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One important mission of strategic defense is to develop an integrated layered Ballistic Missile Defense System (BMDS). Motivated
by the queueing theory, we presented a work for the representation, modeling, performance simulation, and channels optimal
allocation of the layered BMDS M/M/N queueing systems. Firstly, in order to simulate the process of defense and to study the
Defense Effectiveness (DE), we modeled and simulated the M/M/N queueing system of layered BMDS. Specifically, we proposed
the M/M/N/N and M/M/N/C queueing model for short defense depth and long defense depth, respectively; single target channel
and multiple target channels were distinguished in each model. Secondly, we considered the problem of assigning limited target
channels to incoming targets, we illustrated how to allocate channels for achieving the best DE, and we also proposed a novel
and robust search algorithm for obtaining the minimum channel requirements across a set of neighborhoods. Simultaneously, we
presented examples of optimal allocation problems under different constraints. Thirdly, several simulation examples verified the
effectiveness of the proposed queueing models. This work may help to understand the rules of queueing process and to provide
optimal configuration suggestions for defense decision-making.

1. Introduction

These years, ballistic missile (BM) technology has spread to
more and more countries. Nations all over the world are
developingmissiles capable of reaching enemies. One impor-
tant mission of strategic defense is to develop an integrated
layered BMDS to defend homeland, deployed forces, allies,
and friends from ballistic missile attacks [1]. The BMDS is
based on a multilayer defense concept and therefore contains
more than one defense weapon; it will include different types
of defense weapons located on land or ships used to destroy
ballistic missiles [2]. Layered BMDS has two advantages: (1)
interceptionmainly can be divided into 3 phases: boost phase,
midphase, and reentry phase. Since the reentry phase is too
short and it is the last chance for a shot, BMDS should not
rely on a single defense weapon but on defense weapons
placed at different locations forming a layered BMDS; the
layered BMDS allows for more shot opportunities that will
certainly increase the probability of a successful interception

[3]. (2) For given affordable BMs penetration probability
(or expected kill probability), cooperation between different
missile defense weapons may reduce the expected resources
consumption and provide an efficient way of using inter-
ceptors. The common methods used in the research on the
process simulation and performance evaluation of missile
defense are the mathematical programming method [4, 5],
the probability calculationmethod [6], the system simulation
method [7], the Markov method [8, 9], and so forth.

Queueing theory is a mathematical theory of stochastic
service system which was first proposed by Erlang [10].
Queueing systems have a wide range of applications, such
as resource allocation [11], system optimization [12], and
communication planning [13]. Similarly, in order to make
full use of defense capabilities, queuing theory also has a
lot of applications in defense weapons operation research; it
can solve problems of weapons configuration or efficiency
analysis [14–16]. Following are the two questions that need
our attention: (1) there are many factors that affect DE, such
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as the number of layers, the number of defense weapons,
and Single Shot Kill Probability (SSKP); these are also factors
that affect the requirement of defense weapons; how are
defense weapons, number of layers, BMs, SSKP, and DE
interrelated and how can we understand this relationship for
achieving the best allocation plan? (2) If we have deployed
different types of defense weapons, then how do we deal with
them?

Using M/M/N queueing system to simulate the missile
defense process is feasible; the reasons are as follows: (1) the
Poisson process has the simplest mathematical expressions,
though BMs arrival is not fully consistent with the Poisson
process; it represents the most difficult scenario (worst-
case scenario) for the BMDS to deal with. As long as
the BMDS can deal with Poisson arrivals, it has certain
adaptability to other types of arrivals distribution. (2) BMs
usually have fixed and highly predictable trajectories, though
some of them may have limited maneuvering potential;
we think this has no influence on our research. (3) The
incoming directions, firing tactics, technical characteris-
tics, and time intervals of BM arrivals have some Pois-
son features; these can be viewed as customers waiting
to be served by servers. (4) The targets capacity (number
of target channels, servers) and shooting times for each
target (service times) are limited. When BMs that arrived
find that all channels are occupied (not idle) or there
was little time for a shot, they will penetrate the BMDS
directly. In summary, the M/M/N queueing system can be
used to analyze the DE of BMDS, summarize the rules of
defense, and provide suggestions for system configuration
for defense decision-making. The remainder of the paper
is structured as follows. Section 2 proposes the framework
for M/M/N queueing model. Section 3 discusses M/M/N
queueing models. Section 4 is dedicated to optimal allo-
cation of target channels. Section 5 provides numerical
examples. Section 6 includes concluding remarks and future
work.

2. M/M/N Queueing Framework

We consider an M/M/N queueing system with BMs arrival
rate 𝜆 and shooting rate 𝜇 of defense weapons. M stands for
“memoryless” or “Markovian” and means that the process
being represented by M comes from an exponential distribu-
tion [17].

(1) Suppose that BMs arrive randomly and independently
of each other to a defense weapon and that the average rate at
which they arrive is given by the parameter 𝜆 [18]; that is,

𝑃𝑛 (𝑡) = (𝜆𝑡)𝑛𝑛! 𝑒−𝜆𝑡, 𝑡 > 0, 𝑛 = 0, 1, 2, . . . . (1)

This is known as a Poisson arrival process; 𝑃𝑛(𝑡) is
the probability that 𝑛 BMs arrive within time 𝑡. Sup-
pose that the time intervals between arrivals are randomly
taken from the exponential distribution with parameter 𝜆;

their probability density function and distribution function
are

𝑓𝑇 (𝑡) = {{{
𝜆𝑒−𝜆𝑡, 𝑡 ≥ 0
0, 𝑡 < 0,

𝐹𝑇 (𝑡) = {{{
1 − 𝜆𝑒−𝜆𝑡, 𝑡 ≥ 0
0, 𝑡 < 0.

(2)

The exponential distribution is memoryless, which indi-
cates that the BMs arrivals are random.

(2) Suppose that the BMs are shot in the order of their
arrivals; the shooting time for a BM is also exponentially
distributed at rate 𝜇; then, its probability density function and
distribution function are

𝑓𝑠 (𝑡) = {{{
𝜇𝑒−𝜇𝑡, 𝑡 ≥ 0
0, 𝑡 < 0,

𝐹𝑠 (𝑡) = {{{
1 − 𝜇𝑒−𝜇𝑡, 𝑡 ≥ 0
0, 𝑡 < 0,

(3)

where 𝜇 = 1/𝑡𝑠mean, where 𝑡𝑠mean is the mean shooting
time. The shooting time depends on the reaction time of
the defense weapon and the time of interceptor flying from
the launch point to the calculated encounter point, which
is related to the technical capabilities of defense weapons.
Introducing 𝜌 = 𝜆/𝜇, 𝜌 < 1 means that the queue is stable
if the mean shooting time is less than the mean arrival time
intervals; it can be understood as the firing density (shooting
intensity) [19].

(3) Suppose that the waiting times of BMs are also
exponentially distributed at rate ]; then their probability
density function and distribution function are

𝑓𝑤 (𝑡) = {{{
]𝑒−]𝑡, 𝑡 ≥ 0
0, 𝑡 < 0,

𝐹𝑤 (𝑡) = {{{
1 − ]𝑒−]𝑡, 𝑡 ≥ 0
0, 𝑡 < 0,

(4)

where 𝜇 = 1/𝑡𝑤mean, where 𝑡𝑤mean is the mean waiting time.
(4) Additionally, if there is an idle target channel when

a BM arrives at the system, then the defense weapon will
shoot it immediately. In this paper, we divided the queueing
system into two types: (1) loss system (when BMs that arrived
find that all target channels were occupied (not idle), they
will penetrate the BMDS directly (leave the system without
service)) and (2) mixed system (when BMs that arrived
find that all target channels were occupied, BMs will not be
penetrated but will wait for a limited time (depending on
the time of BMs flying in the killing zone of BMDS) until a
target channel becomes available). We use the term “defense
depth” to distinguish between the loss system and the mixed
system. “Short defense depth” is defined as the case when
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Figure 1: Long defense depth and short defense depth.
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Figure 2: State transition diagram of M/M/N/N system.

waiting times of BMs are shorter than shooting times of
defense weapons (loss system), and the “long defense depth”
is defined as the case when waiting times of BMs are longer
than shooting times of defense weapons (mixed system), as
shown in Figure 1.

3. M/M/N Queueing Models

3.1. Identical Weapons, Short Defense Depth,
and M/M/N/N System

3.1.1. Multiple Target Channels andM/M/N/N System. BMDS
with short defense depth can be seen as a random loss
system that does not wait. Let 𝑛 be the number of target
channels of BMDS; that is, the number of BMs shot by defense
weapons cannot exceed 𝑛 at the same time;𝑃𝑓 is the detection
probability of BMDS radars. Possible states of the system are
as follows:

𝑆0: all target channels are idle; there is no BM in the
system.

𝑆1: 1 target channel is busy; there is 1 BM in the system.

...
𝑆𝑘: k target channels are busy; there are 𝑘 BMs in the

system.

...
𝑆𝑛: all target channels are busy; there are 𝑛 BMs in the

system.

Figure 2 is the state transition diagram of M/M/N/N system.
In Figure 2, the arrow → indicates incoming BMs, and the
arrival rate is 𝜆. 𝑆𝑘 means 𝑘 target channels are busy, and the
state is transferred to 𝑆𝑘+1 when a new BM arrives. Arrow←
indicates shootings of defense weapons, when the shooting
process for a BM is done, and then the state is transferred
from 𝑆1 to 𝑆0 with rate 𝜇, transferred from 𝑆2 to 𝑆1 with rate2𝜇, . . ., and transferred from 𝑆𝑘 to 𝑆𝑘−1 with rate 𝑘𝜇. Balance
equations are as follows:
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𝑆0: all target channels are idle; there is no BM in the
system:

𝜆𝑆0 = 𝜇𝑆1 󳨐⇒ 𝑆1 = (𝜆𝜇) 𝑆0 = 𝜌𝑆0. (5)

𝑆1: 1 target channel is busy; there is 1 BM in the system:

𝜆𝑆1 = 2𝜇𝑆2 󳨐⇒ 𝑆2 = (𝜌22! ) 𝑆0. (6)

𝑆2: 2 target channels are busy; there are 2 BMs in the
system:

𝜆𝑆2 = 2𝜇𝑆3 󳨐⇒ 𝑆3 = (𝜌33! ) 𝑆0. (7)

...
𝑆𝑘−1: 𝑘 − 1 target channels are busy; there are 𝑘 − 1 BMs in

the system:

𝜆𝑆𝑘−1 = 𝑘𝜇𝑆𝑘 󳨐⇒ 𝑆𝑘 = (𝜌𝑘𝑘! ) 𝑆0. (8)

𝑆𝑛: 𝑛 target channels are busy; there are 𝑛 BMs in the
system:

𝜆𝑆𝑛−1 = 𝑛𝜇𝑆𝑛 󳨐⇒ 𝑆𝑛 = (𝜌𝑛𝑛! ) 𝑆0. (9)

Due to the fact that 𝑃𝑓 is the probability of the BM found
by the radar, we have

𝜌𝑓 = 𝜌 ⋅ 𝑃𝑓 = 𝑃𝑓 ⋅ (𝜆𝜇) = 𝑃𝑓 ⋅ 𝜆 ⋅ 𝑡𝑠mean. (10)

𝜌𝑓 is the mean number of BMs found to arrive during the
mean shooting time. Because 𝑆0 + 𝑆1 + 𝑆2 + ⋅ ⋅ ⋅ + 𝑆𝑛 = 1, then
the expression for 𝑆0 can be written in the form

𝑆0 = (1 + 𝜌𝑓 + 𝜌𝑓22! + ⋅ ⋅ ⋅ + 𝜌𝑓𝑘𝑘! + ⋅ ⋅ ⋅ + 𝜌𝑓𝑛𝑛! )
−1

= ( 𝑛∑
𝑘=0

𝜌𝑓𝑘𝑘! )
−1 .

(11)

The optimal operation of the queueing system can be
analyzed through several performance parameters, some of
which follow.

(1) BM loss probabilities (penetration probabilities):

𝑃lost = 𝑆𝑛 = (𝜌𝑓𝑛𝑛! ) 𝑆0 = (𝜌𝑓𝑛𝑛! )( 𝑛∑
𝑘=0

𝜌𝑓𝑘𝑘! )
−1 . (12)

(2) Relative probabilities of BMs that will be shot:

𝑃shoot = 1 − 𝑃lost = 1 − (𝜌𝑓𝑛𝑛! )( 𝑛∑
𝑘=0

𝜌𝑓𝑘𝑘! )
−1 . (13)

(3) Absolute probabilities of BMs that will be shot:

𝑃󸀠shoot = 𝜆𝑃shoot = 𝜆(1 − (𝜌𝑓𝑛𝑛! )( 𝑛∑
𝑘=0

𝜌𝑓𝑘𝑘! )
−1) . (14)

(4) Mean number of occupied target channels:

𝑍 = 0 ⋅ 𝑆0 + 1 ⋅ 𝑆1 + ⋅ ⋅ ⋅ + 𝑛 ⋅ 𝑆𝑛 = 𝑛∑
𝑘=0

𝑘(𝜌𝑓𝑘𝑘! ) 𝑆0
= 𝜌𝑓𝑆0( 𝑛∑

𝑘=0

𝜌𝑓𝑘𝑘! − 𝜌𝑓𝑛𝑛! )

= 𝜌𝑓(1 − 𝜌𝑓𝑛𝑛! ( 𝑛∑
𝑘=0

𝜌𝑓𝑘𝑘! )
−1) .

(15)

The mean occupancy rate of target channels is 𝜂 = 𝑍/𝑛.
3.1.2. Single Target Channel and M/M/1/1 System. The
M/M/1/1 queueing system can be viewed as a special case of
Section 3.1.1 for 𝑛 = 1; then, the expression for 𝑆0 can be
rewritten in the form

𝑆0 = ( 𝑛∑
𝑘=0

𝜌𝑓𝑘𝑘! )
−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑛=1 =

11 + 𝜌𝑓 . (16)

Performance parameters are as follows:
(1) BM loss probabilities:

𝑃lost = 𝑆𝑛 = (𝜌𝑓𝑛𝑛! ) 𝑆0 = 𝜌𝑓1 + 𝜌𝑓 . (17)

(2) Relative probabilities of BMs that will be shot:

𝑃shoot = 1 − 𝑃lost = 1 − 𝜌𝑓1 + 𝜌𝑓 = 11 + 𝜌𝑓 . (18)

(3) Absolute probabilities of BMs that will be shot:

𝑃󸀠shoot = 𝜆𝑃shoot = 𝜆1 + 𝜌𝑓 . (19)

The concept of DE is the product of probabilities of BM that
will be shot times SSKP; that is,

𝐸 = 𝑃shoot ⋅ 𝑃𝑘 = (1 − 𝑃lost) ⋅ 𝑃𝑘. (20)

3.2. Identical Weapons, Long Defense Depth, and M/M/N/C
System. From Section 1, we know that BMDS with long
defense depth can be regarded as a stochastic service system
with limited waiting time, that is, themixed queueing system.
For each incoming BM, the defense weapons use idle target
channels to shoot. When BMs that arrived find that all target
channels were occupied, BMs will not be penetrated but
will wait for a limited time until a target channel becomes
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available. Possible states of the system are as follows:

𝑆0: all target channels are idle; there is no BM in the
system.

𝑆1: 1 target channel is busy; there is 1 BM in the system.

...
𝑆𝑘: k target channels are busy; there are 𝑘 BMs in the

system.

...
𝑆𝑛: all target channels are busy; there are 𝑛 BMs in the

system.

𝑆𝑛+1: all target channels are busy; there is 1 BM waiting....𝑆𝑛+𝑠: all target channels are busy; there are 𝑠 BMs waiting....
Figure 3 is the state transition diagram of M/M/N/C system.
In Figure 3, the arrow → indicates incoming BMs, and the
arrival rate is 𝜆. 𝑆𝑘 means 𝑘 target channels are busy, and the
state is transferred from lower state to higher state when new
BMs arrive. Arrow← indicates shootings of defenseweapons,
when the shooting process for a BM is done, and then the state
is transferred from higher state to lower state with rate 𝑘𝜇 or𝑛𝜇 + 𝑠]. Balance equations are

𝑆0𝑆1...
𝑆𝑘...
𝑆𝑛𝑆𝑛+1...
𝑆𝑛+𝑠...

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

0 = −𝜆𝑆0 + 𝜇𝑆10 = 𝜆𝑆0 − (𝜆 + 𝜇) 𝑆1 + 2𝜇𝑆2...
0 = 𝜆𝑆𝑘−1 − (𝜆 + 𝑘𝜇) 𝑆𝑘 + (𝑘 + 1) 𝜇𝑆2...
0 = 𝜆𝑆𝑛−1 − (𝜆 + 𝑛𝜇) 𝑆𝑛 + (𝑛𝜇 + ]) 𝑆𝑛+10 = 𝜆𝑆𝑛 − (𝜆 + 𝑛𝜇 + ]) 𝑆𝑛+1 + (𝑛𝜇 + 2]) 𝑆𝑛+2...
0 = 𝜆𝑆𝑛+𝑠−1 − (𝜆 + 𝑛𝜇 + ]) 𝑆𝑛+𝑠 + (𝑛𝜇 + (𝑠 + 1) ]) 𝑆𝑛+𝑠+1...

. (21)

Then, we have the constraint that ∑∞𝑖=0 𝑆𝑖 = 1 for (21). Let𝜌 = 𝜆/𝜇 be the mean number of BMs that arrived during
the mean shooting time; let 𝜗 = ]/𝜇 be the mean number
of penetrated (leaving without being shot) BMs during
the mean shooting time. Then, (21) can be written in the
form

𝑆0𝑆1...
𝑆𝑘...
𝑆𝑛𝑆𝑛+1...
𝑆𝑛+𝑠...

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

0 = −𝜌𝑆0 + 𝑆10 = 𝜌𝑆0 − (𝜌 + 1) 𝑆1 + 2𝑆2...
0 = 𝜌𝑆𝑘−1 − (𝜌 + 𝑘) 𝑆𝑘 + (𝑘 + 1) 𝑆2...
0 = 𝜌𝑆𝑛−1 − (𝜌 + 𝑛) 𝑆𝑛 + (𝑛 + 𝜗) 𝑆𝑛+10 = 𝜌𝑆𝑛 − (𝜌 + 𝑛 + 𝜗) 𝑆𝑛+1 + (𝑛 + 2𝜗) 𝑆𝑛+2...
0 = 𝜌𝑆𝑛+𝑠−1 − (𝜌 + 𝑛 + 𝜗) 𝑆𝑛+𝑠 + (𝑛 + (𝑠 + 1) 𝜗) 𝑆𝑛+𝑠+1...

. (22)

When 𝑘 ≤ 𝑛, we have
𝑆1 = (𝜆𝜇) 𝑆0 = 𝜌𝑆0 = 𝜌11! 𝑆0,
𝑆2 = 12 ((𝜌 + 1) 𝑆1 − 𝜌𝑆0) = 12 (𝜌𝑆1 + 𝑆1 − 𝜌𝑆0)

= 𝜌2 𝑆1 = 𝜌22! 𝑆0
...

𝑆𝑛 = 𝜌𝑛𝑆𝑘−1 = 𝜌𝑛𝑛! 𝑆0.

(23)

When 𝑘 > 𝑛, we have
𝑆𝑛+1 = 1𝑛 + 𝜗 ((𝜌 + 𝑛) 𝑆𝑛 − 𝜌𝑆𝑛−1)

= 1𝑛 + 𝜗 (𝜌𝑆𝑛 + 𝑛𝑆𝑛 − 𝜌𝑆𝑛−1) = 𝜌𝑛 + 𝜗𝑆𝑛
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Figure 3: State transition diagram of M/M/N/C system.

= 𝜌𝑛 + 𝜗 𝜌𝑛𝑛! 𝑆0 = 𝜌𝑛𝑛! 𝜌𝑛 + 𝜗𝑆0,
𝑆𝑛+2 = 1𝑛 + 2𝜗 ((𝜌 + (𝜌 + 𝜗)) 𝑆𝑛+1 − 𝜌𝑆𝑛)

= 1𝑛 + 2𝜗 (𝜌𝑆𝑛+1 + (𝜌 + 𝜗) 𝑆𝑛+1 − 𝜌𝑆𝑛)
= 1𝑛 + 2𝜗 (𝜌𝑆𝑛+1 + 𝜌𝑆𝑛 − 𝜌𝑆𝑛)
= 𝜌𝑛𝑛! 𝜌2(𝑛 + 𝜗) (𝑛 + 2𝜗)𝑆0

...
𝑆𝑛+𝑠 = 𝜌𝑛 + 𝑠𝜗𝑆𝑛+𝑠−1 = 𝜌𝑛𝑛! 𝜌𝑠∏𝑠𝑚=1 (𝑛 + 𝑚𝜗)𝑆0.

(24)

The constraint for (24) is

𝑛∑
𝑚=0

𝑆𝑚 + ∞∑
𝑠=1

𝑆𝑚+𝑠 = 1. (25)

With direct substitution of (23) and (24) into (25), it follows
that

1 = 𝑆0( 𝑛∑
𝑚=0

𝜌𝑚𝑚! + 𝜌𝑛𝑛!
∞∑
𝑠=1

(𝜌𝑠 ( 𝑠∏
𝑚=1

(𝑛 + 𝑚𝜗))−1)) ,

𝑆0 = ( 𝑛∑
𝑚=0

𝜌𝑚𝑚! + 𝜌𝑛𝑛!
∞∑
𝑠=1

(𝜌𝑠 ( 𝑠∏
𝑚=1

(𝑛 + 𝑚𝜗))−1))−1 .
(26)

Then, with substitution of (26) into (24), we have steady-state
probability

𝑆𝑘 = 𝜌𝑘𝑘! (
𝑛∑
𝑚=0

𝜌𝑚𝑚! + 𝜌𝑛𝑛!
∞∑
𝑠=1

(𝜌𝑠 ( 𝑠∏
𝑚=1

(𝑛 + 𝑚𝜗))−1))−1 ,
0 ≤ 𝑘 ≤ 𝑛,

𝑆𝑛+𝑠
= ( (𝜌𝑛/𝑛!) (𝜌𝑠 (∏𝑠𝑚=1 (𝑛 + 𝑚𝜗))−1)

∑𝑛𝑚=0 (𝜌𝑚/𝑚!) + (𝜌𝑛/𝑛!)∑∞𝑠=1 (𝜌𝑠 (∏𝑠𝑚=1 (𝑛 + 𝑚𝜗))−1)) ,
𝑠 ≥ 1.

(27)

Performance parameters are as follows:

(1) BM loss probabilities (𝑠 BMs waiting to be shot):

𝑃lost = ]𝜆
∞∑
𝑠=1

𝑠𝑆𝑛+𝑠 = ]/𝜇𝜆/𝜇
∞∑
𝑠=1

𝑠𝑆𝑛+𝑠 = 𝜗𝜌
∞∑
𝑠=1

𝑠𝑆𝑛+𝑠 = 𝜗𝜌
⋅ ∞∑
𝑠=1

𝑠 (𝜌𝑛/𝑛!) (𝜌𝑠 (∏𝑠𝑚=1 (𝑛 + 𝑚𝜗))−1)
∑𝑛𝑚=0 (𝜌𝑚/𝑚!) + (𝜌𝑛/𝑛!)∑∞𝑠=1 (𝜌𝑠 (∏𝑠𝑚=1 (𝑛 + 𝑚𝜗))−1) .

(28)

(2) Relative probabilities of BMs that will be shot:

𝑃shoot = 1 − 𝑃lost. (29)

(3) Absolute probabilities of BMs that will be shot:

𝑃󸀠shoot = 𝜆𝑃shoot. (30)

(4) Mean number of occupied target channels:

𝑍 = 𝑛∑
𝑘=1

𝑘𝑆𝑘 + ∞∑
𝑠=1

𝑛𝑆𝑛+𝑠 = 𝑛∑
𝑘=1

𝑘𝑆𝑘 + 𝑛∞∑
𝑠=1

𝑆𝑛+𝑠
or 𝑍 = 𝜆𝑃shoot𝜇 = 𝜌𝑃shoot.

(31)

The mean occupancy rate of target channels is

𝜂 = 𝜌𝑃shoot𝑛 . (32)

DE is the product of probabilities of BM thatwill be shot times
SSKP; that is,

𝐸 = 𝑃shoot ⋅ 𝑃𝑘 = (1 − 𝑃lost) ⋅ 𝑃𝑘. (33)

Similarly, the M/M/1/C queueing system can be viewed as a
special case for 𝑛 = 1.
3.3. Different DefenseWeapons. Defense weapons in Sections
3.1 and 3.2 are identical, and the BMDS may deploy different
types of defense weapons. For different types of defense
weapons, the waiting time of BMs, the detection probability
of radars, and SSKP may be different. In order to model the
queueing system, we choose one type of defense weapon as
the reference and then substitute the reference defense (type𝑟) for defense weapons of type 𝑖. The “replacement process” is
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named equivalent replacement method [20]; basic equations
are

𝜆(𝑟) ⋅ 𝑃shoot(𝑟) ⋅ 𝑃𝑘(𝑟) ⋅ 𝑃𝑓(𝑟) = 𝜆(𝑖) ⋅ 𝑃shoot(𝑖) ⋅ 𝑃𝑘(𝑖) ⋅ 𝑃𝑓(𝑖),
𝑛(𝑟) ⋅ (1 + 𝑡𝑤mean(𝑟)) ⋅ 𝑃𝑘(𝑟)

= 𝑛(𝑖) ⋅ (1 + 𝑡𝑤mean(𝑖)) ⋅ 𝑃𝑘(𝑖),
𝑛(𝑟) = 𝑛(𝑖) ⋅ (1 + 𝑡𝑤mean(𝑖)) ⋅ 𝑃𝑘(𝑖)(1 + 𝑡𝑤mean(𝑟)) ⋅ 𝑃𝑘(𝑟) .

(34)

Subscripts (⋅)(𝑟) and (⋅)(𝑖) in (34) are used to distinguish
defense weapons of type 𝑟 from defense weapons of type 𝑖.
From the above equations, we can substitute𝐷(𝑟) for𝐷(𝑖); the
intensity of BMs killed by defense weapons of type 𝑖 and the
intensity of BMs arrivals for defense weapons of type 𝑖 are

𝜌(𝑖) = 𝐷(𝑖) ⋅ 𝑃𝑓(𝑖) ⋅ 𝑃𝑘(𝑖)𝑡𝑤time(𝑖)
,

𝜆(𝑖) = 𝜆𝜌(𝑖) ⋅ ( 𝑅∑
𝑖=1

𝜌(𝑖))
−1 ,

(35)

respectively, where 𝑅 denotes the total number of types.

4. Optimal Allocation of Target Channels

4.1. Identical Defense Weapons and M/M/N/N System

4.1.1. Defense Effectiveness. Let 𝑀 be the number of layers;
the number of target channels deployed along the 𝑖th layer is
denoted by 𝑛𝑖; the probability of BMs that will be shot by the𝑀-layer defense with short defense depth is

𝑃𝑀shoot = 1 − (𝜌𝑁𝑁!)( 𝑁∑
𝑘=0

𝜌𝑘𝑘! )
−1 , (36)

where𝑁 is the total number of target channels,𝑁 = ∑𝑀𝑖=1 𝑛𝑖.
The probabilities of BMs that will be shot by the 𝑀 layer
defense with short defense depth are as follows:

1st layer:

𝜌1 = 𝜌(1)𝑓 = 𝜆 ⋅ 𝑡𝑤mean ⋅ 𝑃𝑓,
𝑃(1)shoot = 1 − (𝜌1𝑛1𝑛1! )( 𝑛1∑

𝑘=0

𝜌1𝑘𝑘! )
−1 ,

𝐸1 = 𝑃(1)shoot ⋅ 𝑃𝑘.
(37)

2nd layer:

𝜌2 = (1 − 𝐸1) ⋅ 𝜆 ⋅ 𝑡𝑤mean ⋅ 𝑃𝑓 = (1 − 𝐸1) ⋅ 𝜌1,
𝑃(2)shoot = 1 − (𝜌2𝑛2𝑛2! )( 𝑛2∑

𝑘=0

𝜌2𝑘𝑘! )
−1 ,

𝐸2 = 𝑃(2)shoot ⋅ 𝑃𝑘.
(38)

Mth layer:

𝜌𝑀 = (1 − 𝐸𝑀−1) (1 − 𝐸𝑀−2) ⋅ ⋅ ⋅ (1 − 𝐸1) 𝜆 ⋅ 𝑡𝑤mean

⋅ 𝑃𝑓 = (𝑀−1∏
𝑖=1

(1 − 𝐸𝑖)) ⋅ 𝜌1
= (1 − 𝐸𝑀−1) ⋅ 𝜌𝑀−1,

𝑃(𝑀)shoot = 1 − (𝜌𝑀𝑛𝑀𝑛𝑀! )( 𝑛𝑀∑
𝑘=0

𝜌𝑀𝑘𝑘! )−1 ,
𝐸𝑀 = 𝑃(𝑀)shoot ⋅ 𝑃𝑘.

(39)

DE of the whole𝑀-layer BMDS is

𝐸 = 𝐸1 + (1 − 𝐸1) 𝐸2 + (1 − 𝐸1) (1 − 𝐸2) 𝐸3 ⋅ ⋅ ⋅
+ 𝑀−1∏
𝑖=1

(1 − 𝐸𝑖) 𝐸𝑀
= 𝐸1 + 𝑀∑

𝑘=2

(𝐸𝑘 ⋅ 𝑀−1∏
𝑖=1

(1 − 𝐸𝑖)) .
(40)

Then,we define the optimization problem as finding numbers
of layers and target channels deployed along the 𝑖th layer so
as to maximize DE, subject to a given set of constraints:

max 𝐸
= 𝐸1 + (1 − 𝐸1) 𝐸2 + (1 − 𝐸1) (1 − 𝐸2) 𝐸3 ⋅ ⋅ ⋅

+ 𝑀−1∏
𝑖=1

(1 − 𝐸𝑖) 𝐸𝑀
s.t. 𝜌𝑖

= (1 − 𝐸𝑖−1) (1 − 𝐸𝑖−2) ⋅ ⋅ ⋅ (1 − 𝐸1) 𝜆 ⋅ 𝑡𝑤mean

⋅ 𝑃𝑓 = ( 𝑖−1∏
𝑥=1

(1 − 𝐸𝑖)) ⋅ 𝜌1
= (1 − 𝐸𝑖−1) ⋅ 𝜌𝑖−1,
𝑃(𝑖)shoot = 1 − (𝜌𝑖𝑛𝑖𝑛𝑖! )( 𝑛𝑖∑

𝑘=0

𝜌𝑖𝑘𝑘! )
−1 ,

𝑛 = 𝑀∑
𝑖=1

𝑛𝑖,
𝐸𝑖 = 𝑃(𝑖)shoot ⋅ 𝑃𝑘.

(41)

For the nonlinear optimization problem (41), when problem
size is small, we can use algebra, dynamic programming, or
enumerationmethod to solve it.When the size of the problem
is very large, an approximate solution can be obtained by
using some advanced algorithms, for example, genetic, neural
network, and heuristic algorithms. In order to get some
potential and useful allocation rules, we analyze a scenario.



8 Mathematical Problems in Engineering

Table 1: DE of two-layer defense.

1st-layer channel number 1st-layer DE 2nd-layer channel number 2nd-layer DE Total DE
9 56.00% 1 14.56% 62.41%
8 56.00% 2 25.20% 67.09%
7 54.32% 3 32.48% 69.16%
6 52.08% 4 41.44% 70.94%
5 47.04% 5 44.24% 70.47%
4 35.84% 6 44.80% 64.58%
3 34.16% 7 53.76% 69.56%
2 27.44% 8 54.88% 67.26%
1 11.20% 9 56.00% 60.93%

Scenario 1. Suppose that the number of target channels is 10,
SSKP is 0.7, the probability that BMswill be detected by radars
is 0.8, 𝜆 = 5BMs/min, and 𝑡𝑠mean = 0.75min.

Tables 1, 2, and 3 are the DE of two-layer, three-layer, and
four-layer defense, respectively.

Let n(M) = (𝑛1, 𝑛2, . . . , 𝑛𝑀) be the allocation plan of
target channels, where 𝑀 is the number of layers and 𝑛𝑖 is
the number of target channels deployed along the 𝑖th layer.
From the results of Tables 1, 2, and 3, we noticed that plans
n(2) = (6, 4), n(3) = (5, 3, 2), and n(4) = (4, 3, 2, 1) have
the biggest DE. We also found that n(2) = (6, 4) < n(3) =(5, 3, 2) < n(4) = (4, 3, 2, 1), and then we haveTheorem 1.

Theorem 1. Let E(M,n(M)) be the DE of the M-layer BMDS;
n(M) = (𝑛1, 𝑛2, . . . , 𝑛𝑀) is the allocation plan, 𝑛𝑖 is the number
of target channels deployed along the 𝑖th layer, and𝑁 = ∑𝑀𝑖=1 𝑛𝑖,𝑛𝑖 ≥ 1. When𝑁 is constant, thenmaxE(M,n(M)) is stochastically
increasing as𝑀 increases; that is,

maxE(M−1,n(M)) ≤ maxE(M,n(M)) ≤ maxE(M+1,n(M)). (42)

Proof ofTheorem 1 is similar to Lemma 1 in [8]. Now, we
continue to compute DE of 𝑀 = 5, 𝑁 = 10 and 𝑀 = 6,𝑁 = 10. Tables 4 and 5 are the DE of five-layer and six-layer
defense, respectively. Another useful rule is that the number
of target channels deployed along the 𝑖th layer should be not
less than (𝑖+1)th layer; this rule is summarized inTheorem 2.

Theorem 2. Let E(M,n(M)) be the DE of the M-layer BMDS;
n(M) = (𝑛1, 𝑛2, . . . , 𝑛𝑀) is the allocation plan, 𝑛𝑖 is the number
of target channels deployed along the 𝑖th layer, and𝑁 = ∑𝑀𝑖=1 𝑛𝑖,𝑛𝑖 ≥ 1. For allocation plan n∗(M), the number of target channels
deployed along the 𝑖th layer is decreasing as 𝑖 increases; that
is, for all 𝑖, 𝑛𝑖 ≥ 𝑛𝑖+1. When 𝑁 is constant, then one has
E(M,n∗

(M))
≥ E(M,n(M)).

Proof. Suppose we have a plan nΘ(M) = (𝑛1, 𝑛2, . . . , 𝑛∗𝑖 ,𝑛∗𝑖+1, . . . , 𝑛𝑀), where 𝑛∗𝑖 = 𝑛𝑖+1, 𝑛∗𝑖+1 = 𝑛𝑖. In order to prove
Theorem 2, we only need to prove E(M,n∗

(M))
≥ E(M,nΘ

(M))
, which

can be simplified by proving E(2,n∗
(2)
) ≥ E(2,nΘ

(2)
), where n∗(2) =(𝑛𝑖, 𝑛𝑖+1), nΘ(2) = (𝑛∗𝑖 , 𝑛∗𝑖+1). For function

𝑓 (𝜌, 𝑛) = 𝑃lost = (𝜌𝑛𝑛! )( 𝑛∑
𝑘=0

𝜌𝑘𝑘! )
−1 , (43)

when 𝜌 is constant, 𝑓(𝜌, 𝑛) decreases with the increase of 𝑛,
and when 𝑛 is constant, 𝑓(𝜌, 𝑛) increases with the increase of𝜌 [2, 20]. For proof simplified by letting 𝑃𝑘 = 1 for all defense
weapons, then 𝑓(𝜌, 𝑛𝑖), 𝑓(𝜌, 𝑛𝑖+1), 𝑓(𝜌, 𝑛∗𝑖 ), and 𝑓(𝜌, 𝑛∗𝑖+1) are

𝑓 (𝜌, 𝑛𝑖) = (𝜌𝑛𝑖𝑛𝑖! )( 𝑛𝑖∑
𝑘=0

𝜌𝑘𝑘! )
−1 ,

𝑓 (𝜌, 𝑛𝑖+1) = (𝜌𝑛𝑖+1∗𝑛𝑖+1!)(𝑛𝑖+1∑
𝑘=0

𝜌𝑘∗𝑘! )
−1 ,

𝑓 (𝜌, 𝑛∗𝑖 ) = (𝜌𝑛𝑖+1𝑛𝑖+1!)(𝑛𝑖+1∑
𝑘=0

𝜌𝑘𝑘! )
−1 ,

𝑓 (𝜌, 𝑛∗𝑖+1) = (𝜌𝑛𝑖Θ𝑛𝑖! )( 𝑛𝑖∑
𝑘=0

𝜌𝑘Θ𝑘! )
−1 ,

(44)

respectively, where 𝜌∗ = 𝑓(𝜌, 𝑛𝑖) ⋅ 𝜌, 𝜌Θ = 𝑓(𝜌, 𝑛∗𝑖 ) ⋅ 𝜌. DE of
the two-layer defense are

E(2,n∗
(2)
)

= 𝑃𝑘 ⋅ (1 − 𝑓 (𝜌, 𝑛𝑖) + 𝑓 (𝜌, 𝑛𝑖) ⋅ (1 − 𝑓 (𝜌, 𝑛𝑖+1)))
= 1 − 𝑓 (𝜌, 𝑛𝑖) 𝑓 (𝜌, 𝑛𝑖+1) ,

E(2,nΘ
(2)
)

= 𝑃𝑘
⋅ (1 − 𝑓 (𝜌, 𝑛∗𝑖 ) + 𝑓 (𝜌, 𝑛∗𝑖 ) ⋅ (1 − 𝑓 (𝜌, 𝑛∗𝑖+1)))

= 1 − 𝑓 (𝜌, 𝑛∗𝑖 ) 𝑓 (𝜌, 𝑛∗𝑖+1) .

(45)
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Table 2: DE of three-layer defense.

1st-channel number 1st-layer DE 2nd-channel number 2nd-layer DE 3rd-channel number 3rd-layer DE Total DE
8 55.552% 1 11.872% 1 11.872% 65.479%
7 53.256% 2 22.176% 1 11.872% 67.941%
7 53.256% 1 11.872% 2 22.176% 67.941%
6 50.344% 2 22.176% 2 22.176% 69.925%
6 50.344% 3 32.368% 1 11.872% 70.404%
6 50.344% 1 11.872% 3 32.368% 70.404%
5 46.368% 3 32.368% 2 22.176% 71.771%
5 46.368% 2 22.176% 3 32.368% 71.771%
5 46.368% 4 38.264% 1 11.872% 70.821%
5 46.368% 1 11.872% 4 38.264% 70.821%
4 38.264% 3 32.368% 3 32.368% 71.761%
4 38.264% 4 38.264% 2 22.176% 70.339%
4 38.264% 2 22.176% 4 38.264% 70.339%
4 38.264% 5 46.368% 1 11.872% 70.821%
4 38.264% 1 11.872% 5 46.368% 70.821%
3 32.368% 4 38.264% 3 32.368% 71.761%
3 32.368% 3 32.368% 4 38.264% 71.761%
3 32.368% 5 46.368% 2 22.176% 71.771%
3 32.368% 2 22.176% 5 46.368% 71.771%
3 32.368% 6 50.344% 1 11.872% 70.404%
3 32.368% 1 11.872% 6 50.344% 70.404%
2 22.176% 4 38.264% 4 38.264% 70.339%
2 22.176% 5 46.368% 3 32.368% 71.771%
2 22.176% 3 32.368% 5 46.368% 71.771%
2 22.176% 6 50.344% 2 22.176% 69.925%
2 22.176% 2 22.176% 6 50.344% 69.925%
2 22.176% 7 53.256% 1 11.872% 67.941%
2 22.176% 1 11.872% 7 53.256% 67.941%
1 11.872% 5 46.368% 4 38.264% 70.821%
1 11.872% 4 38.264% 5 46.368% 70.821%
1 11.872% 6 50.344% 3 32.368% 70.404%
1 11.872% 3 32.368% 6 50.344% 70.404%
1 11.872% 7 53.256% 2 22.176% 67.941%
1 11.872% 2 22.176% 7 53.256% 67.941%
1 11.872% 8 55.552% 1 11.872% 65.479%
1 11.872% 1 11.872% 8 55.552% 65.479%

Since the expansion of 𝑒𝑥 is 1+𝑥+𝑥2/2!+ ⋅ ⋅ ⋅+𝑥𝑛/𝑛!, then the
approximate representations of 𝑓(𝜌, 𝑛𝑖), 𝑓(𝜌, 𝑛𝑖+1), 𝑓(𝜌, 𝑛∗𝑖 ),
and 𝑓(𝜌, 𝑛∗𝑖+1) are

𝑓 (𝜌, 𝑛𝑖) ≈ (𝜌𝑛𝑖𝑛𝑖! ) (𝑒𝜌)−1 ,
𝑓 (𝜌, 𝑛𝑖+1) ≈ (𝜌𝑛𝑖+1∗𝑛𝑖+1!) (𝑒𝜌∗)−1 ,
𝑓 (𝜌, 𝑛∗𝑖 ) ≈ (𝜌𝑛𝑖+1𝑛𝑖+1!) (𝑒𝜌)−1 ,

𝑓 (𝜌, 𝑛∗𝑖+1) = (𝜌𝑛𝑖Θ𝑛𝑖! ) (𝑒𝜌Θ)−1 ,

(46)

respectively. Because 𝑛𝑖 ≥ 𝑛𝑖+1, we have
𝑓 (𝜌, 𝑛∗𝑖 ) ≥ 𝑓 (𝜌, 𝑛𝑖) ,
𝑓 (𝜌, 𝑛∗𝑖 ) ≥ 𝑓 (𝜌, 𝑛𝑖+1) ,
𝑓 (𝜌, 𝑛𝑖) ≥ 𝑓 (𝜌, 𝑛∗𝑖+1) .

(47)

In order to proveTheorem 2, we need to prove

1 − 𝑓 (𝜌, 𝑛𝑖) 𝑓 (𝜌, 𝑛𝑖+1) ≥ 1 − 𝑓 (𝜌, 𝑛∗𝑖 ) 𝑓 (𝜌, 𝑛∗𝑖+1) ⇐󳨐
𝑓 (𝜌, 𝑛∗𝑖 ) 𝑓 (𝜌, 𝑛∗𝑖+1) − 𝑓 (𝜌, 𝑛𝑖) 𝑓 (𝜌, 𝑛𝑖+1) ≥ 0 ⇐󳨐
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Table 3: DE of four-layer defense.

1st-channel
number

1st-layer DE
2nd-

channel
number

2nd-layer DE 3rd-channel
number

3rd-layer DE 4th-channel
number

4th-layer DE Total DE

7 53.200% 1 11.872% 1 11.872% 1 11.872% 67.968%
6 50.344% 2 17.360% 1 11.872% 1 11.872% 68.129%
6 50.344% 1 11.872% 2 17.360% 1 11.872% 68.129%
5 47.600% 3 34.920% 1 11.872% 1 11.872% 73.515%
5 47.600% 2 17.360% 2 17.360% 1 11.872% 68.463%
5 47.600% 1 11.872% 3 34.920% 1 11.872% 73.515%
4 45.920% 3 34.920% 2 17.360% 1 11.872% 74.368%
4 45.920% 3 34.920% 1 11.872% 2 17.360% 74.368%
4 45.920% 2 17.360% 1 11.872% 3 34.920% 74.368%
4 45.920% 2 17.360% 3 34.920% 1 11.872% 74.368%
4 45.920% 1 11.872% 2 17.360% 3 34.920% 74.368%
4 45.920% 1 11.872% 3 34.920% 2 17.360% 74.368%
3 34.920% 5 47.600% 1 11.872% 1 11.872% 73.515%
3 34.920% 4 45.920% 2 17.360% 1 11.872% 74.368%
3 34.920% 4 45.920% 1 11.872% 2 17.360% 74.368%
3 34.920% 3 34.920% 2 17.360% 2 17.360% 71.075%
3 34.920% 2 17.360% 3 34.920% 2 17.360% 71.075%
3 34.920% 2 17.360% 2 17.360% 3 34.920% 71.075%
3 34.920% 2 17.360% 4 45.920% 1 11.872% 74.368%
3 34.920% 2 17.360% 1 11.872% 4 45.920% 74.368%
3 34.920% 1 11.872% 4 45.920% 2 17.360% 74.368%
3 34.920% 1 11.872% 2 17.360% 4 45.920% 74.368%
3 34.920% 1 11.872% 5 47.600% 1 11.872% 73.515%
2 17.360% 6 50.344% 1 11.872% 1 11.872% 68.129%
2 17.360% 5 47.600% 2 17.360% 1 11.872% 68.463%
2 17.360% 4 45.920% 3 34.920% 3 34.920% 71.071%
2 17.360% 3 34.920% 3 34.920% 2 17.360% 71.075%
2 17.360% 3 34.920% 2 17.360% 3 34.920% 71.075%
1 11.872% 7 53.200% 1 11.872% 1 11.872% 67.968%
1 11.872% 6 50.344% 2 17.360% 1 11.872% 68.129%

𝑓 (𝜌, 𝑛∗𝑖 ) 𝑓 (𝜌, 𝑛∗𝑖+1)𝑓 (𝜌, 𝑛𝑖) 𝑓 (𝜌, 𝑛𝑖+1) ≥ 1,
𝑓 (𝜌, 𝑛∗𝑖 ) 𝑓 (𝜌, 𝑛∗𝑖+1)𝑓 (𝜌, 𝑛𝑖) 𝑓 (𝜌, 𝑛𝑖+1)

= ((𝜌𝑛𝑖+1/𝑛𝑖+1!) (𝑒𝜌)−1) ((𝜌𝑛𝑖Θ /𝑛𝑖!) (𝑒𝜌Θ)−1)((𝜌𝑛𝑖/𝑛𝑖!) (𝑒𝜌)−1) ((𝜌𝑛𝑖+1∗ /𝑛𝑖+1!) (𝑒𝜌∗)−1)
= 𝜌𝑛𝑖+1𝜌𝑛𝑖Θ 𝑒𝜌∗𝜌𝑛𝑖𝜌𝑛𝑖+1∗ 𝑒𝜌Θ = 𝜌𝑛𝑖+1𝜌𝑛𝑖Θ 𝑒𝑓(𝜌,𝑛𝑖)⋅𝜌𝜌𝑛𝑖𝜌𝑛𝑖+1∗ 𝑒𝑓(𝜌,𝑛∗𝑖 )⋅𝜌
= 𝜌𝑛𝑖+1 (𝑓 (𝜌, 𝑛∗𝑖 ) ⋅ 𝜌)𝑛𝑖 𝑒𝑓(𝜌,𝑛𝑖)⋅𝜌𝜌𝑛𝑖 (𝑓 (𝜌, 𝑛𝑖) ⋅ 𝜌)𝑛𝑖+1 𝑒𝑓(𝜌,𝑛∗𝑖 )⋅𝜌

= (𝑓 (𝜌, 𝑛∗𝑖 ))𝑛𝑖 𝑒𝑓(𝜌,𝑛𝑖)⋅𝜌(𝑓 (𝜌, 𝑛𝑖))𝑛𝑖+1 𝑒𝑓(𝜌,𝑛∗𝑖 )⋅𝜌 =
(𝑛𝑖!)𝑛𝑖+1 𝑒𝑛𝑖+1 ⋅𝜌𝑒𝑓(𝜌,𝑛𝑖)⋅𝜌(𝑛𝑖+1!)𝑛𝑖 𝑒𝑛𝑖 ⋅𝜌𝑒𝑓(𝜌,𝑛∗𝑖 )⋅𝜌

= (𝑛𝑖!)𝑛𝑖+1(𝑛𝑖+1!)𝑛𝑖 𝑒(𝑛𝑖+1+𝑓(𝜌,𝑛𝑖)−𝑛𝑖−𝑓(𝜌,𝑛
∗
𝑖 ))⋅𝜌.

(48)

When 𝑛𝑖 = 𝑛𝑖+1,Theorem 2 is true. Obviously, when 𝑛𝑖 > 𝑛𝑖+1,
we have (𝑛𝑖!)𝑛𝑖+1 ≫ (𝑛𝑖+1!)𝑛𝑖 ; then, E(2,n∗

(2)
) > E(2,nΘ

(2)
), and the

result of Theorem 2 follows.

4.1.2. Minimum Requirements of Target Channels. The re-
quirements of target channels necessary to achieve a
demanded DE can be viewed as a dual problem of (41).
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Table 4: DE of five-layer defense.

1st number 1st DE 2nd number 2nd DE 3rd number 3rd DE 4th number 4th DE 5th number 5th DE Total DE
5 45.5% 2 23.4% 1 12.0% 1 12.0% 1 12.0% 71.5%
4 38.6% 3 30.8% 1 12.0% 1 12.0% 1 12.0% 71.0%
4 38.6% 2 23.4% 2 23.4% 1 12.0% 1 12.0% 72.0%
3 30.8% 3 30.8% 2 23.4% 1 12.0% 1 12.0% 71.6%
3 30.8% 3 30.8% 2 23.4% 1 12.0% 1 12.0% 74.6%
2 23.4% 2 23.4% 2 23.4% 2 23.4% 2 23.4% 73.5%

Table 5: DE of six-layer defense.

1st number 1st DE 2nd number 2nd DE 3rd number 3rd DE 4th number 4th DE 5th number 5th DE 6th number 6th DE Total DE
5 45% 1 14% 1 14% 1 14% 1 14% 1 14% 74%
4 39% 2 26% 1 14% 1 14% 1 14% 1 14% 75%
3 41% 2 26% 2 26% 1 14% 1 14% 1 14% 79%
2 26% 3 41% 2 26% 1 14% 1 14% 1 14% 79%
2 26% 2 26% 2 26% 2 26% 1 14% 1 14% 77%

Assuming that the DE is held at greater than𝐸∗, we define the
optimization problem so as to minimize the requirements of
target channels, subject to a given set of constraints:

min 𝑛 = 𝑀∑
𝑖=1

𝑛𝑖
s.t. 𝜌𝑖

= (1 − 𝐸𝑖−1) (1 − 𝐸𝑖−2) ⋅ ⋅ ⋅ (1 − 𝐸1) 𝜆 ⋅ 𝑡𝑤mean

⋅ 𝑃𝑓 = ( 𝑖−1∏
𝑥=1

(1 − 𝐸𝑖)) ⋅ 𝜌1
= (1 − 𝐸𝑖−1) ⋅ 𝜌𝑖−1,
𝑃(𝑖)shoot = 1 − (𝜌𝑖𝑛𝑖𝑛𝑖! )( 𝑛𝑖∑

𝑘=0

𝜌𝑖𝑘𝑘! )
−1 ,

𝐸∗
≤ 𝐸1 + (1 − 𝐸1) 𝐸2 + ⋅ ⋅ ⋅ + 𝑀−1∏

𝑖=1

(1 − 𝐸𝑖) 𝐸𝑀,
𝐸𝑖 = 𝑃(𝑖)shoot ⋅ 𝑃𝑘.

(49)

For the nonlinear optimization problem (49), when problem
size is small, we can use algebra, dynamic programming, or
enumerationmethod to solve it.When the size of the problem
is very large, an approximate solution can be obtained
by using some advanced algorithms, for example, genetic
and heuristic algorithms. Then, we give the definition of
neighborhood [21].

Definition 3. Let n(M) = (𝑛1, 𝑛2, . . . , 𝑛𝑀) ∈ Ω be an allocation
plan, andΩ is the feasible region of allocation plans. Suppose
that n∗(M) = (𝑛1, 𝑛2, . . . , 𝑛𝑖−1, 𝑛𝑖 − 1, 𝑛𝑖+1, . . . , 𝑛𝑀) ∈ Ω, where
the number of target channels deployed along the 𝑖th layer is

𝑛𝑖−1.Then, one says that n∗(M) is in the neighborhood of n(M);
that is,

(𝑛1, 𝑛2, . . . , 𝑛𝑖−1, 𝑛𝑖 − 1, 𝑛𝑖+1, . . . , 𝑛𝑀)
∈ 𝜑 (𝑛1, 𝑛2, . . . , 𝑛𝑀) . (50)

Scenario 2. Suppose the SSKP is 0.7, the probability that BMs
will be detected by radars is 0.8, 𝜆 = 5BMs/min, 𝑡𝑠mean =0.75min, and 𝐸∗ = 65%; then the question becomes as
follows: “What is the least cost of target channels to achieve a
demanded DE?”

Figure 4 is the schematic of search in the neighborhood
of n(3) = (5, 3, 2) and n(4) = (4, 3, 2, 1). We can see the least
cost is 9 channels for three-layer defense and 8 channels for
four-layer defense, and allocation plans aren(3) = (4, 3, 2) and
n(4) = (3, 3, 1, 1), respectively. So, we give a simple algorithm
in finding the least cost of DWs to achieve a demanded
DE; specific search methods are as follows. A feasible initial
allocation plan is very important in this algorithm.Theorem 1
proposes the basic rule of finding an initial plan,which greatly
simplifies the searching process.

Step 1. Suppose the number of layers is 𝑀; the demanded
DE is 𝐸∗; and give an initial allocation plan n(M) =(𝑛1, 𝑛2, . . . , 𝑛𝑀) ∈ Ω, where E(M,n(M)) ≥ 𝐸∗.
Step 2. Search in the neighborhood of n(M), 𝜑(n(M)), and try
to find an allocation plan 𝜑1(n(M)) satisfying the following:

E(M,𝜑1(n(M))) = maxE(M,𝜑(n(M))). (51)

Step 3. If E(M,𝜑1(n(M))) ≥ 𝐸∗, then n(M) = 𝜑1(n(M)); go to Step 2
and repeat.

Step 4. If E(M,𝜑1(n(M))) < 𝐸∗, go to Step 5.

Step 5. Output the allocation plann(M);∑𝑀𝑖=1 𝑛𝑖 is the least cost
to achieve the demanded DE.
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(5,3,2)
71.771%

(4,3,2)
68.559%

(5,2,2)
65.517%

(5,3,1)
68.034%

(3,3,2)
64.403%

(4,3,1)
63.204%

(4,2,2)
62.609%

(4,3,2,1)
74.368%

(3,3,2,1)
67.732%

(4,2,2,1)
67.451%

(4,3,1,1)
66.665%

(3,3,1,1)
65.589%

(2,3,2,1)
60.831%

(3,2,2,1)
59.025%

(2,3,1,1)
56.304

(3,2,1,1)
52.262%

Figure 4: Search in the neighborhood of n(3) = (5, 3, 2) and n(4) = (4, 3, 2, 1).

4.2. Different Defense Weapons and M/M/N/N System

4.2.1. Different Defense Weapons and Identical SSKPs. In this
section, we consider different types of defense weapons. Let𝑀 be the number of layers; the number of target channels
deployed along the 𝑖th layer will be denoted by 𝑛𝑖, assuming
that the total number of types is𝑀 and defense weapons are
identical in the same layer. As in Section 3.3, subscript (⋅)(𝑖)
indicates defense weapons of type 𝑖; then probabilities that
BMs will be shot by the 𝑀-layer defense with short defense
depth are as follows:

1st layer:

𝜌1(1) = 𝜆 ⋅ 𝑡𝑤mean(1) ⋅ 𝑃𝑓(1),
𝑃(1)shoot = 1 − (𝜌𝑛1

1(1)𝑛1! )( 𝑛1∑
𝑘=0

𝜌𝑘1(1)𝑘! )−1 ,
𝐸1 = 𝑃(1)shoot ⋅ 𝑃𝑘(1).

(52)

2nd layer:

𝜌2(2) = (1 − 𝐸1) ⋅ 𝜆 ⋅ 𝑡𝑤mean(2) ⋅ 𝑃𝑓(2),
𝑃(2)shoot = 1 − (𝜌𝑛2

2(2)𝑛2! )( 𝑛2∑
𝑘=0

𝜌𝑘2(2)𝑘! )−1 ,
𝐸2 = 𝑃(2)shoot ⋅ 𝑃𝑘(2).

(53)

𝑀th layer:

𝜌𝑀(𝑀) = (1 − 𝐸𝑀−1) (1 − 𝐸𝑀−2) ⋅ ⋅ ⋅ (1 − 𝐸1) 𝜆
⋅ 𝑡𝑤mean(𝑀) ⋅ 𝑃𝑓(𝑀)

= (𝑀−1∏
𝑖=1

(1 − 𝐸𝑖)) ⋅ 𝜆 ⋅ 𝑡𝑤mean(𝑀) ⋅ 𝑃𝑓(𝑀),

𝑃(𝑀)shoot = 1 − (𝜌𝑛𝑀
𝑀(𝑀)𝑛𝑀! )( 𝑛𝑀∑

𝑘=0

𝜌𝑘𝑀(𝑀)𝑘! )−1 ,
𝐸𝑀 = 𝑃(𝑀)shoot ⋅ 𝑃𝑘(𝑀).

(54)

DE of the wholeM-layer BMDS is

𝐸 = 𝐸1 + (1 − 𝐸1) 𝐸2 + (1 − 𝐸1) (1 − 𝐸2) 𝐸3 ⋅ ⋅ ⋅
+ 𝑀−1∏
𝑖=1

(1 − 𝐸𝑖) 𝐸𝑀
= 𝐸1 + 𝑀∑

𝑘=2

(𝐸𝑘 ⋅ 𝑀−1∏
𝑖=1

(1 − 𝐸𝑖)) .
(55)

For certain types and numbers of target channels, we
define the optimization problem as finding which type of
defense weapon should be deployed on each layer so as to
maximize the ED, subject to a given set of constraints:

max 𝐸
= 𝐸1 + (1 − 𝐸1) 𝐸2 + (1 − 𝐸1) (1 − 𝐸2) 𝐸3 ⋅ ⋅ ⋅

+ 𝑀−1∏
𝑖=1

(1 − 𝐸𝑖) 𝐸𝑀
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Table 6: DE of three-layer defense.

1st-layer type 1st-layer DE 2nd-layer type 2nd-layer DE 3rd-layer type 3rd-layer DE Total DE
II 43.200% II 45.440% I 55.520% 86.216%
II 48.960% I 51.840% II 46.560% 86.864%
II 43.200% I 55.040% I 55.040% 88.518%
I 54.560% II 45.280% II 46.720% 86.752%
I 56.800% I 55.360% II 43.040% 89.016%

s.t. 𝜌𝑖(𝑀)
= (1 − 𝐸𝑖−1) (1 − 𝐸𝑖−2) ⋅ ⋅ ⋅ (1 − 𝐸1) 𝜆

⋅ 𝑡𝑤mean(𝑀) ⋅ 𝑃𝑓(𝑀)
= ( 𝑖−1∏
𝑥=1

(1 − 𝐸𝑖)) ⋅ 𝜆 ⋅ 𝑡𝑤mean(𝑀) ⋅ 𝑃𝑓(𝑀),

𝑃(𝑖)shoot = 1 − (𝜌𝑛𝑖
𝑖(𝑀)𝑛𝑖! )( 𝑛𝑖∑

𝑘=0

𝜌𝑘𝑖(𝑀)𝑘! )−1 ,
𝐸𝑖 = 𝑃(𝑖)shoot ⋅ 𝑃𝑘(𝑀),
𝑛 = 𝑀∑
𝑖=1

𝑛𝑖.
(56)

In order to get some potential and useful allocation rules, we
analyze a scenario.

Scenario 3. Suppose that the number of layers is 3, the
number of defense weapon types is 2 (types I and II), 𝑃𝑘(I) =𝑃𝑘(II) = 0.7, the probability that BMs will be detected by
radars is 0.8, 𝜆 = 5BMs/min, 𝑡𝑠mean(I) = 0.75min, and𝑡𝑠mean(II) = 1min.

Table 6 is the DE of three-layer defense.
It can be seen from Table 6 that plan n(3) = (I, I, II) has

the biggest DE. We also found that n(4) = (I, I, I, II) is the
best, and then we haveTheorem 4.

Theorem 4. Let E(M,n(M)) be the DE of the M-layer BMDS;
n(M) = (𝑛1, 𝑛2, . . . , 𝑛𝑀) is the allocation plan, 𝑛𝑖 is the number
of target channels deployed along the 𝑖th layer, and let 𝑛1 = 𝑛2 =⋅ ⋅ ⋅ = 𝑛𝑀. Allocation plan nI

(M) = (I, II) indicates that defense
weapons of type I are forward-deployed, and nII

(M) = (II, I)
indicates that defense weapons of type II are forward-deployed.
Suppose that defense weapons are identical in the same layer,
and 𝑃𝑘(I) = 𝑃𝑘(II) and 𝑃𝑓(I) = 𝑃𝑓(II); if 𝑡𝑠mean(I) ≤ 𝑡𝑠mean(II), then
one has E(M,nI

(M))
≥ E(M,nII

(M))
.

Proof. Suppose that we have an allocation plan nIΘ
(M) =(IΘ, IIΘ), where 𝑡𝑠mean(IΘ) = 𝑡𝑠mean(II) and 𝑡𝑠mean(IIΘ) = 𝑡𝑠mean(I).

In order to proveTheorem4,we only need to proveE(M,nI
(M))

≥
E
(M,nIΘ
(M))

. For function

𝑓 (𝜌, 𝑛) = 𝑃lost = (𝜌𝑛𝑛! )( 𝑛∑
𝑘=0

𝜌𝑘𝑘! )
−1 , (57)

when 𝜌 is constant, 𝑓(𝜌, 𝑛) decreases with the increase of 𝑛,
and when 𝑛 is constant, 𝑓(𝜌, 𝑛) increases with the increase of𝜌 [2, 20]. Then, 𝑓(𝜌, I), 𝑓(𝜌, II), 𝑓(𝜌, IΘ), and 𝑓(𝜌, IIΘ) are

𝑓 (𝜌, I) = (𝜌𝑛(I)𝑛! )( 𝑛∑
𝑘=0

𝜌𝑘(I)𝑘! )
−1 ,

𝑓 (𝜌, II) = (𝜌𝑛(II)𝑛! )( 𝑛∑
𝑘=0

𝜌𝑘(II)𝑘! )−1 ,

𝑓 (𝜌, IΘ) = (𝜌𝑛
(IΘ)𝑛! )( 𝑛∑

𝑘=0

𝜌𝑘
(IΘ)𝑘! )
−1

,

𝑓 (𝜌, IIΘ) = (𝜌𝑛
(IIΘ)𝑛! )( 𝑛∑

𝑘=0

𝜌𝑘
(IIΘ)𝑘! )

−1

,

(58)

where

𝜌(I) = 𝜆 ⋅ 𝑡𝑠mean(I) ⋅ 𝑃𝑓(I),
𝜌(IΘ) = 𝜆 ⋅ 𝑡𝑠mean(IΘ) ⋅ 𝑃𝑓(IΘ),
𝜌(II) = (1 − 𝐸(I)) 𝜆𝑡𝑠mean(II)𝑃𝑓(II),
𝜌(IIΘ) = (1 − 𝐸(IΘ)) 𝜆𝑡𝑠mean(IIΘ)𝑃𝑓(IΘ),
𝐸(I) = 1 − 𝑓 (𝜌, I) ,
𝐸(IΘ) = 1 − 𝑓 (𝜌, IΘ) .

(59)
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DE of the defense are

E(M,nI
(M))

= 𝑃𝑘 ⋅ (1 − 𝑓 (𝜌, I) + 𝑓 (𝜌, I) ⋅ (1 − 𝑓 (𝜌, II)))
= 1 − 𝑓 (𝜌, I) 𝑓 (𝜌, II) ,

E
(M,nIΘ
(M))

= 𝑃𝑘
⋅ (1 − 𝑓 (𝜌, IΘ) + 𝑓 (𝜌, IΘ) ⋅ (1 − 𝑓 (𝜌, IIΘ)))

= 1 − 𝑓 (𝜌, IΘ) 𝑓 (𝜌, IIΘ) .

(60)

Since the expansion of 𝑒𝑥 is 1 + 𝑥 + 𝑥2/2! + ⋅ ⋅ ⋅ + 𝑥𝑛/𝑛!, then
the approximate representations of 𝑓(𝜌, I), 𝑓(𝜌, II), 𝑓(𝜌, IΘ),
and 𝑓(𝜌, IIΘ) are

𝑓 (𝜌, I) ≈ (𝜌𝑛(I)𝑛! ) (𝑒𝜌(I))−1 ,
𝑓 (𝜌, II) ≈ (𝜌𝑛𝑖+1II𝑛! ) (𝑒𝜌II)−1 ,
𝑓 (𝜌, IΘ) ≈ (𝜌𝑛

(IΘ)𝑛! ) (𝑒𝜌(IΘ))−1 ,
𝑓 (𝜌, IIΘ) = (𝜌𝑛

(IIΘ)𝑛! ) (𝑒𝜌(IIΘ))−1 .
(61)

In order to proveTheorem 4, we need to prove

1 − 𝑓 (𝜌, I) 𝑓 (𝜌, II) ≥ 1 − 𝑓 (𝜌, IΘ) 𝑓 (𝜌, IIΘ) ⇐󳨐 𝑓 (𝜌, IΘ) 𝑓 (𝜌, IIΘ) − 𝑓 (𝜌, I) 𝑓 (𝜌, II) ≥ 0 ⇐󳨐 𝑓 (𝜌, IΘ) 𝑓 (𝜌, IIΘ)
𝑓 (𝜌, I) 𝑓 (𝜌, II)

≥ 1,
𝑓 (𝜌, IΘ) 𝑓 (𝜌, IIΘ)
𝑓 (𝜌, I) 𝑓 (𝜌, II) = ((𝜌𝑛

(IΘ)/𝑛!) (𝑒𝜌(IΘ))−1) ((𝜌𝑛(IIΘ)/𝑛!) (𝑒𝜌(IIΘ))−1)((𝜌𝑛
(I)/𝑛!) (𝑒𝜌(I))−1) ((𝜌𝑛𝑖II /𝑛!) (𝑒𝜌(II))−1) = (𝜌𝑛

(IΘ)𝜌𝑛(IIΘ)𝜌𝑛
(I)𝜌𝑛(II) )𝑒(𝜌(I)+𝜌(II)−𝜌(IΘ)−𝜌(IIΘ))

= (𝜌(IΘ)𝜌(I) )
𝑛2 𝑒((𝑛+1)𝜌(I)+𝜌(II)−(𝑛+1)𝜌(IΘ)−𝜌(IIΘ))

= (𝜆𝑡𝑠mean(II)𝑃𝑓(II)𝜆𝑡𝑠mean(I)𝑃𝑓(I) )
𝑛2 𝑒𝜆((𝑛+1)𝑡𝑠mean(I)𝑃𝑓(I)+(1−𝐸(I))𝑡𝑠mean(II)𝑃𝑓(II)−(𝑛+1)𝑡𝑠mean(II)𝑃𝑓(II)−(1−𝐸(II))𝑡𝑠mean(I)𝑃𝑓(I)).

(62)

Let 𝑡𝑠mean(II)𝑃𝑓(II) = 𝐴 and 𝑡𝑠mean(I)𝑃𝑓(I) = 𝐵; then,
𝑓 (𝜌, IΘ) 𝑓 (𝜌, IIΘ)
𝑓 (𝜌, I) 𝑓 (𝜌, II)
= (𝐴𝐵)𝑛2 𝑒𝜆((𝑛+1)𝐵+(1−𝐸(I))𝐴−(𝑛+1)𝐴−(1−𝐸(II))𝐵).

(63)

Since 𝑃𝑓(II) = 𝑃𝑓(I), then 𝐴 > 𝐵, and the result of Theorem 4
follows.

The terms 𝐴 and 𝐵 that appear in the proof ofTheorem 4
could be a factor in channels allocation; we extended Theo-
rem 4 to obtain Lemma 5.

Lemma 5. Let E(M,n(M)) be the DE of the M-layer BMDS;
n(M) = (𝑛1, 𝑛2, . . . , 𝑛𝑀) is the allocation plan, 𝑛𝑖 is the number
of target channels deployed along the 𝑖𝑡ℎ layer, and let 𝑛1 = 𝑛2 =⋅ ⋅ ⋅ = 𝑛𝑀. Allocation plan nI

(M) = (I, II) indicates that defense
weapons of type I are forward-deployed, and nII

(M) = (II, I)

indicates that defense weapons of type II are forward-deployed.
Suppose that defense weapons are identical in the same layer,
and 𝑃𝑘(I) = 𝑃𝑘(II); if 𝑃𝑓(I)𝑡𝑠mean(I) ≤ 𝑃𝑓(II)𝑡𝑠mean(II), then one has
E(M,nI

(M))
≥ E(M,nII

(M))
.

4.2.2. Different Defense Weapons and Different SSKPs. In this
section, we consider different defense weapons and different
SSKPs of layered BMDS. It is obvious that higher SSKP
dose improves the DE. How SSKP affects the target channels
allocation is a complex problem; however, we can summarize
some useful rules; see Scenario 4.

Scenario 4. Suppose that the number of layers is 3, the
number of defense weapon types is 2 (types I and II), the
probability that BMs will be detected by radars is 0.8, 𝜆 =5BMs/min, 𝑡𝑠mean(I) = 𝑡𝑠mean(II) = 0.75min, 𝑃𝑘(I) = 0.8, and𝑃𝑘(II) = 0.6.

Table 7 is the DE of three-layer defense. It can be seen
from Table 7 that plan n(3) = (I, I, II) has the biggest DE. We
also found that n(4) = (I, I, I, II) is the best, and then we have
Theorem 6.
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Table 7: DE of three-layer defense.

1st-layer type 1st-layer DE 2nd-layer type 2nd-layer DE 3rd-layer type 3rd-layer DE Total DE
II 36.720% II 41.400% I 0.594 83.930%
II 42.120% I 59.040% II 0.400 84.766%
II 42.600% I 55.840% I 0.506 87.468%
I 54.240% II 39.600% II 0.415 85.837%
I 56.640% I 54.400% II 0.426 88.651%

Theorem 6. Let E(M,n(M)) be the DE of the M-layer BMDS;
n(M) = (𝑛1, 𝑛2, . . . , 𝑛𝑀) is the allocation plan, 𝑛𝑖 is the number
of target channels deployed along the 𝑖𝑡ℎ layer, and let 𝑛1 = 𝑛2 =⋅ ⋅ ⋅ = 𝑛𝑀. Allocation plan nI

(M) = (I, II) indicates that defense
weapons of type I are forward-deployed, and nII

(M) = (II, I)
indicates that defense weapons of type II are forward-deployed.
Suppose that defense weapons are identical in the same layer,
and 𝑡𝑠mean(I) = 𝑡𝑠mean(II) and 𝑃𝑓(I) = 𝑃𝑓(II); if 𝑃𝑘(I) > 𝑃𝑘(II), then
one has E(M,nI

(M))
≥ E(M,nII

(M))
.

Proof. Suppose that we have an allocation plan nIΘ
(M) =(IΘ, IIΘ), where 𝑃k(IΘ) = 𝑃𝑘(II) and 𝑃𝑘(IIΘ) = 𝑃𝑘(I). In order to

proveTheorem 4, we only need to prove E(M,nI
(M))

≥ E
(M,nIΘ
(M))

.

𝑓(𝜌, I), 𝑓(𝜌, II), 𝑓(𝜌, IΘ), and 𝑓(𝜌, IIΘ) are

𝑓 (𝜌, I) = (𝜌𝑛(I)𝑛! )( 𝑛∑
𝑘=0

𝜌𝑘(I)𝑘! )
−1 ,

𝑓 (𝜌, II) = (𝜌𝑛(II)𝑛! )( 𝑛∑
𝑘=0

𝜌𝑘(II)𝑘! )−1 ,

𝑓 (𝜌, IΘ) = (𝜌𝑛
(IΘ)𝑛! )( 𝑛∑

𝑘=0

𝜌𝑘
(IΘ)𝑘! )
−1

,

𝑓 (𝜌, IIΘ) = (𝜌𝑛
(IIΘ)𝑛! )( 𝑛∑

𝑘=0

𝜌𝑘
(IIΘ)𝑘! )

−1

,

(64)

where

𝜌(I) = 𝜆 ⋅ 𝑡𝑠mean(I) ⋅ 𝑃𝑓(I),
𝜌(IΘ) = 𝜆 ⋅ 𝑡𝑠mean(IΘ) ⋅ 𝑃𝑓(IΘ),
𝜌(II) = (1 − 𝐸(I)) 𝜆𝑡𝑠mean(II)𝑃𝑓(II),
𝜌(IIΘ) = (1 − 𝐸(IΘ)) 𝜆𝑡𝑠mean(IIΘ)𝑃𝑓(IΘ),
𝐸(I) = (1 − 𝑓 (𝜌, I)) ⋅ 𝑃𝑘(I),
𝐸(IΘ) = (1 − 𝑓 (𝜌, IΘ)) ⋅ 𝑃𝑘(II).

(65)

DE of the defense are

𝐸(𝑀,𝑛I
(𝑀)
) = 𝑃𝑘(I) − 𝑓 (𝜌, I) 𝑃𝑘(I) + 𝑃𝑘(II)

− 𝑓 (𝜌, II) 𝑃𝑘(II) − 𝑃𝑘(I)𝑃𝑘(II)
+ 𝑓 (𝜌, II) 𝑃𝑘(I)𝑃𝑘(II)
+ 𝑓 (𝜌, I) 𝑃𝑘(I)𝑃𝑘(II)
− 𝑓 (𝜌, I) 𝑓 (𝜌, II) 𝑃𝑘(I)𝑃𝑘(II),

𝐸
(𝑀,𝑛I

Θ

(𝑀)
)
= 𝑃𝑘(IΘ) − 𝑓 (𝜌, IΘ) 𝑃𝑘(IΘ) + 𝑃𝑘(IIΘ)

− 𝑓 (𝜌, IIΘ) 𝑃𝑘(IIΘ) − 𝑃𝑘(IΘ)𝑃𝑘(IIΘ)
+ 𝑓 (𝜌, IIΘ) 𝑃𝑘(IΘ)𝑃𝑘(IIΘ)
+ 𝑓 (𝜌, IΘ) 𝑃𝑘(IΘ)𝑃𝑘(IIΘ)
− 𝑓 (𝜌, IΘ) 𝑓 (𝜌, IIΘ) 𝑃𝑘(IΘ)𝑃𝑘(IIΘ).

(66)

In order to proveTheorem 6, we need to prove

𝐸(𝑀,𝑛I
(𝑀)
) − 𝐸
(𝑀,𝑛I

Θ

(𝑀)
)
= 𝑃𝑘(I)𝑃𝑘(II) (𝑓 (𝜌, II) + 𝑓 (𝜌, I)

− 𝑓 (𝜌, I) 𝑓 (𝜌, II) − 𝑓 (𝜌, IIΘ) − 𝑓 (𝜌, IΘ)
+ 𝑓 (𝜌, IΘ) 𝑓 (𝜌, IIΘ)) − 𝑓 (𝜌, I) 𝑃𝑘(I) − 𝑓 (𝜌, II)
⋅ 𝑃𝑘(II) + 𝑓 (𝜌, IΘ) 𝑃𝑘(II) + 𝑓 (𝜌, IIΘ) 𝑃𝑘(I) ≥ 0.

(67)

Since 𝑃𝑘(I) > 𝑃𝑘(II), 𝑓(𝜌, I) = 𝑓(𝜌, IΘ), then

𝑓 (𝜌, I) = 𝑓 (𝜌, IΘ) ≥ 𝑓 (𝜌, IIΘ) ≥ 𝑓 (𝜌, II) ,
𝑃𝑘(I)𝑃𝑘(II) (1 − 𝑓 (𝜌, I)) (𝑓 (𝜌, IIΘ) − 𝑓 (𝜌, II))

+ 𝑓 (𝜌, I) (𝑃𝑘(I) − 𝑃𝑘(II)) + 𝑓 (𝜌, II) 𝑃𝑘(II)
− 𝑓 (𝜌, IIΘ) 𝑃𝑘(I) ≥ 0.

(∗)
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Figure 5: Performance parameters as functions of the mean shooting time and the intensity of BM arrivals (M/M/1/1 system).

Since the expansion of 𝑒𝑥 is 1 + 𝑥 + 𝑥2/2! + ⋅ ⋅ ⋅ + 𝑥𝑛/𝑛!, then
the approximate representations of 𝑓(𝜌, IΘ) and 𝑓(𝜌, IIΘ) are

𝑓 (𝜌, IΘ) ≈ (𝜌𝑛
(IΘ)𝑛! ) (𝑒𝜌(IΘ))−1 ,

𝑓 (𝜌, IIΘ) = (𝜌𝑛
(IIΘ)𝑛! ) (𝑒𝜌(IIΘ))−1 ,

𝑓 (𝜌, IIΘ)
𝑓 (𝜌, IΘ) = (1 − (1 − 𝑓 (𝜌, IΘ)) ⋅ 𝑃𝑘(IΘ))𝑛 𝑒𝜌(IΘ) ⋅𝜌(IIΘ) .

(68)

Let 𝑡𝑠mean(II)𝑃𝑓(II) = 𝐴 and 𝑡𝑠mean(I)𝑃𝑓(I) = 𝐵; then,
𝑓 (𝜌, IΘ) 𝑓 (𝜌, IIΘ)
𝑓 (𝜌, I) 𝑓 (𝜌, II)
= (𝐴𝐵)𝑛2 𝑒𝜆((𝑛+1)𝐵+(1−𝐸(I))𝐴−(𝑛+1)𝐴−(1−𝐸(II))𝐵).

(69)

Obviously, we have

(1 − (1 − 𝑓 (𝜌, IΘ)) ⋅ 𝑃𝑘(IΘ))𝑛 𝑒𝜌(IΘ) ⋅𝜌(IIΘ) 󳨀→ 0. (70)

The result of Theorem 4 follows.

5. Numerical Examples

In this section, we use numerical examples to generate some
insights into the performance of the proposed queuing mod-
els in Section 3. Firstly, using the formula in Section 3.1.2, we
draw the relationship of themean shooting time and intensity
of BM arrivals (see Figure 5). Then, we consider using the

formula in Section 3.1.1 and calculate the loss probability of
the M/M/N/N system. We draw the relationship of the BM
loss probability and offered density of shootings with 𝑁 =1, 2, 3, 4, 5, 6, 8, 12, 16, 20, 30, 40, and 50 (see Figure 6).
From Figures 5 and 6, we can see that the probability of BM
loss increases with the increasing mean shooting time and
intensity of BM arrivals.

We set two scenarios: scenario 1 (the number of total
BMs is 30, the number of target channels is 3, SSKP is 0.7,
the probability that BMs will be detected by radars is 0.8,𝜆 = 3BMs/min, and 𝑡𝑠mean = 1min (𝜇 = 1)) and scenario 2
(the number of total BMs is 50, the number of target channels
is 8, SSKP is 0.8, the probability that BMs will be detected by
radars is 0.9, 𝜆 = 5BMs/min, and 𝑡𝑠mean = 1min (𝜇 = 1)).
We will firstly simulate the M/M/N/N queueing system and
use Matlab to get the figure of the performance of the two
scenarios (see Figure 7). Then, we will secondly simulate the
M/M/N/C queueing system and use Matlab to get the figure
of the performance of the two scenarios (see Figure 8). Table 8
shows the results of operating parameters of the two queueing
systems.

In order to explore the changes in the relationship
between the performance of systems and different factors, we
adjust the parameters in scenario 1, that is, (a) increase the
number of arriving BMs, (b) increase the intensity of arriving
BMs, (c) increase the mean shooting time for each BM, and
(d) reduce the number of target channels. Figure 9 is the
queue length as functions of the number of BMs, and Table 9
shows the results of operating parameters of the adjusted
queueing system.

Through adjustment of the system configuration, we
can observe and summarize the queueing system running
condition. This can be useful for decision-making of BMDS
operation control and adjusting system configuration.
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Figure 6: The probability of BM loss as functions of the number of target channels and density of shooting.

Table 8: Results of operating parameters of the two queueing systems.

Parameters M/M/N/N M/M/N/C
Scenario 1 Scenario 2 Scenario 1 Scenario 2

Mean occupancy rate of target channels 22.6% 10.6% 64.5% 1.7%
Mean number of waiting BMs 0.000 0.000 1.847 0.000
Mean waiting time of BMs 0.000 0.000 0.801 0.000
Mean number of BMs in system 1.732 5.018 4.326 3.830
Number of penetrated BMs 7 3 0 0
Probability of BM penetration 23.3% 6.0% 0% 0%
Total DE 42.95% 67.68% 56% 72%

6. Concluding Remarks and Future Work

In this paper, we presented a theory for the representation,
modeling, and performance simulation of the layered BMDS
M/M/N queueing systems. In addition to the queueing
model, four simple rules have been developed for use on
the complex channel allocation problems. The main aim of
this work is to study a stochastic missile defense process
close to the Poisson process and to find allocation rules that

maximize DE or minimize the cost to achieve a required DE.
In Section 4.1.2, we also proposed a novel and robust search
algorithm for obtaining the minimum requirements across
a set of neighborhoods. Numerical examples using models
in Section 2 revealed some guidelines for adjusting queueing
parameters.

This work may help to understand the rules of queueing
process and to provide optimal configuration suggestions for
defense decision-making. The work can easily be expanded
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Figure 7: Figures of the performance of the M/M/N/N queueing system.
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Figure 8: Figures of the performance of the M/M/N/C queueing system.
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Figure 9: The queue length as functions of the number of BMs.

Table 9: The results of operating parameters of the adjusted queueing system.

Parameters Before adjustment Number of BMs,
3-fold increase

Intensity of BMs
arriving, 2-fold increase

Mean shooting time,
2-fold increase

Target
channels, 1/3
reduction

Mean occupancy rate of
target channels 22.6% 27.7% 40.9% 43.9% 63.9%

Mean number of waiting
BMs 0.000 0.000 0.000 0.000 0.000

Mean waiting time of BMs 0.000 0.000 0.000 0.000 0.000
Mean number of BMs in
system 1.732 1.887 2.059 2.084 1.491

Number of penetrated BMs 7 45 15 19 21
Probability of BM
penetration 23.3% 30%

28.7% increase
50%

114% increase
63.3%

171% increase
70%

200% increase

Total DE 42.95% 39.2%
8.7% reduction

28%
34.8% reduction

20.6%
50.0% reduction

16.8%
60.9%

reduction

and continued to handle a broader array of queueing sce-
narios. Several areas for potentially valuable future research
have emerged from this work; we suggest the following
areas of further research [22–26]. (1) We proposed some
approximation in our computations; an important question
is the discussion of the accuracy of BM arrivals distribution.

The Poisson arrival process is not the only fitting model
for the provided queueing model in our paper. We will
consider Bernoulli or Markov BM arrival process in our
future research. This also includes relaxing the assumptions
of exponential shooting times and allowing waiting times to
vary by BM and defense weapon. (2) For the convenience of
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calculation and verification, the 2 scenarios in Section 5 are
simple and need further analysis in the follow-up work. (3)
One such suggestion is an exploration into expanding the
allocation rules presented in Section 4. (4) When the size
of (41)–(56) is very large, an approximate solution can be
obtained by using some advanced algorithms, for example,
genetic, neural network, and heuristic algorithms.
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