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There exist already various approaches to outlier detection, in which semisupervised methods achieve encouraging superiority
due to the introduction of prior knowledge. In this paper, an adaptive feature weighted clustering-based semisupervised outlier
detection strategy is proposed. This method maximizes the membership degree of a labeled normal object to the cluster it belongs
to and minimizes the membership degrees of a labeled outlier to all clusters. In consideration of distinct significance of features
or components in a dataset in determining an object being an inlier or outlier, each feature is adaptively assigned different weights
according to the deviation degrees between this feature of all objects and that of a certain cluster prototype. A series of experiments
on a synthetic dataset and several real-world datasets are implemented to verify the effectiveness and efficiency of the proposal.

1. Introduction

Outlier detection is an important topic in data mining
community, which aims at finding patterns that occur infre-
quently as opposed to other data mining techniques [1]. An
outlier is an observation that deviates significantly from, or
inconsistentwith themain body of a dataset, as if it was gener-
ated by a different mechanism [2]. The importance of outlier
detection is in the view of the fact that outliers can provide
raw patterns and valuable knowledge about a dataset. Current
application areas of outlier detection include crime detection,
credit card fraud detection, network intrusion detection,
medical diagnosis, faulty detection in critical safety systems,
or detecting abnormal regions in image processing [3–9].

Recently the studies on outlier detection are very active
and many approaches have been proposed. In general, exist-
ing work on outlier detection can be broadly classified into
three modes depending on whether label information is
available or can be used to build outlier detection models:
unsupervised, supervised, and semisupervised methods.

Supervised outlier detection concerns the situationwhere
the training dataset contains prior information about the
class of each instance that is normal or abnormal. One-
class support vector machine (OCSVM) [10] or support

vector data description (SVDD) [11, 12], which considers the
case that training data are all normal instances, conducts
a hypersphere around the normal data and utilizes the
constructed hypersphere to detect an unknown sample as an
inlier or outlier. The supervised outlier detection problem
is a difficult case in many real-world applications, since the
acquisition of label information of the whole training dataset
is often expensive, time consuming, and subjective.

Unsupervised outlier detection, without prior infor-
mation about the class distribution, is generally classified
into distribution-based [3], distance-based [13, 14], density-
based [15, 16], and clustering-based [17–20] approaches.
Distribution-based approach assumes that all data points are
generated by a certain statistical model, while outliers do not
obey the model. However, the assumption of an underlying
distribution of data points is not always available in many
real-life applications. Distance-based approach was firstly
investigated by Knox and Ng [14]. An object 𝑜 in a dataset𝑋 is an outlier if at least 𝑝% of objects in 𝑋 are further than
the distance 𝐷 from 𝑜. The global parameters 𝑝 and 𝐷 are
not suitable when the local information of the dataset varies
greatly. Representatives of this type of approaches include𝐾-nearest neighbor (𝐾NN) algorithm [13] and its variants
[21, 22]. Density-based approach was originally proposed by
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Breunig et al. [15]. A local outlier factor (LOF) is assigned to
each data point based on their local neighborhood density.
Then a data point with a high LOF value is determined as an
outlier. However, this method is very sensitive to the choice
of neighborhood parameter.

Clustering-based approaches [17–20] partition the
dataset into several clusters depending on similarity of
objects and detect outliers by examining the relationship
between objects and clusters. In general, clusters containing
significantly less data points than other clusters or being
remote from other clusters are considered as outliers. The
cluster structure of data can facilitate the task of outlier
detection and a small amount of related literatures has been
proposed. A classical clustering method is used to find
anomaly in the intrusion detection domain [18]. In the work
of [19], the clustering techniques iteratively detect outliers
for multidimensional data analysis in subspace. Zhao et al.
[20] propose an adaptive fuzzy c-means (AFCM) algorithm
by introducing sample weight coefficients to the objective
function and apply it to anomaly data detection in energy
system of steel industry. Since clustering-based approaches
are unsupervised without requiring any labeled training data,
their performance in outlier detection is limited. In addition,
most of the existing clustering-based methods only involve
the optimal clustering but do not incorporate optimal outlier
detection into clustering process.

Inmany real-world applications, onemay encounter cases
where a small set of objects are labeled as outliers or belonging
to a certain class, but most of the data are unlabeled. Studies
indicate that the introduction of a small amount of prior
knowledge can significantly improve the effectiveness of out-
lier detection [23–25].Therefore, semisupervised approaches
to outlier detection have been developed to tackle such
scenarios and have been thought of a popular direction
of outlier detection recently. In order to take advantage
of the label information of a target dataset, entropy-based
outlier detection based on semisupervised learning from
few positive examples (EODSP) is proposed in [23]. That
method extracts reliable normal instances from unlabeled
objects and regards themas labeled normal samples. Entropy-
based outlier detection method is used to detect top 𝑀
outliers. However, when a dataset initially provides labeled
normal and abnormal samples, the algorithm in [23] cannot
make full use of the given label information. Literature [24]
develops a semisupervised outlier detectionmethod based on
the assessment of deviation from known labeled objects by
punishing poor clustering results and restricting the number
of outliers. Xue et al. [25] present a semisupervised outlier
detection proposal based on fuzzy rough c-means clustering,
which detects outliers by minimizing the sum of squared
errors of clustering results and the deviation from known
labeled examples as well as the number of outliers. Unfortu-
nately, some labeled normal objects are finally misidentified
as outliers due to improper parameter selection in [24, 25].

Most of the previous research equally treats different
features of objects in outlier detecting process, which does not
conform to the intrinsic characteristic of a dataset. Actually,
it is more reasonable that different features have different
importance in each cluster, especially for high-dimension

sparse datasets where the structure of each cluster is often
limited to a subset of features rather than the entire feature
set. Some works concerning feature weighted clustering have
been studied. Huang et al. [26] propose a W-c-means type
clustering algorithm that can automatically calculate feature
weights. W-c-means adds a new step into the basic c-means
algorithm to update the variable weights based on the cur-
rent partition of data. Literature [27] develops an approach
called simultaneous clustering and attribute discrimination
(SCAD). SCAD learns the feature relevance representation of
each cluster independently in an unsupervisedmanner. Zhou
et al. [28] publish a maximum-entropy-regularized weighted
fuzzy c-means (EWFCM) clustering algorithm for “non-
spherical” shaped data. A new objective function is developed
in the EWFCM algorithm to achieve the optimal clustering
result by minimizing the dispersion within clusters and
maximizing the entropy of attribute weights simultaneously.
These existing methods about feature weighted clustering
encourage scholars to study outlier detection based on feature
weighted clustering.

To make full use of prior knowledge to facilitate
clustering-based outlier detection, we develop a semisuper-
vised outlier detection algorithm based on adaptive feature
weighted clustering (SSOD-AFW) in this paper, in which
the feature weights are iteratively obtained. The proposed
algorithm emphasizes the diversity of different features in
each cluster and assigns lower weights to irrelevant features
to reduce their negative influence on outlier decision. Fur-
thermore, based on the convention that outliers usually have
a lower membership to every cluster, we relax the constraint
of fuzzy c-means (FCM) clustering where the membership
degrees of a sample to all clusters must sum up to one
and propose an adaptive feature weighted semisupervised
possibilistic clustering-based outlier detection algorithm.The
interaction problem between optimal clustering and outlier
detection is addressed in the proposed method. The label
information is introduced into the possibilistic clustering
method according to the following principles: (1) maximizing
the membership degree of a labeled normal object to the
cluster it belongs to; (2) minimizing the membership degrees
of a labeled normal object to the clusters it does not belong
to; and (3) minimizing the membership degrees of a labeled
outlier to all clusters. In addition to the above principles, we
simultaneously minimize the dispersion within clusters in
the new objective function of clustering to achieve a proper
cluster structure. Finally the yielded optimal membership
degrees are used to indicate the outlying degree of each
sample in the dataset. The proposed algorithm is found
promising in improving the performance of outlier detection
in comparison with typical outlier detection methods in
accuracy, running time as well as other evaluation metrics.

The remainder of this paper is organized as follows.
Section 2 gives a short review on possibilistic clustering algo-
rithms. Section 3 presents the detailed description of feature
weighted semisupervised clustering-based outlier detection
algorithm. In Section 4, the experimental results of the
proposedmethod against typical outlier detection algorithms
are discussed on synthetic and real-world datasets. Finally,
Section 5 follows our conclusions.



Mathematical Problems in Engineering 3

2. Possibilistic Clustering Algorithms

Let𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} be a given dataset of 𝑛 objects, where𝑥𝑖 = {𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑁} ∈ 𝑅𝑁 is the 𝑖th object characterized by𝑁 features. Suppose that the dataset is divided into 𝑐 clusters
and 𝑜𝑘 denotes the 𝑘th cluster prototype.

FCM is a well-known clustering algorithm [29], whose
objective function is

𝐽FCM = 𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘 󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑜𝑘󵄩󵄩󵄩󵄩2 , (1)

s.t.
𝑐∑
𝑘=1

𝑢𝑖𝑘 = 1, 𝑢𝑖𝑘 ∈ [0, 1] , (2)

where 𝑢𝑖𝑘 is the membership degree of the 𝑖th (1 ≤ 𝑖 ≤ 𝑛)
object to the 𝑘th (1 ≤ 𝑘 ≤ 𝑐) cluster. ‖⋅‖ represents the 𝑙2-norm
of a vector and𝑚 > 0 is the fuzzification coefficient. Note that
the constraint condition in (2) indicates that the membership
sum of each object to all clusters equals one. Therefore, FCM
is sensitive to outliers due to the intuition that outliers or
noises commonly locate far away from all cluster prototypes.
For this reason, Krishnapuram and Keller [30] proposed
a possibilistic c-means (PCM) clustering algorithm, which
relaxes the constraint on the sum of memberships and
minimizes the following objective function:

𝐽PCM = 𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘 󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑜𝑘󵄩󵄩󵄩󵄩2 + 𝑐∑
𝑘=1

𝜂𝑘 𝑛∑
𝑖=1

(1 − 𝑢𝑖𝑘)𝑚 , (3)

s.t. 𝑢𝑖𝑘 ∈ [0, 1] , (4)

where 𝜂𝑘 is a suitable positive number. In PCM, the constraint
(4) allows an outlier holding a lowmembership to all clusters,
so an outlier has a low impact on the objective function (3).
Themembership information of each sample can be naturally
used to interpret the outlying characteristic of a sample. For
a certain sample, if it has a low membership to all clusters, it
is likely to be an outlier.

Afterward, another unsupervised possibilistic clustering
algorithm (PCA) is proposed by Yang and Wu [31] and the
objective function of PCA is described as

𝐽PCA
= 𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘 󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑜𝑘󵄩󵄩󵄩󵄩2
+ 𝛽𝑚2√𝑐

𝑛∑
𝑖=1

𝑐∑
𝑘=1

(𝑢𝑚𝑖𝑘 log 𝑢𝑚𝑖𝑘 − 𝑢𝑚𝑖𝑘) ,
s.t. 𝑢𝑖𝑘 ∈ [0, 1] ,

(5)

where the parameter 𝛽 can be calculated by the sample
covariance:

𝛽 = ∑𝑛𝑖=1∑𝑁𝑗=1 (𝑥𝑖𝑗 − ∑𝑛𝑙=1 𝑥𝑙𝑗/𝑛)2𝑛 . (6)

3. Semisupervised Outlier
Detection Framework Based on Feature
Weighted Clustering

3.1. Model Formulation. In this section, we introduce prior
knowledge into possibilistic c-means clustering method to
improve the performance of outlier detection. First, a small
subset of samples in a given dataset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛}
is labeled as normal or outlier objects. Each labeled normal
object carries the label of class it belongs to. A semisupervised
indicator matrix A = (𝑎𝑖𝑘)𝑛×𝑐 is constructed to describe the
semisupervised information and its entries are defined by the
following:

(i) If an object 𝑥𝑖 is labeled as a normal point and it
belongs to the 𝑘th cluster, then 𝑎𝑖𝑘 = −1, and for all𝑠 = 1, 2, . . . , 𝑐, 𝑠 ̸= 𝑘, we let 𝑎𝑖𝑠 = 1.

(ii) If 𝑥𝑖 is labeled as an outlier, then for all 𝑠 = 1, 2, . . . , 𝑐,
we set 𝑎𝑖𝑠 = 1.

(iii) If 𝑥𝑖 is unlabeled, then for all 𝑠 = 1, 2, . . . , 𝑐, it has𝑎𝑖𝑠 = 0.
Usually data often contain a number of redundant fea-

tures.The cluster structure in a given dataset is often confined
to a subset of features rather than the entire feature set.
Irrelevant features can only obscure the discovery of the
cluster structure by a clustering algorithm. An intrinsic
outlier is easy to be neglected due to the vagueness of
cluster structure. Figure 1 presents an example of a three-
dimensional dataset. The dataset has two clusters (𝑐1 and 𝑐2)
and 3 features (𝑓1,𝑓2, and𝑓3). In the feature space (𝑓1,𝑓2,𝑓3),
neither of the clusters is discovered (see Figure 1(a)). In the
subspace (𝑓1, 𝑓2), cluster 𝑐1 can be found, but 𝑐2 cannot (see
Figure 1(b)). Nevertheless, only cluster 𝑐2 can be clearly shown
in (𝑓2, 𝑓3) (see Figure 1(c)). Therefore, if we assign weights
0.47, 0.45, and 0.08 to features 𝑓1, 𝑓2, and 𝑓3, respectively,
cluster 𝑐1 will be recovered by a clustering algorithm. If the
weights of features 𝑓1, 𝑓2, and 𝑓3 are assigned as 0.13, 0.46,
and 0.41, respectively, cluster 𝑐2 will be recovered. In this
consideration, each cluster is relevant to different subsets of
features, and the same feature may have different importance
in different clusters.

In our research, let V𝑗𝑘 be the weight of the 𝑗th (1 ≤𝑗 ≤ 𝑁) dimensional feature with respect to the 𝑘th (1 ≤𝑘 ≤ 𝑐) cluster, which satisfies ∑𝑁𝑗=1 V𝑗𝑘 = 1; then the feature
weighted distance 𝑑𝑖𝑘 between the 𝑖th object and the 𝑘th
cluster prototype is defined as

𝑑𝑖𝑘 = √ 𝑁∑
𝑗=1

V𝑞
𝑗𝑘

(𝑥𝑖𝑗 − 𝑜𝑘𝑗)2, (7)

where the parameter 𝑞 > 1 is the feature weight index.
The points within clusters usually behave strongly corre-

lated, while weak correlation is shown between outliers. That
is, normal points belong to one of the 𝑐 clusters and outliers
do not belong to any cluster.Therefore, a normal point should
have a high membership to the cluster it belongs to, and an
outlier has a low membership to all clusters. Based on this
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Figure 1: Three-dimensional synthetic example.

idea, we define a new objective function and minimize it as
follows:

𝐽SSOD-AFW (U,O,V)
= 𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘𝑑2𝑖𝑘 + 𝛽𝑚2√𝑐
𝑛∑
𝑖=1

𝑐∑
𝑘=1

(𝑢𝑚𝑖𝑘 log 𝑢𝑚𝑖𝑘 − 𝑢𝑚𝑖𝑘)
+ 𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝛼𝑖𝑘𝑎𝑖𝑘𝑢𝑚𝑖𝑘,
(8)

s.t.
𝑁∑
𝑗=1

V𝑗𝑘 = 1, 𝑢𝑖𝑘 ∈ [0, 1] , V𝑗𝑘 ∈ [0, 1] , (9)

where 𝑛, 𝑁, and 𝑐 are the number of objects, features, and
clusters, respectively. U = (𝑢𝑖𝑘)𝑛×𝑐, 𝑢𝑖𝑘 is the membership
degree of the 𝑖th object belonging to the 𝑘th cluster. V =(V𝑗𝑘)𝑁×𝑐, V𝑗𝑘 denotes the featureweight of the 𝑗th dimensional
feature with respect to the 𝑘th cluster. O = (𝑜𝑘𝑗)𝑐×𝑁, 𝑜𝑘𝑗
indicates the 𝑗th dimensional feature value of the 𝑘th cluster
prototype. 𝑑𝑖𝑘 denotes the feature weighted distance between
object 𝑥𝑖 and the 𝑘th cluster prototype. 𝑎𝑖𝑘 ∈ {1, −1, 0} is
the element in semisupervised indicator matrix A. 𝑚 > 0
is the fuzzification coefficient and the parameter 𝛽 can be
fixed as the sample covariance according to (6). The positive
coefficient𝛼𝑖𝑘 adjusts the significance of the label information
of the 𝑖th object with respect to the 𝑘th cluster in objective
function (8). The larger 𝛼𝑖𝑘 is, the larger the influence of label
knowledge is.

The first term in (8) is equivalent to the FCM objective
function which requires the distances of objects from the
cluster prototypes to be as small as possible. The second term
is constructed to force 𝑢𝑖𝑘 to be as large as possible. The
third term 𝛼𝑖𝑘𝑎𝑖𝑘𝑢𝑚𝑖𝑘 focuses on minimizing the membership
degrees of a labeled outlier to all the clusters and maximizing
the membership degree of a labeled normal object to the
cluster it belongs to. With a proper choice of 𝛼𝑖𝑘, we can
balance the label information weight of every object and
achieve the optimal fuzzy partition.

The virtue of semisupervised indicator matrix A in
objective function (8) can be elaborated as follows. Recalling
the construction of semisupervised indicator matrix A and

objective function (8), note that if we know that 𝑥𝑖 belongs
to the 𝑘th cluster, then 𝑎𝑖𝑘 = −1 and all the other entries
in the 𝑖th row equal 1. Thus, minimizing 𝛼𝑖𝑘𝑎𝑖𝑘𝑢𝑚𝑖𝑘 in (8)
means maximizing the membership of 𝑥𝑖 to the 𝑘th cluster
and simultaneously minimizing the memberships of 𝑥𝑖 to the
other clusters. If 𝑥𝑖 is labeled as an outlier, namely, where all
the elements in the 𝑖th row of A equal 1, then minimizing𝛼𝑖𝑘𝑎𝑖𝑘𝑢𝑚𝑖𝑘 in (8) means minimizing the memberships of 𝑥𝑖 to
all clusters, for an outlier does not belong to any cluster. If 𝑥𝑖
is unlabeled, namely, where 𝑎𝑖𝑘 = 0 for all 𝑘 = 1, 2, . . . , 𝑐, then
the term 𝛼𝑖𝑘𝑎𝑖𝑘𝑢𝑚𝑖𝑘 has no impact on objective function (8).

3.2. Solutions to the Objective Function. In this subsection, an
iterative algorithm for minimizing 𝐽SSOD-AFW with respect to𝑢𝑖𝑘, V𝑗𝑘, and 𝑜𝑘𝑗 is derived similar to classical FCM.

First, in order to minimize 𝐽SSOD-AFW with respect to V,
U and O are fixed and the parameters 𝛼𝑖𝑘 (𝑖 = 1, 2, . . . , 𝑛;𝑘 = 1, 2, . . . , 𝑐) are constants. The Lagrange function is
constructed as follows:

𝐿1 = 𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝑢𝑚𝑖𝑘𝑑2𝑖𝑘 + 𝛽𝑚2√𝑐
𝑛∑
𝑖=1

𝑐∑
𝑘=1

(𝑢𝑚𝑖𝑘 log 𝑢𝑚𝑖𝑘 − 𝑢𝑚𝑖𝑘)
+ 𝑛∑
𝑖=1

𝑐∑
𝑘=1

𝛼𝑖𝑘𝑎𝑖𝑘𝑢𝑚𝑖𝑘 − 𝑐∑
𝑘=1

𝛾𝑘( 𝑁∑
𝑗=1

V𝑗𝑘 − 1) ,
(10)

where 𝛾𝑘 (𝑘 = 1, 2, . . . , 𝑐) are the Lagrange multipliers.
By taking the gradient of 𝐿1 with respect to V𝑗𝑘 and setting

it to zero, we obtain

𝜕𝐿1𝜕V𝑗𝑘 = 𝑞V𝑞−1
𝑗𝑘

𝑛∑
𝑖=1

𝑢𝑚𝑖𝑘 (𝑥𝑖𝑗 − 𝑜𝑘𝑗)2 − 𝛾𝑘 = 0. (11)

Then

V𝑗𝑘 = [[
𝛾𝑘𝑞∑𝑛𝑖=1 𝑢𝑚𝑖𝑘 (𝑥𝑖𝑗 − 𝑜𝑘𝑗)2]]

1/(𝑞−1)

. (12)
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Substituting (12) into (9), we have

𝑁∑
𝑗=1

V𝑗𝑘 = [𝛾𝑘𝑞 ]1/(𝑞−1) 𝑁∑
𝑗=1

[[
1

∑𝑛𝑖=1 𝑢𝑚𝑖𝑘 (𝑥𝑖𝑗 − 𝑜𝑘𝑗)2]]
1/(𝑞−1)

= 1.
(13)

It follows that

[𝛾𝑘𝑞 ]1/(𝑞−1) = 1
∑𝑁𝑗=1 [1/∑𝑛𝑖=1 𝑢𝑚𝑖𝑘 (𝑥𝑖𝑗 − 𝑜𝑘𝑗)2]1/(𝑞−1) . (14)

The updating criteria of feature weight V𝑗𝑘 (1 ≤ 𝑗 ≤ 𝑁,1 ≤ 𝑘 ≤ 𝑐) are obtained:
V𝑗𝑘 = [1/∑𝑛𝑖=1 𝑢𝑚𝑖𝑘 (𝑥𝑖𝑗 − 𝑜𝑘𝑗)2]1/(𝑞−1)

∑𝑁𝑙=1 [1/∑𝑛𝑖=1 𝑢𝑚𝑖𝑘 (𝑥𝑖𝑙 − 𝑜𝑘𝑙)2]1/(𝑞−1) . (15)

The updating way of V𝑗𝑘 implies that the larger the devi-
ation degrees from all samples to the 𝑘th cluster prototype
regarding the 𝑗th feature are, the smaller the weight of the𝑗th feature is. That is, if the distribution of all data is compact
around the 𝑘th cluster prototype in the 𝑗th feature space,
the 𝑗th feature plays a significant role in formulating the 𝑘th
cluster. Meanwhile, irrelevant features thus are assigned a
smaller weight to reduce the negative impact of them on the
clustering process.

To find the optimal cluster prototype O, we assume U
and V are fixed and the parameters 𝛼𝑖𝑘 (𝑖 = 1, 2, . . . , 𝑛;𝑘 = 1, 2, . . . , 𝑐) are also constants. We take the gradient of𝐽SSOD-AFW with respect to 𝑜𝑘𝑗 and set it to zero:

𝜕𝐽SSOD-AFW𝜕𝑜𝑘𝑗 = 𝑛∑
𝑖=1

(−2𝑢𝑚𝑖𝑘V𝑗𝑘 (𝑥𝑖𝑗 − 𝑜𝑘𝑗)) = 0. (16)

The updating formula of cluster prototype 𝑜𝑘𝑗 is obtained
as follows:

𝑜𝑘𝑗 = ∑𝑛𝑖=1 𝑢𝑚𝑖𝑘𝑥𝑖𝑗∑𝑛𝑖=1 𝑢𝑚𝑖𝑘 . (17)

To solve the optimal fuzzy partition matrixU, we assume
O and V are fixed and the parameters 𝛼𝑖𝑘 (𝑖 = 1, 2, . . . , 𝑛; 𝑘 =1, 2, . . . , 𝑐) are also constants.We set the gradient of 𝐽SSOD-AFW
with respect to 𝑢𝑖𝑘 to zero:𝜕𝐽SSOD-AFW𝜕𝑢𝑖𝑘 = 𝑚𝑢𝑚−1𝑖𝑘 𝑑2𝑖𝑘 + 𝛽𝑚√𝑐𝑢𝑚−1𝑖𝑘 log 𝑢𝑚𝑖𝑘

+ 𝛼𝑖𝑘𝑎𝑖𝑘𝑚𝑢𝑚−1𝑖𝑘 = 0. (18)

The updating formula of 𝑢𝑖𝑘 is derived as follows:

𝑢𝑖𝑘 = exp(−𝑚√𝑐𝛽 (𝑑2𝑖𝑘 + 𝛼𝑖𝑘𝑎𝑖𝑘)) . (19)

Formula (19) indicates that a large value of weighted
distance 𝑑𝑖𝑘 leads to a smaller value of 𝑢𝑖𝑘, for all 1 ≤ 𝑖 ≤ 𝑛,

1 ≤ 𝑘 ≤ 𝑐. It should be noted that the membership degree 𝑢𝑖𝑘
is also dependent on the coefficient 𝛼𝑖𝑘. The choice of 𝛼𝑖𝑘 is
important to the performance of the SSOD-AFW algorithm
because it serves in distinguishing the importance of the third
term relative to the other terms in objective function (8). If𝛼𝑖𝑘
is too small, the third term will be neglected and the labels of
objects will not work to promote the cluster structure. If 𝛼𝑖𝑘 is
too large, the other terms will be neglected, and the negative
influence of possiblemislabels of objects will be enlarged.The
value of 𝛼𝑖𝑘 should be chosen such that it has the same order
of magnitude with the first term in (8). To determine the
parameter𝛼𝑖𝑘 in an adaptiveway, in all experiments described
in this paper, we choose 𝛼𝑖𝑘 proportional to 𝑑2𝑖𝑘 as follows:

𝛼𝑖𝑘 = 𝐾𝑑2𝑖𝑘, (20)

where 𝐾 ∈ (0, 1) is a constant. Since the weighted distance𝑑𝑖𝑘 is dynamically updated, the value of parameter 𝛼𝑖𝑘 is
adaptively updated in each iteration.

3.3. Criteria for Outlier Identification. Based on the above
analysis, outliers should hold low membership degrees to all
clusters. Therefore, the sum of memberships of an object to
all clusters can be used to evaluate its outlying degree. For a
certain object 𝑥𝑖, its outlying degree is defined as

OD (𝑥𝑖) = 𝑐∑
𝑘=1

𝑢𝑖𝑘. (21)

Thus, a small value of OD(𝑥𝑖) indicates a high outlying
possibility of object 𝑥𝑖. The outlying degree of each sample in
a dataset is calculated, respectively, and sorted incrementally.
The suspicious outliers can be found just by extracting the top𝑀 objects in the sorted outlying degree sequence, where𝑀 is
a given number of outliers contained in the dataset or a given
number of outliers one needs.

In summary, the description of the SSOD-AFW algo-
rithm is shown in Algorithm 1.

Algorithm 1 (semisupervised outlier detection based on adap-
tive feature weighted clustering (SSOD-AFW)).

Input. Dataset 𝑋, the label information of some objects, the
number of clusters 𝑐, parameters 𝑚 > 1, 𝐾 ∈ (0, 1), 𝑞 > 1,𝜀 > 0, and the number of outliers𝑀.

Output.𝑀 suspicious outliers.

(1) Calculate the parameter 𝛽 according to (6), randomly
initialize matrix U(0) = (𝑢(0)

𝑖𝑘
)𝑛×𝑐, and initialize all

elements in V(0) = (V(0)
𝑗𝑘

)𝑁×𝑐 as 1/𝑁. Set iteration
counter 𝑡 = 0.

(2) Compute the matrix of cluster prototype O(𝑡+1) =(𝑜(𝑡+1)
𝑘𝑗

)𝑐×𝑁 according to (17).
(3) Update the feature weight matrix V(𝑡+1) = (V(𝑡+1)

𝑗𝑘
)𝑁×𝑐

by (15).
(4) Update the feature weighted distance D(𝑡+1) =(𝑑(𝑡+1)

𝑖𝑘
)𝑛×𝑐 by (7).
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(5) Update parameter 𝛼(𝑡+1)
𝑖𝑘

by (20).

(6) Update the membership degree matrix U(𝑡+1) =(𝑢(𝑡+1)
𝑖𝑘

)𝑛×𝑐 according to (19).
(7) If ‖U(𝑡+1) − U(𝑡)‖ < 𝜀, go to step (8); else, 𝑡 = 𝑡 + 1,

repeat step (2) to step (7).
(8) The outlying degree of each object is computed, and

the OD values are sorted in an ascending manner.
Finally output top 𝑀 outliers with the smallest out-
lying degrees.

Computational complexity analysis: Step (2) needs𝑂(cNn) operations to compute 𝑐 cluster prototype. The com-
putational complexity of computing the weights of𝑁 features
is 𝑂(cNn) in Step (3). Step (4) requires 𝑂(cNn) to compute
the weighted distances of 𝑛 objects to 𝑐 cluster prototypes.
Step (5) needs 𝑂(cn) to compute parameter 𝛼𝑖𝑘 of 𝑛 objects
with respect to 𝑐 cluster prototypes. Moreover, Step (6) needs𝑂(cn) operations to calculate the memberships of 𝑛 objects
to 𝑐 clusters. Therefore, the whole computational complexity
is 𝑂(cNn), the same as that of the classical FCM algorithm.

3.4. Proof of Convergence. In this section, we discuss the con-
vergence of the proposed SSOD-AFW algorithm. To prove
the convergence of objective function 𝐽SSOD-AFW in (8) by
iteratingV,O, andUwith formulas (15), (17), and (19), it only
needs to prove that 𝐽SSOD-AFW is monotonically decreasing
and bounded after a finite number of iterations.Next Lemmas
2, 3, and 4 verify the monotonically decreasing property of𝐽SSOD-AFW with respect toV,O, andU, respectively. Lemma 5
presents the boundedness of 𝐽SSOD-AFW.

Lemma 2. Objective function 𝐽𝑆𝑆𝑂𝐷-𝐴𝐹𝑊 in (8) is nonincreas-
ing by updating U = (𝑢𝑖𝑘)𝑛×𝑐 with formula (19).

Proof. Due to the fact that V and O are fixed when updating
U by (19), here the objective function 𝐽SSOD-AFW can be
regarded as a function only associated with U, denoted as𝐽SSOD-AFW(U). According to Lagrangianmultiplier technique,
U∗ computed via (19) is a stagnation point of 𝐽SSOD-AFW(U).
On the other hand, if Hessian matrix ∇2𝐽SSOD-AFW(U) is
proved to be positive definite at U∗, it can be proved that𝐽SSOD-AFW(U) attains its local minimum at U∗. The Hessian
matrix ∇2𝐽SSOD-AFW(U∗) is expressed as

∇2𝐽SSOD-AFW (U∗)

=
[[[[[[[[[

𝜕2𝐽SSOD-AFW (U∗)𝜕𝑢11𝜕𝑢11 ⋅ ⋅ ⋅ 𝜕2𝐽SSOD-AFW (U∗)𝜕𝑢11𝜕𝑢𝑛𝑐... d
...

𝜕2𝐽SSOD-AFW (U∗)𝜕𝑢𝑛𝑐𝜕𝑢11 ⋅ ⋅ ⋅ 𝜕2𝐽SSOD-AFW (U∗)𝜕𝑢𝑛𝑐𝜕𝑢𝑛𝑐

]]]]]]]]]
. (22)

∇2𝐽SSOD-AFW(U∗) is a diagonal matrix and its diagonal ele-
ment is 𝜕2𝐽SSOD-AFW (U∗)𝜕𝑢𝑖𝑘𝜕𝑢𝑖𝑘 = 𝛽√𝑐𝑢𝑚−2𝑖𝑘 . (23)

Since 𝑢𝑖𝑘 > 0, Hessianmatrix∇2𝐽SSOD-AFW(U∗) is positive
definite. Having proved that U∗ is a stagnation point of𝐽SSOD-AFW(U) and ∇2𝐽SSOD-AFW(U∗) is positive definite, we
concludeU∗ is the local minimum of 𝐽SSOD-AFW(U). Then we
have 𝐽SSOD-AFW(U(𝑡)) ≥ 𝐽SSOD-AFW(U∗) = 𝐽SSOD-AFW(U(𝑡+1)),
whereU(𝑡) is the membership matrix after the 𝑡th iteration in
(19) and U∗ = U(𝑡+1) is the one after the (𝑡 + 1)th iteration.
Therefore, objective function 𝐽SSOD-AFW in (8) is nonincreas-
ing by updating U = (𝑢𝑖𝑘)𝑛×𝑐 using formula (19).

Lemma 3. Objective function 𝐽𝑆𝑆𝑂𝐷-𝐴𝐹𝑊 in (8) is nonincreas-
ing by updating V = (V𝑗𝑘)𝑁×𝑐 using (15).
Proof. Similar to Lemma 2, when U and O are fixed, we
just need to prove that the Hessian matrix of Lagrangian of𝐽SSOD-AFW(V) atV∗ is positive definite, whereV∗ is computed
by (15).TheHessian matrix is denoted as𝐻(V) = (ℎ𝑗𝑘,𝑙𝑚(V)),
whose element is expressed as follows:

ℎ𝑗𝑘,𝑙𝑚 (V) = 𝜕2𝐿1 (V)𝜕V𝑗𝑘𝜕V𝑙𝑚
= {{{{{

𝑞 (𝑞 − 1) V𝑞−2
𝑗𝑘

𝑛∑
𝑖=1

𝑢𝑚𝑖𝑘 (𝑥𝑖𝑗 − 𝑜𝑘𝑗)2 , if𝑗 = 𝑙, 𝑘 = 𝑚,
0, otherwise.

(24)

Since 𝑞 > 1 and V𝑗𝑘 > 0, the diagonal entries of the
diagonal matrix are apparently positive. Therefore, Hessian
matrix 𝐻(V) is positive definite. 𝐽SSOD-AFW(V) attains its
local minimum at V∗ computed by (15). This completes the
proof.

Lemma 4. Objective function 𝐽𝑆𝑆𝑂𝐷-𝐴𝐹𝑊 in (8) is nonincreas-
ing whenO = (𝑜𝑘𝑗)𝑐×𝑁 is updated using (17).

The proof of Lemma 4 is similar to Lemma 2.

Lemma 5. Objective function 𝐽𝑆𝑆𝑂𝐷-𝐴𝐹𝑊 in (8) is bounded,
there exists a constant 𝐵, and it satisfies 𝐽𝑆𝑆𝑂𝐷-𝐴𝐹𝑊 < 𝐵.
Proof. ∀𝑖 ∈ {1, . . . , 𝑛} and∀𝑘 ∈ {1, . . . , 𝑐}, we have 0 < 𝑢𝑖𝑘 ≤ 1.
Thus,𝑢𝑚𝑖𝑘 log 𝑢𝑚𝑖𝑘−𝑢𝑚𝑖𝑘 ismonotonically decreasingwith respect
to 𝑢𝑖𝑘 and hence −1 ≤ 𝑢𝑚𝑖𝑘 log 𝑢𝑚𝑖𝑘 − 𝑢𝑚𝑖𝑘 < 0. Apparently,
the first term and the second term of the objective function𝐽𝑆𝑆𝑂𝐷-𝐴𝐹𝑊 are also bounded. In consequence, objective func-
tion 𝐽SSOD-AFW in (8) is bounded.

Theorem 6. The objective function 𝐽𝑆𝑆𝑂𝐷-𝐴𝐹𝑊 converges to a
local minimum by updating V, O, and U using formulas (15),
(17), and (19), which subjects to the constraints in (9).

Proof. Lemmas 2, 3, and 4 verify that objective function
in (8) is nonincreasing under iterations according to (15),
(17), and (19). Lemma 5 shows that 𝐽SSOD-AFW has a finite
bound. Though the parameter 𝛼𝑖𝑘 needs to be updated in the
iteration process, it is a constant in the problem solving using
Lagrangian multiplier technique. So 𝛼𝑖𝑘 does not affect the
convergence of the SSOD-AFW algorithm. Combining the
above conclusions, 𝐽SSOD-AFW is sure to converge to a local
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minimum through iterations ofV,O, andU by (15), (17), and
(19).

4. Experiments and Analysis

Comprehensive experiments and analysis on a synthetic
dataset and several real-world datasets are conducted to show
the effectiveness and superiority of the proposed SSOD-
AFW. We compared the proposed algorithm with two the-
state-of-the-art unsupervised outlier algorithms, LOF [15]
and 𝐾NN [13], one supervised method SVDD [32], and one
semisupervised method EODSP [23].

4.1. Evaluation Metrics. For numerically performance evalu-
ation of outlier detection algorithms, three metrics, namely,
accuracy [7], AUC [33], and rank-power [16], are used in this
paper.

Let 𝑀 be the number of true outliers that a dataset 𝑋
contains and 𝑆 denotes the number of true outliers detected
by an algorithm. In experiments, top 𝑀 most suspicious
instances are detected out. Then the accuracy is given by

Accuracy = 𝑆𝑀. (25)

The receiver operating characteristic (ROC) curve rep-
resents the trade-off relationship between the detection rate
and the false alarm rate. In general, the area under the ROC
curve (AUC) is used to measure the performance of outlier
detection method, and the value of AUC for ideal detection
performance is close to one.

For a given outlier detection algorithm, true outliers
occupy top positions with respect to the nonoutliers among𝑀 suspicious instances; then the rank-power (RP) of the
algorithm is said to be high. If 𝑆 is the number of true outliers
found within top𝑀 instances and 𝑅𝑖 denotes the rank of the𝑖th true outlier, then the metric rank-power (RP) is given by

RP = 𝑆 (𝑆 + 1)2∑𝑆𝑖=1 𝑅𝑖 . (26)

RP reaches the maximum value 1 when all 𝑆 true outliers
are in the top 𝑆 positions. Larger value of RP implies better
performance of an algorithm.

4.2. Experiments on Synthetic Dataset. A two-dimensional
synthetic dataset with two cluster patterns is generated
from Gaussian distribution to intuitively compare the outlier
detection results of the proposed method against the other
four algorithms mentioned above. The mean vectors of the
two clusters are 𝜇1 = (7.5, 9)T and 𝜇2 = (1, 3)T, respectively,
and the covariance matrixes of them are Σ1 = ( 1 00 2 ) andΣ2 = ( 1 00 2 ). As Figure 2(a) shows, a total of 199 samples
are contained in the synthetic dataset, in which there are
183 normal samples (within two clusters) and 16 outliers
(cluttered between two clusters). 13 normal objects are labeled
and marked as symbol “×” and 5 outliers are labeled and
markedwith symbol “∗”, while the rest samples are unlabeled
marked with “⋅.” Figures 2(b)–2(f), respectively, illustrate the

outlier detection results on the synthetic dataset by using
LOF, 𝐾NN, SVDD, EODSP, and SSOD-AFW, where the red
colored symbols “∘” denote the detected suspicious outliers.
Here, the value of parameter 𝑘 (size of neighborhood) in LOF
and 𝐾NN is assigned to 3. Gauss kernel function is chosen
in SVDD and we set the bandwidth 𝜎 = 0.3 and the trade-
off coefficient 𝐶 = 0.45. Besides, the Euclidean distance
threshold 𝑇 in EODSP is set as 0.1 and the percentage of
negative set is set to 𝑙 = 10%. The parameter settings of the
proposed algorithm are 𝑚 = 2.3, 𝐾 = 0.85, and 𝑞 = 2.23.
In addition to SVDD, the top 16 objects with the highest
outlying scores are considered as the results in the other four
algorithms.

In Figure 2, it is noticeable that the unsupervisedmethods
LOF and 𝐾NN as well as the supervised SVDD fail to
completely detect all of the 5 labeled outliers. Nevertheless,
some normal points in clusters are badly misjudged as
outliers. In contrast, the semisupervised EODSP algorithm
and the proposed SSOD-AFW algorithm successfully detect
all of the 5 labeled outliers. However, EODSP does not
completely detect all the unlabeled true outliers, and several
true normal samples are improperly identified as outliers. It
is concluded from Figure 2 that the proposed algorithm finds
all the true outliers in the synthetic dataset and excludes the
normal samples, while the other methods do not.

Figure 3 numerically presents the performance evaluation
of outlier detection using LOF, 𝐾NN, SVDD, EODSP, and
SSOD-AFW for the synthetic dataset. From Figure 3 we see
that the values of accuracy, AUC, and RP of the proposed
algorithm all reach 1, outperforming the other methods.

Furthermore, during the experimental process shown in
Figure 3, the feature weights of the synthetic dataset learned
by formula (15) in our method are V11 = 0.6727, V12 =0.5985, V21 = 0.3273, and V22 = 0.4015. To strengthen
the effectiveness of feature weights in the proposed SSOD-
AFW algorithm, a comparative analysis of the weighted and
the nonweighted versions is implemented on the synthetic
dataset, respectively. Considering the nonweighted scenario
of the proposed algorithm, the outlier detection result on the
synthetic dataset is presented in Figure 4. As can be observed
from Figure 4, the nonweighted SSOD-AFW ends up tagging
15 true outlying and 1 normal samples as outliers, with one
unlabeled true outlier missed.

4.3. Experiments on Real-World Datasets

4.3.1. Introduction of Datasets. For further verification of
the effectiveness of the proposed algorithm, five real-world
datasets from UCI Machine Learning Repository [34] (i.e.,
Iris, Abalone, Wine, Ecoli, and Breast Cancer Wisconsin
(WDBC)) are employed to test the performance of the
proposed algorithm against LOF, 𝐾NN, SVDD, and EODSP.
As mentioned in Aggarwal and Yu [35], one way to test the
performance of an outlier detection algorithm is to run it on
the dataset and calculate the percentage of points belonging
to the rare classes. So a small amount of samples from the
same class are randomly selected as outlying objects or as
target objects, for the five datasets. For instance, the original
Iris dataset incorporates 150 objects with 50 objects in each
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Figure 2: Outlier detection results of different algorithms on the two-dimensional synthetic dataset.
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Figure 3: Performance comparison of different algorithms on the synthetic dataset.

of three classes. We randomly selected 26 objects from class
“Iris-virginica” as target outliers and all objects in the other
two classes are considered as normal objects. The other
four datasets are similarly preprocessed and more detailed
description about the five real-world datasets is given in
Table 1.

4.3.2. Experimental Result Analysis. We compare the outlier
detection performance of the proposed algorithm with LOF,𝐾NN, SVDD, and EODSP on real-world datasets. Each
method has its own parameters, and the detailed parameter
settings of each algorithm are as follows. The parameters of
the proposed algorithm are 𝑚 = 2.1, 𝐾 = 0.65, and 𝑞 = 1.53
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Table 1: Description of real-world datasets.

Dataset Instances Features Outlying classes Outliers (percent) Clusters Prior information
Iris 126 4 “Virginica” 26 (20.63%) 2 10 labeled normal samples, 4 labeled outliers
Abalone 4177 8 “1”–“4,” “16”–“27,” “29” 335 (8.02%) 11 11 labeled normal samples, 18 labeled outliers
Wine 130 13 “3” 11 (8.46%) 2 9 labeled normal samples, 4 labeled outliers
Ecoli 336 9 “omL,” “imL,” “imS” 9 (2.68%) 5 11 labeled normal samples, 3 labeled outliers
WDBC 387 30 “Malignant” 30 (7.75%) 1 10 labeled normal samples, 8 labeled outliers
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Figure 4: Outlier detection result of the nonweighted SSOD-AFW on the synthetic dataset.

for all the five datasets. The strategy of parameter selection
for SSOD-AFW will be discussed in the later subsection
called parameter analysis. For the other algorithms, those
parameters are set exactly as mentioned in their references.
It is well known that LOF and 𝐾NN have high dependency
on the neighborhood parameter 𝑘. In this paper we set 𝑘 = 5
for datasets Iris and WDBC, 𝑘 = 3 for dataset Abalone,𝑘 = 10 for dataset Wine, and 𝑘 = 10 for dataset Ecoli. For
SVDDmethod,Gaussian kernel function is employed and the
bandwidths 𝜎 = 0.45 and 𝐶 = 0.5 on all of the five real-world
datasets. In EODSP, the Euclidean distance threshold 𝑇 is set
as 0.1 and the percentage of negative set 𝑙 is set as 30% for Iris
andAbalone datasets, and𝑇 = 0.5, 𝑙 = 30% for datasets Ecoli,
Wine, and WDBC. Since we randomly select outliers from
target classes for each dataset, each experiment is repeated
10 times with the same number of different outliers. The
average accuracy, AUC, and RP are calculated as the criteria
of performance of various detection methods.

Figure 5 illustrates the outlier detection results of SSOD-
AFW algorithm against LOF, 𝐾NN, SVDD, and EODSP,
respectively, on the five real-world datasets. As can be
seen from Figure 5, the proposed algorithm can accurately
identify outliers according to the cluster structure of a
dataset, with the guidance of the label knowledge. It shows
distinct superiority over the other unsupervised (LOF,𝐾NN),
semisupervised (EODSP), and supervised (SVDD) methods.
In particular, the outlier detection accuracy of SSOD-AFW in
Figure 5(a) is significantly higher than the others, especially

for datasets Iris and Wine. One can know from Figure 5(b)
that the AUC values of our method are always higher than
the others for all datasets except for WDBC. In terms of RP,
SSOD-AFW performs better than the other four algorithms
ondatasets Iris andWine,whereas slightly poorer than SVDD
onAbalone, poorer than LOFonEcoli, and poorer than𝐾NN
onWDBC, seen as in Figure 5(c).

It is worth mentioning that the experiment of the pro-
posed algorithm on WDBC involves one-class clustering
problem. Although one-class clustering task is generally
meaningless, one-class clustering-based outlier detection is
especially meaningful and feasible in our proposal because
our approach does not require that the membership degrees
must sum up to 1. This is one of the powerful and important
characteristics of the proposed algorithm.

4.3.3. The Influence of the Proportion of Labeled Data on
Outlier Detection. In this subsection, we will investigate
the influence of the proportion of labeled samples on the
accuracies of our methodology. Two typical situations are
considered and tested. The first one is that the proportion of
labeled outliers increases when the number of labeled normal
objects is fixed at a certain constant. The other one is that the
percent of labeled normal samples varies while the quantity
of labeled outliers is fixed. So two groups of experiments
are designed to compare the accuracies of the proposed
algorithm against the EODSP, in the situations of different
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Figure 5: Performance comparison of various algorithms on the real-world datasets.

percent of labeled outliers and normal samples, respectively,
on the datasets Iris, Abalone, Wine, Ecoli, andWDBC. In the
two experiments, the percent of labeled outliers or labeled
normal samples ranges from 0% to 40%, respectively, when
the number of another kind of labeled objects is fixed.
We randomly select a certain number of labeled outliers
or normal samples from each dataset, each experiment is
repeated 10 times, and the average accuracies of SSOD-AFW
and EODSP are computed.

Figure 6 shows results of the first group of experiments
where the percent of labeled outliers varies from 0% to 40%.
One can see from Figure 6 that the accuracies of the two
semisupervised algorithms are roughly increased with the
proportion of labeled outliers becoming larger. This power-
fully supports the idea that semisupervised outlier detection
algorithms can improve the accuracy of outlier detection
by using prior information. Furthermore, the SSOD-AFW
achieves a better accuracy than EODSP algorithm for the
same proportion of labeled outliers on the five datasets.
Especially for Wine, the accuracy of SSOD-AFW is 40%
higher than that of EODSP. EODSP addresses the problem
of detecting outliers with only few labeled outliers as training
data. The labeled normal instances are extracted according
to the maximum entropy principle, where the entropy is
computed only using the distance between each testing
sample and all the labeled outliers. That makes EODSP
not flexible as our proposed method due to information
deficiencies.

Figure 7 illustrates the accuracy comparison of the pro-
posed algorithm and EODSP, when the proportion of labeled
normal samples increases from 0% to 40% and the percent of
labeled outliers is fixed. Note that ourmethod obtains a better
accuracy than EODSP on all of the five real-world datasets.
The accuracy of the proposed algorithm gets larger when the
percent of labeled normal samples increases. As mentioned,
EODSP emphasizes the semisupervised outlier detection
only with few labeled outliers in the initial dataset, but
without considering any labeled normal objects. Therefore,

the accuracy of EODSP algorithm keeps harper with various
proportions of labeled normal objects and always equals the
accuracy value of 0% labeled normal samples as well.

4.3.4. Parameter Analysis. The parameters 𝑚, 𝐾, and 𝑞
are important in our proposed algorithm, which affect the
performance of SSOD-AFW. In this section, the influence of
each parameter on outlier detection accuracy is studied.

The parameter 𝑚 is the fuzzification coefficient. Fig-
ure 8(a) analyzes the relationship between the outlier detec-
tion accuracy of our proposed algorithm and parameter 𝑚,
with 𝑚 varying from 1.5 to 5.0. The results imply that the
highest accuracy is achieved when 𝑚 ranges in [2, 4]. So
it is reasonable that 𝑚 value in the experiments shown in
Figure 5 has been set as 2.1. The parameter 𝐾 ∈ (0, 1)
controls the importance of the label information in the result
of outlier detection. Outlier detection accuracies are testified
by varying𝐾 from 0.1 to 0.9, which are shown in Figure 8(b).
The overall tendency is that the accuracies become larger as𝐾 increases.The best results of the proposed algorithm occur
and keep stable when 𝐾 ≥ 0.7. Finally, from Figure 8(c), we
conclude that the feature weight index 𝑞 has small influence
on the accuracy of SSOD-AFW in the situation that the
other parametersmaintain the same settings. So the proposed
algorithm is not sensitive to the parameter 𝑞. In general, the
parameter 𝑞 is suggested to select a constant from (1, 4].
4.3.5. Execution Time Analysis. Figure 9 analyzes the average
running time of the proposed algorithm against the other
algorithms on five real-world datasets. The experimental
environment is Windows XP systems, MATLAB 7.1 platform,
3GHz CPU, 2GB RAM. Because the volume of Abalone
dataset is far greater than the other four datasets, the running
times of various datasets are distinctly different. In order to
facilitate the display, in Figure 9 the horizontal coordinate axis
is translated downward a short distance. The result indicates
that the proposed algorithm is more time-saving than the
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Figure 6: Accuracy analysis of algorithms EODSP and SSOD-AFW with different percent of labeled outliers on the real-world datasets.

other four typical outlier detection algorithms, except for𝐾NN on dataset Wine. In whole, the execution time of the
SSOD-AFW is comparable to that of𝐾NNand less than those
of other algorithms on most of the datasets.

5. Conclusions

In order to detect outliers more precisely, a semisuper-
vised outlier detection algorithm based on adaptive feature

weighted clustering, called SSOD-AFW, is proposed in this
paper. Distinct weights of each feature with respect to differ-
ent clusters are considered and obtained by adaptive iteration,
so that the negative effects of irrelevant features on outlier
detection are weakened. Moreover, the proposed method
makes full use of the prior knowledge contained in datasets
and detects outliers in virtue of the cluster structure. It is
verified by a series of experiments that the proposed SSOD-
AFW algorithm is superior to other typical unsupervised,
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Figure 7: Accuracy analysis of algorithms EODSP and SSOD-AFW with different percent of labeled normal samples on the real-world
datasets.

semisupervised, and supervised algorithms in both outlier
detection precision and running speed.

In this paper, we present a new semisupervised outlier
detection method which utilizes labels of a small amount
of objects. However, our method assumes that the labels

of objects are reliable and does not consider mislabel pun-
ishment in the new objective function. Therefore, a robust
version of the proposed method dealing with noisy or
imperfect labels of objects deserves further studies.Moreover,
since only one typical dissimilaritymeasure named Euclidean
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Figure 8: Outlier detection accuracy of the proposed algorithm under various parameters on the real-world datasets.

Iris Abalone Wine Ecoli WDBC
Datasets

50

45

40

35

30

25

20

15

10

5

0

Ru
nn

in
g 

tim
e (

s)

LOF
KNN
SVDD

EODSP
SSOD-AFW

Figure 9: Execution time comparison of different algorithms on the
real-world datasets.

distance is discussed in our method, the SSOD-AFW algo-
rithm is limited to outlier detection for numerical data. The
future research aims at extending our method to mixed-
attribute data in more real-life applications such as fault
diagnosis in industrial process or network anomaly detection.
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