrd solver
—e— MDSA_ME hybrd solver

FI1GURE 9: Convergence histories of the 2-norm of discipline residu-
als on test case 1.

30.645

t, = 23.175x,, + ~0.5392v, +0.0024 (z,)’,

X13

43.846

ty = 12.944x,, + +18.345 (x,5)°

12

~0.0113 (v,)* - 0.0021 (z,)* - 0.1635u,,

t, = 12.347 (x,)* + 21.478x,, + 7.745 (x5 )

0.9476
+0.563 (w,)" = 0.7256v, + ,

Y3

u; = 8.435(x,,)’ + 12.563x,, + 0.1577z,

- 0.9388 (w;)'",
24. 14
Uy = 24.547x;) + 0 527 +0.3846t,
X22 t
9862
0 98?/2 07377 ()",
(wz)
uS - 9.367 (x22)2 + 00285 (t1)1/4 - 06’;15/82 >
Y1

v, = 16.846x5; + 10.360 (x5,)° — 0.3367t,

0.4783
1/2°
p)

+0.157 ()" + 00054z, —
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TABLE 1: The result data for test Case 1.

Iterative method/solver

- Evaluation number

D1 - Dzo

FPI 4.95x 107" 65

MDSA_AC Newton method 1.05 x 107" 106
hybrd solver 4.94 x 107" 37

FPI 1.79x 1071 36

MDSA.IF Newton method 3.08 x 107 71
hybrd solver 8.44 x 107" 26

FPI 1.07 x 107! 31

MDSA_MF Newton method 222x 10712 29
hybrd solver 2.80x 107" 16

r represents the 2-norm of discipline residuals and D; represents the ith discipline. The evaluation counts of different disciplines are the same.

v, = 23.644 (x3,)"> + 14.466x5, — 0.0064 (£, )

+0.5347y,,
vy = 8.846 (x5, )" + 44.467 (x53)' + 0.3748 (1)
- 0.1094w,,
0.4503
vy = 14.536 (x5,) — 0.0949y, +
4
1/2 0.0776
+0.1003 (w;) '~ + 0.0083u, — W
3

w, = 14.896 (x,,)" + 13.746x,, + 0.4567y,

00144 (y,) + 0.0944.
z

2

w, = 16436 (x,,)* - 0.0113 (2,)° - 0.0673z,

0.0356
23

+ +0.0275u,,

26.693

w, = 8.638x,, + +6.536 (x,3)° - 0.6685t,

42

- 0.8467v,,

y, = 27.783x5, + 35.552x5, + 10.377 (x5)

—~0.0059 (£,) + 0.0983u; + 0.0633 (v;)"/,
2 0.2763
¥, =15.367 (x5,)" + 18.653x55 + 0.1079u5 + ”
1
- 0.831v,,
35.649 0.7366
y3 = 22.561x5, + +0.6463z; —
Xs3 ty

- 0.0667u,,

y, = 9.882 (x5;)” +0.0011 (£;)* - 0.0359u,

0.2033
+ bl
23

Z, = 8.629x,, +7.932 (xg,)” — 0.0274t, — 0.0235t,
+0.0021v,,

48.837

z, = 14367 (x5 )" + +0.0009 (v,)°

62
)1/2 B 0.0825

-0.0328 (w,
V3

2y = 29.663x4, — 0.0846w, + 0.0024 (£,)"

0.0875 1/2

+0.0436u, + -0.0289 (y,) ',

W,
(14)

where x;; represents the independent input and t;, w;, v;, w;,
y;, and z; are the coupling variables.

The system has 21 disciplines and 21 coupling variables.
The DSM of the system is shown as Figure 10. The disciplines
are coded with ascend digital numbers from 1 to 21. The boxes
on the diagonal and the black dots on the off-diagonal denote
the same as Figure 7.

The coupled system could be divided into three strongly
connected components, and the reordered DSM is shown as
Figure 11. The strongly connected components are denoted
by Group A, Group B, and Group C, respectively. Within each
strongly connected component, the discipline sequence with
minimal number of feedback variables is presented.

Within FlowComputer, the coupled system is successfully
solved using several methods starting from some given values
of the independent variables and different initial values of the
coupling variables. This coupled system could be solved by
constructing an MDSA problem with 21 disciplines and could
also be solved by constructing three sequential subproblems
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FIGURE 10: The initial DSM of the coupled system in case 2.
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FIGURE 11: The reordered DSM of the system in case 2 with minimal
feedback variables.

corresponding to the three strongly connected components
in Figure 11. Both of the two solving methods are investigated.
The settings for algorithms, the step size of finite differences,
and the termination criteria are the same as the first test case.

Tables 2 and 3 show the results starting from the
independent variables x;; = 1 and the coupling variables
() ujs Vio Wy, Vs 2,,) = (10,10, 10, 10, 10, 10). The evaluation
number of the three groups of disciplines and the 2-norm of
discipline residuals at the final solution are presented. Solv-
ing from other initial values of coupling variables presents
similar data. However, solving from some given values of the
independent variables far from the point x;; = 1 might fail in
finding a multidisciplinary solution.

The data listed in Tables 2 and 3 show that the coupled
system is successfully solved with good accuracy using all
of the methods. For each iterative method, MDSA_MF uses
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FIGURE 12: Convergence histories of the Group A in test case 2.

the fewest discipline evaluations, followed by the MDSA_IF
method. If the system is solved as a whole coupled unit as in
Table 2, the FPI method uses fewer function calls when the
initial feedback, or the minimal feedback, is selected to be
broken. However, the hybrd solver uses the fewest function
calls when the three strongly connected components are
solved sequentially. The possible reason is that the strategy
solving the strongly connected components sequentially
reduces the MDSA size. The strategy, however, does not
influence the efficiency of Gauss-Seidel iteration significantly.
Hence, MDSA_MF could use the fewest function calls,
and solving the strongly connected components sequentially
could further enhance the MDSA efhiciency.

Figure 12 shows the convergence histories of the 2-norm
of discipline residuals for solving the subsystem, Group A. The
histories of solving the other two subsystems present the sim-
ilar behavior. The convergence data indicate that MDSA_MF
could use the fewest iterates for a given iterative method. The
FPI iteration shows slow convergence. As derivative informa-
tion is updated at each iterate, the Newton iterations converge
to the final solution by fastest speed. However, computing
the derivative information using the finite difference method
increases the function calls. When the derivative information
is easy to be obtained, the Newton iteration could generally
converge to the final solution as the fastest speed.

6. Conclusions

The paper proposes a two-phase MDSA method based on
minimal number of feedback variables, called MDSA_ME to
enhance the solving efficiency. In phase 1, DSM is introduced
to represent a coupled system, and each off-diagonal element
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TABLE 2: The result data for test case 2 solving as a whole coupled system.
Iterative method/solver r Evaluation number
D, ~ D,
FPI 3.00 x 107" 33
MDSA_AC Newton method 2.70 x 107 111
hybrd solver 1.03x 107" 33
FPI 561 x 107" 17
MDSA_IF Newton method 2.02x 107" 57
hybrd solver 157 x 10712 21
FPI 4.01x 107" 17
MDSA_MF Newton method 232x 107" 45
hybrd solver 1.56 x 1072 18

r represents the 2-norm of discipline residuals and D; represents the ith discipline. The evaluation counts of different disciplines are the same.

TaBLE 3: The result data for test case 2 solving the three strong components sequentially.

Evaluation number

Iterative method/solver r
Group A Group B Group C
FPI 5.01 x 107" 33 32 20
MDSA_AC Newton method 7.24x 107" 37 37 19
hybrd solver 3.94x 107" 20 15 11
FPI 6.35 x 107" 17 16 12
MDSA_IF Newton method 3.65x 1071 25 19 13
hybrd solver 1.04x 107" 13 11
FPI 6.51 x 107" 17 16
MDSA_MF Newton method 8.33x 107" 21 16 10
hybrd solver 8.31x 107" 1 9 6

r represents the 2-norm of discipline residuals.

of the DSM is denoted by a coupling variable set mapping
from one discipline into another. An optimal discipline
sequence problem is constructed to obtain a reordered DSM
with minimal number of feedback variables in the lower
triangle. In phase 2, the feedback in the lower triangle is
broken, and the coupled system is transformed into a directed
acyclic graph. Then, regarding the inputs depending on the
broken feedback as independent variables, a least-squares
problem with respect to these new independent variables is
constructed to minimize the sum of residuals of the broken
feedback to zero, and to further achieve a multidisciplinary
feasible solution. Searching strongly connected components
is also used to aid in the discipline reordering. Besides, the
MDSA_MF method is implemented in a multidisciplinary
design platform, called FlowComputer. The platform also
provides the capacity of discipline integration based on
COTS wrapping and modeling and solving GUI for coupled
systems.

Two test cases of coupled systems are modeled in
FlowComputer, and several MDSA methods using different
iterative method are investigated. The results demonstrate
that MDSA_MF could use the fewest function calls. And the
strategy dividing the system into several strongly connected
components could further enhance the efficiency.

The MDSA_MEF selects the minimal number of feedback
variables as unknown variables to solve coupled systems.
Thus, the disciplines are executed sequentially, and parallel

computing is not considered in the present work. Besides, the
paper is focused on deterministic multidisciplinary analysis
and does not include the uncertainty factors in engineering
problems. The ongoing and future work includes (a) employ-
ing the available parallel computer resources to improve
the MDSA efliciency and (b) implementing the MDSA_MF
method on engineering problems under uncertainty.
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