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We define a strictly convex smooth potential function and use it to measure the data fidelity as well as the regularity for image
denoising and cartoon-texture decomposition. The new model has several advantages over the well-known ROF or TV-𝐿2 and the
TV-𝐿1 model. First, due to the two-modality property of the new potential function, the new regularity has strong regularizing
properties in all directions and thus encourages removing noise in smooth areas, while, near edges, it smoothes the edge mainly
along the tangent direction and thus canwell preserve the edges. Second, the newpotential function is very close to the𝐿1 norm; thus
using it tomeasure the data fidelity makes the newmodel perform very well in removing impulse noise and preserving the contrast.
Lastly, the proposed fidelity and regularization term is strictly convex and smooth and thus allows a unique global minimizer and
it can be solved by using the steepest descent method. Numerical experiments show that the proposed model outperforms TV-𝐿2
and TV-𝐿1 in removing impulse noise and mixed noise. It also outperforms some state-of-the-art methods specially designed for
impulse noise. Tests on cartoon-texture decomposition show that our method is effective and performs better than TV-𝐿1.

1. Introduction

Image denoising aims to recover a clean image from a noisy
observation. In this work, we mainly focus on removing the
impulse noise, which randomly contaminates a portion of
the pixels so that their true values are completely lost. The
impulse noise is physically caused by malfunctioning pixels
in camera sensors, faulty memory locations in hardware, or
transmission in a noisy channel [1]. It can be categorized into
two types: one is the random-valued impulse noise, for which
the noisy pixels can take any random values between the
maximal and theminimal pixel values; and another is the salt-
and-pepper noise, for which the noisy pixels can take only the
maximal and minimal pixel values. For both types of noise,
the noisy pixels are assumed to be randomly distributed in
the image.

Let 𝑢(𝑥, 𝑦) ∈ 𝐿2(Ω) be the original clean image defined
on its domainΩ ∈ 𝑅2, with Lipschitz boundary and𝑓(𝑥, 𝑦) ∈𝐿2(Ω) be the observed image corrupted by impulse noise.The
corruption can be formulated in the following general from:

𝑓 = 𝑁 (𝑢) , (1)

where 𝑁 represents an impulse noise. Two main models for
the impulse noise are used in a wide variety of applications:
salt-and-pepper noise and random-valued impulse noise [2].
Denote the dynamic range of 𝑢 by [𝑑min, 𝑑max]; that is, 𝑑min ≤𝑢(𝑥, 𝑦) ≤ 𝑑max, for every pixel (𝑥, 𝑦), the model of the salt-
and-pepper noise is defined by

𝑓 (𝑥, 𝑦) = {{{{{{{{{
𝑑min, with probality 𝑠2𝑑max, with probality 𝑠2𝑢 (𝑥, 𝑦) , with probality 1 − 𝑠,

(2)

where 𝑓(𝑥, 𝑦) denotes the gray level of 𝑓 at a pixel location(𝑥, 𝑦) and 𝑠 determines the level of the salt-and-pepper noise.
The model of the random-valued impulse noise is defined by

𝑓 (𝑥, 𝑦) = {{{
𝑑 (𝑥, 𝑦) , with probality 𝑟
𝑢 (𝑥, 𝑦) , with probality 1 − 𝑟, (3)

where 𝑑(𝑥, 𝑦) are identically and uniformly distributed ran-
dom numbers in the range [𝑑min, 𝑑max] and 𝑟 defines the level
of the random-valued impulse noise.
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Image denoising is a typical ill-posed inverse problem and
one of themost popular approaches is to solve aminimization
problem of the form

min
𝑢

𝐷 (𝑢) + 𝑅 (𝑢) , (4)

where 𝐷(𝑢) is a data fitting term derived according to the
assumed noise type and 𝑅(𝑢) is a regularization term that
imposes the former on 𝑢. Manymethods have been proposed
by using various a priori knowledge about the image and
the noise [3–5]. One of the most influential examples is the
Rudin-Osher-Fatemi (ROF, or TV-𝐿2) [6]:

min
𝑢

∫
Ω
(𝑓 − 𝑢)2 𝑑𝑥 𝑑𝑦 + 𝜆∫

Ω
|∇𝑢| 𝑑𝑥 𝑑𝑦, (5)

where |∇𝑢| is the modulus of the gradient of 𝑢. The ROF
model uses the 𝐿2 norm tomeasure the data fidelity under the
additive Gaussian noise assumption and uses the total varia-
tion (TV) to measure the regularity by assuming the image is
piecewise smooth or the gradient of the image is sparse. The
total variation regularity allows for reconstruction of images
with discontinuities across hypersurfaces and is extensively
used in variational image restoration. Nevertheless, the 𝐿2
fidelity leads to some limitations. One important issue is the
loss of contrast in the restored image even if the observed
image is noise-free; another issue is that the fidelity termwith𝐿2 norm deals well with Gaussian noise but does not perform
well in removing impulse noise. In [7], Chan and Esedoglu
use the 𝐿1 norm as a measure of fidelity and formulate the
following variational problem (TV-𝐿1):

min
𝑢

∫
Ω

󵄨󵄨󵄨󵄨𝑓 − 𝑢󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦 + 𝜆∫
Ω
|∇𝑢| 𝑑𝑥 𝑑𝑦. (6)

It was shown that the 𝐿1 norm better preserves the contrast,
and the order in which features disappear in the regular-
ization process is completely determined by their geometry
(area and length), rather than the contrast as in the ROF
model. This important geometric property is also used for
the active contour global minimization problem [8]. Using
the 𝐿1 fidelity, as analyzed in [7], model (6) implicitly detects
the pixels contaminated by impulse noise and it preserves
edges very well. Empirically, TV-𝐿1 outperforms TV-𝐿2 in
detecting outliers and removing impulse noise [9]. However,
in order to detect large noisy connected regions, it requires a
greater weight of the regularization term in the cost function,
which causes distortion of some pixels near edges. Moreover,
it has some mathematical limitations: the minimizers of the
variational problem (6) neednot be unique in general because
the 𝐿1 fidelity term is not strictly convex; it is not smooth
either and solving the problem needs some regularization
tricks. A weighted sum of 𝐿1 and 𝐿2 fidelities is used as the
data fitting term and it works effectively and robustly for
removal of mixed noise or almost any type of unknown noise

[10]. But it still suffers from the shortcomings of 𝐿1 fidelity.
Huber norms [11] have been used for TV in order to avoid
undesirable staircase effects [12]. In [13], the Huber loss

𝑦 = 𝐻𝜇 (𝑥) = {{{{{
12𝜇𝑥2, |𝑥| ≤ 𝜇
|𝑥| − 𝜇2 , |𝑥| > 𝜇

(7)

is used for both data fidelity and regularization. The advan-
tage of using the Huber loss in comparison to the 𝐿2 norm is
that geometric features such as edges are better preserved and
it has continuous derivatives in contrast to the 𝐿1 norm that
is not differentiable and leads to staircase artifacts. However,
the Huber norm involves a parameter that affects the results.

Except the variational methods, some filtering based
methods exist for impulse noise removal such as the Adaptive
Median Filters (AMF) [14] and theAdaptive CenterWeighted
Median Filters (ACWMF) [15]. The AMF method uses
AdaptiveMedian Filter with variable window size to filter out
impulse noise. It is robust in removing mixed impulses with
high probability of occurrence while preserving sharpness.
But it is ineffective when an image is disturbed by other types
of mixed noise, such as Gaussian, Poisson, and impulse noise.
The ACWMF further uses spatial varying central weight
to improve AMF and it is better than AMF in preserving
details and in suppressing impulse noise, additivewhite noise,
and signal dependent noise. However, the ACWMF tends to
become an identity filter if impulses exist within a window
and in that case, the ACWMF is not effective in suppressing
impulses, especially for salt-and-pepper noise.

Cartoon-texture decomposition is an important math-
ematical tool for image analysis. It aims to decompose an
image 𝑓 into a cartoon component and a texture component.
Ideally, the cartoon component is a piecewise smooth approx-
imation of the original image and it mainly contains object
hues and sharp edges while the texture component contains
repeated small scale patterns. The general framework for
cartoon-texture decomposition has the following from:

min
𝑢,V

𝑅 (𝑢) + 𝜆𝐷 (V) ,
s.t. 𝑓 = 𝑢 + V, (8)

where 𝑅(𝑢) and 𝐷(V) are two functionals, usually norms,
measuring the cartoons 𝑢 and V, respectively. Meyer [2]
shows that the ROF model is ineffective in cartoon-texture
decomposition because the 𝐿2 norm is not a goodmeasure of
the texture, yet the TV is effective in measuring the cartoon
component. To overcome the ineffectiveness of the 𝐿2 norm
in measuring the texture component, Meyer [2] and Haddad
and Meyer [16] proposed using the 𝐺-norm, Vese and Osher
[17] approximated the 𝐺-norm by the div(𝐿𝑝) norm, Osher
et al. [18] proposed using the 𝐻−1 norm, Lieu and Vese [19]
proposed using the more general𝐻−𝑠 norm, and Le and Vese
[20] proposed using the div(BMO) norm to measure the
texture component. However, the models involving these
norms are difficult to solve. Yin et al. [21] show that the 𝐿1
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norm is effective in measuring the texture component and
proposed the TV-𝐿1 model.

In this work we define a strictly convex smooth potential
function 𝜙(𝑥) and use it to measure the data fidelity as
well as the regularity for image restoration and cartoon-
texture decomposition. Like Huber norm, the new potential
function has two modalities: it is approximately half the
square function (corresponding to the 𝐿2 norm) near 0 and
approximately a linear function (corresponding to the 𝐿1
norm) when 𝑥 is far away from 0. But Huber norm involves
a parameter while our potential function does not. The new
model has several advantages over the well-known Rudin-
Osher-Fatemi (ROF) or TV-𝐿2 model and the TV-𝐿1 model.
First, due to the two-modality property of the new potential
function, using it working on the image gradient to measure
the regularity makes the regularity work in two ways: in
smooth area of the image, the regularity results in a diffusion
term that is uniform and isotropic, having strong regularizing
properties in all directions, and thus encourages removing
noise in smooth area, while, near edges, the regularity results
in a diffusion process which smoothes the edge mainly along
the tangent direction and thus can well preserve the edges.
Such regularizing role of our regularity term is different from
the TV; especially in smooth areas, TV regularity causes
staircasing effect while our method does not. Second, the
new potential function is very close to the 𝐿1 norm; thus
using it to measure the data fidelity makes the new model
perform very well in removing impulse noise and preserving
the contrast. Lastly, the proposed fidelity and regularization
term is strictly convex and smooth; thus the new model
allows a unique global minimizer and it can be solved by
using the steepest descent method. Mathematical analysis
and numerical experiments show that the proposed model
outperforms TV-𝐿2 and TV-𝐿1 in removing impulse noise
and mixed noise. It also outperforms the Adaptive Median
Filters (AMF) and the Adaptive Center Weighted Median
Filters (ACWMF) in removing mixed noise. We also apply
this model for cartoon-texture decomposition. Experimental
results show it performs better than TV-𝐿1 in cartoon-texture
decomposition.

2. The Proposed Model

The proposed model is as follows:

min
𝑢

∫
Ω
𝜙 (𝑓 − 𝑢) 𝑑𝑥 𝑑𝑦 + 𝜆∫

Ω
𝜙 (|∇𝑢|) 𝑑𝑥 𝑑𝑦, (9)

where 𝜆 is a nonnegative tuning parameter and 𝜙(𝑥) is
defined by

𝜙 (𝑥) = 𝑥 tan−1𝑥 − 12 ln (1 + 𝑥2) . (10)

The rationality of this potential function can be explained as
follows. First of all, the function 𝜙(𝑥) is strictly convex and
differentiable since 𝜙(𝑥)󸀠 = tan−1𝑥 and 𝜙(𝑥)󸀠󸀠 = 1/(1 + 𝑥2);
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Figure 1: Graphs of four potential functions: 𝑦 = |𝑥|, corresponding
to the 𝐿1 norm; 𝑦 = 𝑥2, corresponding to the 𝐿2 norm; 𝑦 = 𝜙(𝑥)
corresponding to the proposed fidelity and regularization measure;𝐻𝜇(𝑥) corresponding to the Huber norm, where 𝜇 = 0.5 and 𝜇 = 1
are chosen.

thus our model (9) allows a unique global minimizer and it
can be solved by using the steepest descentmethod. Secondly,
when 𝜙(𝑥) is used to measure the data fidelity, similar to
Huber norm, it is also a good approximation of the𝐿1 norm in
the sense that 𝜙(𝑥) → 𝑥2/2 as 𝑥 → 0 and 𝜙(𝑥) → (𝜋/2)|𝑥| −
ln |𝑥| as |𝑥| → ∞, so it has similar performance to that
of the 𝐿1 fidelity in removing impulse noise and preserving
image contrast. Figure 1 compares 𝜙(𝑥), 𝐿1 norm, 𝐿2 norm,
and theHuber norm. Lastly, when 𝜙(𝑥) is used tomeasure the
regularity as in (9), it induces the following gradient descent
flow:

𝜕𝑢𝜕𝑡 = 𝜆 div(𝜙
󸀠 (|∇𝑢|)|∇𝑢| ∇𝑢) + 𝜙󸀠 (𝑓 − 𝑢) , (11)

where the right side is the negative gradient of the functional
in (9), with the first and the second term being deduced from
the regularity term and the fidelity term, respectively. The
diffusion term div((𝜙󸀠(|∇𝑢|)/|∇𝑢|)∇𝑢) can be decomposed as

div(𝜙󸀠 (|∇𝑢|)|∇u| ∇𝑢) = 𝜙
󸀠 (|∇𝑢|)|∇𝑢| 𝑢TT + 𝜙󸀠󸀠 (|∇𝑢|) 𝑢NN, (12)

where T and N denote the tangent and normal directions to
the isophote lines (lines along which the intensity is constant)
and 𝑢TT and 𝑢NN denote the second derivatives of 𝑢 in
the T-direction and N-direction. One can see that in a flat
or smooth region of the image where the variations of the
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intensity are weak, that is, 𝑡 = |∇𝑢| ≈ 0, the coefficient of𝑢TT, 𝜙󸀠(𝑡)/𝑡 and the coefficient of 𝑢NN, 𝜙󸀠󸀠(𝑡) satisfy
lim
𝑡→0+

𝜙󸀠 (𝑡)𝑡 = lim
𝑡→0+

tan−1 (𝑡)𝑡 = lim
𝑡→0+

11 + 𝑡2 = lim
𝑡→0+
𝜙󸀠󸀠 (𝑡)

= 1 > 0; (13)

then (11) becomes

𝜕𝑢𝜕𝑡 = 𝑢TT + 𝑢NN + 𝜙󸀠 (𝑓 − 𝑢) = Δ𝑢 + 𝜙󸀠 (𝑓 − 𝑢) , (14)

where Δ denotes Laplacian differential operator. So, at these
points, 𝑢 locally satisfies (14), in which the diffusion term is
uniform and isotropic, having strong regularizing properties
in all directions, and thus encourages removing noise in
smooth area. Near edges of the image, that is, 𝑡 = |∇𝑢| ≫ 0,𝜙󸀠(𝑡)/𝑡, and 𝜙󸀠󸀠(𝑡), satisfy

lim
𝑡→+∞

𝜙󸀠 (𝑡)𝑡 = lim
𝑡→+∞

tan−1 (𝑡)𝑡 = 0,
lim
𝑡→+∞

𝜙󸀠󸀠 (𝑡) = lim
𝑡→+∞

11 + 𝑡2 = 0,
lim
𝑡→+∞

𝜙󸀠󸀠 (𝑡)𝜙󸀠 (𝑡) /𝑡 = lim
𝑡→+∞

𝑡(1 + 𝑡2) tan−1 (𝑡)
= lim
𝑡→+∞

𝑡1 + 𝑡2 ⋅ lim𝑡→+∞ 𝑡
tan−1 (𝑡) = 0.

(15)

Thismeans the coefficient of𝑢TT,𝜙󸀠(𝑡)/𝑡 and the coefficient of𝑢NN, 𝜙󸀠󸀠(𝑡) both vanish. However, 𝜙󸀠󸀠(𝑡) vanishes faster than𝜙󸀠(𝑡)/𝑡; this allows the diffusion process to smooth the edge
a little along the tangent direction; thus our regularity term
can well preserve the edge.The TV regularity can be regarded
as a special case of our regularity term by taking 𝜙(𝑥) = 𝑥,
then 𝜙󸀠(𝑥) = 1, and 𝜙󸀠󸀠(𝑥) = 0. In smooth area, that is, 𝑡 =|∇𝑢| ≈ 0, the coefficient of 𝑢TT, 𝜙󸀠(𝑡)/𝑡 becomes large while
the coefficient of 𝑢NN, 𝜙󸀠󸀠(𝑡) = 0; this may be the reason why
TV regularity causes the staircasing effect in smooth area.

The minimization problem (9) can be iteratively solved
by the gradient descent method. Numerically, we use the
following forward finite difference scheme to discrete the
gradient descent flow (11):

𝑢𝑛+1𝑖,𝑗 = 𝑢𝑛𝑖,𝑗 + Δ𝑡 ⋅ (𝜆𝐵𝑛𝑖,𝑗 + tan−1 (𝑓𝑖,𝑗 − 𝑢𝑛𝑖,𝑗)) , (16)

where Δ𝑡 denotes the time step size and 𝐵 is the diffusion
term, defined by

𝐵 = div(𝜙󸀠 (|∇𝑢|)|∇𝑢| ∇𝑢)
= 11 + |∇𝑢|2 ⋅

𝑢2𝑥𝑢𝑥𝑥 + 2𝑢𝑥𝑢𝑦𝑢𝑥𝑦 + 𝑢2𝑦𝑢𝑦𝑦|∇𝑢|2 + 𝜀
+ tan−1 (|∇𝑢|) ⋅ 𝑢2𝑥𝑢𝑦𝑦 − 2𝑢𝑥𝑢𝑦𝑢𝑥𝑦 + 𝑢2𝑦𝑢𝑥𝑥|∇𝑢|3 + 𝜀

(17)

and 𝜀 is a regularizing constant to avoid dividing by 0, which
is set by 𝜀 = 0.01, in our experiment. The spatial derivatives
are discretized by central differences.

3. Numerical Simulation

This section is mainly devoted to numerical simulation of
image denoising in the presence of impulse noise and mixed
noise consisting of Gaussian, Poisson, and impulse noise. We
also use our model to decompose an image into a cartoon
component and a texture component. The simulations are
performed using Matlab 8.5.0 (R2015a) in Windows 7 envi-
ronment on 3.30GHZ Intel Core i5-4590 CPU, 4GB Ram
PC. To assess the restoration performance quantitatively, we
evaluate the peak signal to noise ratio (PSNR) defined as [22]

PSNR = 10 lg( 2552
(1/𝑀𝑁)∑𝑖𝑗 (𝑢𝑖,𝑗 − 𝑓𝑖,𝑗)2) , (18)

where 𝑢𝑖,𝑗 and 𝑓𝑖,𝑗 are the pixel values of the restored image
and of the original image, respectively. In the presence of
Poisson noise, the maximum intensity of the original noise-
free image is varied in order to create images with different
levels of Poisson noise.

3.1. Image Denoising. We first show the effectiveness of our
method in removing impulse noise, including the salt-and-
pepper noise and the random-valued impulse noise. In all
experiments the time step size is set by Δ𝑡 = 0.1.

The regularization parameter 𝜆 plays an important role
in denoising because it balances the competition between the
data fidelity and the regularization term. When 𝜆 takes large
values, the regularization term dominates the total energy,
which tends to force the restored image to be smoother and
cleaner. When 𝜆 takes small values, the fidelity term domi-
nates the total energy, which tends to force the restored image
to be closer to the observed noisy image. In the following we
analyze through experiments how the PSNR of the restored
image depends on the value of 𝜆. We show the results for
the test images “Cameraman” (256 × 256) and “Lena” (256 ×256) with intensity values ranging from 0 to 255. In the
experiment, the noisy images are produced by corrupting
the test images with salt-and-pepper noise or random-valued
impulse noise of levels 10%, 20%, and 30%. Figure 2 plots the
PSNRs versus the values of 𝜆 for the image “Cameraman”
with salt-and-pepper noise at different levels. Figure 3 plots
that for random-valued impulse noise. From the plots, one
can observe the following: first of all, in both cases of impulse
noise, the PSNR of the three methods increases and reaches
a maximum rapidly and then decreases slowly as the value
of 𝜆 increases. Moreover, the optimal value (numerical) of 𝜆
(corresponding to themaximumPSNR) depends on the level
of impulse noise. Lastly, for all levels of noise, the maximum
PSNRs obtained by TV-𝐿1 and our method are comparative
while the maximum PSNRs obtained by TV-𝐿2 are much
lower (about 2 dB less).This again indicates that TV-𝐿2 is not
fit for impulse noise removal.
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Figure 2: PSNR versus 𝜆 for the image “Cameraman” corrupted by salt-and pepper noise at different levels.

To study how the optimal value of 𝜆 depends on the
noise level for TV-𝐿1 and our method, we show some best
values of 𝜆 corresponding to various levels of impulse noise
in Figure 4, salt-and-pepper, and in Figure 5, random-valued.
FromFigures 4 and 5, one can see that TV-𝐿1 and ourmethod
have similar patterns of the dependency of the best 𝜆 on the
noise level. In general, the higher the noise level, the larger
the best value of 𝜆. To be more specific, for both methods,
the best value of 𝜆 tends to be stable in [0.8, 1.2] when the
noise level is above 15%. Moreover, Figures 2 and 3 show that

the PSNR attenuates slowly if the value of 𝜆 is a little larger
than the optimal value. For convenience, we choose 𝜆 = 1.1
uniformlywhen the noise level is above 15% and𝜆 = 0.8when
the noise level is below 15%.

In the following experiments we compare visually and
quantitatively the performance of our method with TV-𝐿1,
AMF, andACWMF in removing impulse noise. Figures 6 and
7, respectively, show the results obtained by these methods
for salt-and-pepper noise and random-valued impulse noise.
The maximum window size used in AMF [14] is 19. The
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Figure 3: PSNR versus 𝜆 for the image “Cameraman” corrupted by random-valued impulse noise at different levels.

ACWMF [15] is successively performed 4 times with different
parameters, which are chosen to be the same as those in
[23]. Obviously, whether in removing salt-and-pepper noise
or random-valued impulse noise, TV-𝐿1 and our method are
well in removing noise and preserving the edges. But our
method is a little better than TV-𝐿1 in two aspects. Objec-
tively, the PSNR of our method is about 0.2∼0.3 dB higher
than that of TV-𝐿1, and visually, there is less staircasing effect
in the smooth area of the restored images. The ACWMF and
AMF are better than TV-𝐿1 and our method in preserving

small scale details such as the textured ground in the image
“cameraman,” and the PSNR of the AMF on the image
“cameraman” is even higher than our method by 2.65 dB in
case of salt-and-pepper noise. However, the ACWMF and
AMF cannot successfully detect all the impulse noise in that
some scattered peak points are visible in the restored images.
Moreover, the AMF fails in suppressing the random-valued
impulse noise.

As indicated in [10], theweighted sumof𝐿1 and𝐿2 fidelity
is robust to any kind of commonly used noise prior, yet
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Figure 4: The best value of 𝜆 for the proposed method and TV-𝐿1 on the image “Cameraman,” in case of salt-and-pepper noise at different
levels.
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Figure 5: The best value of 𝜆 for the proposed method and TV-𝐿1 fidelity on the image “Cameraman,” in case of random-valued impulse
noise at different levels.

empirically, the 𝐿1 norm absolutely dominates the fidelity.
This motivates us to apply our model to remove Gaussian
noise. Table 1 presents some results by TV-𝐿2, TV-𝐿1, and
our method. Figure 8 compares the visual effects of these
methods. One can see that TV-𝐿1 performs worse than the
other two methods in case of higher level noise, and the
restored image by TV-𝐿2 exhibits obvious and annoying
staircase artifacts. The PSNRs and the restored images show
that, for additiveGaussian noise, where the 𝐿2 fitting function
is the best choice based on statistical analysis among all
possible data fitting terms, our method performs better as
well.The better results come from the two-modality property
of our potential function.

Now we test the performance of our method in removing
mixed noise consisting of additive Gaussian noise, Poisson
noise, and impulse noise. We also compare our method
with TV-𝐿2, TV-𝐿1, ACWMF, and AMF. The Poisson noise
is generated using the “poissrnd” function in Matlab with
the input image scaled to the maximum intensity (𝐼max =255). For the impulse noise, we only consider the random-
valued impulse noise, because a pixel contaminated by such
an impulse noise is not as distinctive as an outlier that is
contaminated by salt-and-pepper noise and consequently
is more difficult to detect. We consider three levels of the
random-valued impulse noise: 10%, 20%, and 30%. The
standard deviation of the white Gaussian noise is 10. For all
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Table 1: Denoising results (PSNR) on three test images corrupted by Gaussian noise. The best PSNRs are given in bold.

Standard deviation 𝜎 Boat (512 × 512) Lena (256 × 256) Rice (256 × 256)
10 20 25 10 20 25 10 20 25

Our method 31.77 28.42 27.98 30.75 27.98 27.15 31.97 29.15 28.38
TV-𝐿1 31.40 28.32 27.50 30.47 27.60 26.50 31.61 27.80 27.64
TV-𝐿2 30.72 28.04 28.70 29.93 27.91 27.06 30.92 28.80 28.36

(a) (b) (c)

(d) (e) (f)

Figure 6: Image denoising results by different methods. (a) Original image; (b) corrupted “Cameraman” image with salt-and-pepper noise
(𝑠 = 20%, PSNR = 12.07 dB); (c) our method (𝜆 = 1.1, PSNR = 25.82 dB); (d) TV-𝐿1 (𝜆 = 1.1, PSNR = 25.58 dB); (e) ACWMF (PSNR =
25.23 dB); (f) AMF algorithm (PSNR = 28.47 dB).

cases, impulse noise is the first to be added and Gaussian
noise is the last to be added. The PSNRs of different methods
are presented in Table 2 and some of the restored images
are shown in Figure 9. For all levels of impulse noise, our
method obtains the best PSNRs and visual effects. TV-𝐿1
performs comparatively in removing impulse noise, but it
does not perform as well as our method in removing mixture
noise containing Gaussian noise. It may be explained by the
two modalities of our potential function. The median filter
based methods, especially the AMF is well fit for salt-and-
pepper noise, but it does not perform well in case of random-
valued impulse noise or mixed noise containing random-
valued impulse noise. In fact, the AMF is good at detecting

salt-and-pepper noise because in that case, most of the noisy
pixels are much more dissimilar to regular pixels and hence
are easier to detect. However, the AMF is not effective in
detecting random-valued impulse noise when the noise ratio
is high.

3.2. Cartoon-Texture Decomposition. In this subsection, we
show the effectiveness of our method in cartoon-texture
decomposition and compare it with the TV-𝐿1method. Since
the function defined in (8) is a good approximation of the𝐿1 norm, our model (9) can be used in cartoon-texture
decomposition.We use model (9) to obtain 𝑢 and finally take
V = 𝑓 − 𝑢.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Image denoising results by different methods. (a) Original image “Lena”; (b) corrupted image with random-valued impulse noise
(𝑟 = 30%, PSNR = 13.79 dB); (c) our method (𝜆 = 1.1, PSNR = 27.02 dB); (d) TV-𝐿1 (𝜆 = 1.1, PSNR = 26.80 dB); (e) ACWMF (PSNR =
27.11 dB); (f) AMF (PSNR = 18.34 dB).

Figure 10 shows some results by the two methods on four
test images, each of which contains smooth area bounded by
large scale edges (cartoon) and repeated small scale details
(texture). The top row shows the original test images. The
other rows show the decomposition results. One can observe
that our method can more thoroughly separate the cartoon
and the texture. In the cartoon components obtained by TV-𝐿1, some textures are left behind. The cartoon component
obtained by our method only contains the mainframe of the
image, that is, the smoothed objects and their boundaries, and
the small scale details are to a large extent separated into the
texture part.

Finally we test the robustness of our method for cartoon-
texture decomposition in presence of noise. The results are
shown in Figure 11. The first row shows the input images:
image (a) is corrupted with salt-and-pepper noise (𝑠 = 20%),
Gaussian noise with standard deviation 𝜎 = 10, and Poisson
noise; synthetic image (b) is corrupted with random-valued
impulse noise (𝑟 = 20%), Gaussian noise with standard
deviation 𝜎 = 10, and Poisson noise. Both TV-𝐿1 and
our method decompose the noise together with the texture.
In the cartoon components obtained by TV-𝐿1, there exist
noticeable staircase artifacts while the cartoon components
obtained by our method are visually much better.

4. Conclusions

In this work we define a new potential function and use
it to measure the data fidelity as well as the regularity for
image denoising and cartoon-texture decomposition. The
new potential function has some attractive mathematical
properties: strictly convex, smooth, and two-modality, which
makes the proposed model have some advantageous proper-
ties over the classical TV-𝐿2 and TV-𝐿1 models. For example,
it canwell removewider categories of noise including additive
Gaussian noise, impulse noise, Poisson noise, and their
mixture; like TV regularity, it can well preserve important
geometric structure such as image edges, but unlike TV
regularity, it does not cause staircase effect in smooth areas;
moreover, the new model allows a unique global minimizer
and it can be solved by using the steepest descent method.
Numerical experiments show that the proposed model out-
performs TV-𝐿2 and TV-𝐿1 in removing commonly used
noise. Tests on cartoon-texture decomposition show that our
method is effective and performs better than TV-𝐿1.
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(a) (b) (c)

(d) (e)

Figure 8: Denoising results of Gaussian noise by TV-𝐿1, TV-𝐿2, and our method. (a) Original test image “Boat”; (b) corrupted image with
Gaussian noise (standard deviation 𝜎 = 20, PSNR = 22.14 dB); (c) our method (𝜆 = 1.3, PSNR = 28.42 dB); (d) TV-𝐿1 (𝜆 = 1.3, PSNR =
28.32), (e) TV-𝐿2 (𝜆 = 0.01, PSNR = 28.04 dB).

(a) (b) (c) (d)

(e) (f) (g)

Figure 9: Denoising results of mixture noise of random-valued impulse noise, Poisson noise, and Gaussian noise by different methods. (a)
Original test image “Plane”; (b) corrupted image with mixed noise (𝑟 = 30%, PSNR = 13.56 dB); (c) our method (𝜆 = 1.1, PSNR = 26.95 dB);
(d) TV-𝐿1 (𝜆 = 1.1, PSNR = 26.54 dB); (e) TV-𝐿2 (𝜆 = 0.01, PSNR = 21.91 dB); (f) ACWM filter (PSNR = 24.50 dB); (g) AMF algorithm
(PSNR = 17.93 dB).
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(a) (b) (c) (d)

(e) TV-𝐿1 (𝜆 = 1.1) (f) Our method (𝜆 = 1.1)

(g) TV-𝐿1 (𝜆 = 2.6) (h) Our method (𝜆 = 2.6)

(i) TV-𝐿1 (𝜆 = 1.4) (j) Our method (𝜆 = 1.4)

(k) TV-𝐿1 (𝜆 = 2.4) (l) Our method (𝜆 = 2.4)

Figure 10: Cartoon-texture decomposition results (for each method, we show on the left the cartoon component and on right the texture).
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(a) Noisy “Barbara” (b) Noisy synthetic image

(c) TV-𝐿1 (𝜆 = 1.3) (d) Our method (𝜆 = 1.3)

(e) TV-𝐿1 (𝜆 = 1.4) (f) Our method (𝜆 = 1.4)

Figure 11: Cartoon-texture decomposition of images corrupted by mixed noise. Left: cartoon, right: texture.
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