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An unsteady squeezing flow of Casson fluid having magnetohydrodynamic (MHD) effect and passing through porous medium
channel ismodeled and investigated. Similarity transformations are used to convert the partial differential equations (PDEs) of non-
Newtonian fluid to a highly nonlinear fourth-order ordinary differential equation (ODE). The obtained boundary value problem
is solved analytically by Homotopy Perturbation Method (HPM) and numerically by explicit Runge-Kutta method of order 4. For
validity purpose, we compare the analytical and numerical results which show excellent agreement. Furthermore, comprehensive
graphical analysis has been made to investigate the effects of various fluid parameters on the velocity profile. Analysis shows that
positive and negative squeeze number 𝑆𝑞 have opposite effect on the velocity profile. It is also observed that Casson parameter𝛽 shows opposite effect on the velocity profile in case of positive and negative squeeze number 𝑆𝑞. MHD parameter 𝑀𝑔 and
permeability constant𝑀𝑝 have similar effects on the velocity profile in case of positive and negative squeeze numbers. It is also
seen that, in case of positive squeeze number, similar velocity profiles have been obtained for 𝛽,𝑀𝑔, and𝑀𝑝. Besides this, analysis
of skin friction coefficient has also been presented. It is observed that squeeze number,MHDparameter, and permeability parameter
have direct relationship while Casson parameter has inverse relationship with skin friction coefficient.

1. Introduction

Squeezing flow between parallel plates is an important
problem in the area of fluid dynamics. The problem can be
described akin to the principle of moving pistons, where the
squeezing behavior of two parallel plates produces a flow
that is normal to the plates. Applications of the problem are
found in hydraulicmachinery and tools, electricmotors, food
industry, bioengineering, and automobile engines. Other
simpler but equally important examples are flow patterns
occurring in syringes and compressible tubes. In these
applications, flow patterns can be classified into laminar,
turbulent, and transitional flows on the basis of the well-
known Reynold’s number. From an industrial perspective, it
is necessary to study the effect of these different behaviors for
non-Newtonian fluids, the mechanics of which have proved

to be a significant challenge to the research community. The
non-Newtonian fluid model being considered in our case
is that of Casson [1, 2] as it is able to capture complex
rheological properties of a fluid, unlike other simplified
models like the powerlaw [3] and grade-two or grade-three
[4] models. Concentrated fluids like sauces, honey, juices,
blood, and printing inks [5] can be well described using
this model. More formally, Casson fluid can be defined as a
shear thinning liquid which is assumed to have an infinite
viscosity at zero rate of shear, a yield stress below which
no flow occurs, and a zero viscosity at an infinite rate of
shear [6]. Application of Casson fluid for flow between two
rotating cylinders is performed in [7]. In some industrial
applications, the model has to deal with conducting fluids
which exhibit different behaviors under the influence of a
magnetic field. In these cases, the magnetohydrodynamic
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(MHD) aspect of the flow needs to be considered. In this
article, we investigate this particular case for a porous
medium channel and present a comprehensive analysis. To
the best of our knowledge, this particular case has not been
addressed before. A porous medium, identified as a material
that contains fluid-filled pores, is always characterized by
properties such as porosity and permeability. Porosity defines
the quantity of fluid that can be held by the material, whereas
permeability is the amount of fluid that can pass through
it. Various applications include ground water hydrology,
chemical reactors, irrigation, drainage, seepage, and recovery
of crude oil from pores of reservoir rocks [8–12]. These
applications can specifically be classified to engineering fields
such as petroleum, reservoir, and chemical engineering.

Due to the nonlinearity of themodel under consideration,
exact solutions are rarely found in body of literature and,
if found, involve simplified assumptions. For this purpose,
many analytical approximation techniques are used instead
[13, 14]. The usual approach for boundary value problems
is the usage of perturbation techniques. However, due to
assumptions of small or large parameters, this is not suffi-
cient. In this regard, a seminal work that combined these
perturbation techniques with homotopy was proposed as the
Homotopy Perturbation Method (HPM) in [15–17]. Since
its introduction, the method has been applied to different
nonlinear equations [18–22]. Specifically in the case of fluid
dynamics, the method has been applied in [18–20, 23]. The
classical HPM has also been modified by few researchers
[24, 25]. Other approximation techniques that have been used
for the case of fluid dynamics include the Homotopy Anal-
ysis Method (HAM) [26], Optimal Homotopy Asymptotic
Method (OHAM) [27], Adomian Decomposition Method
(ADM) [28], and Variational Iteration Method (VIM) [29].
In addition to these analytical approaches, various numerical
schemes can also be used to solve these problems. Examples
are the family of Runge-Kutta [30], finite difference [31], and
wavelet methods.

In the remaining part of the manuscript, Section 2
includes mathematical formulation of the problem. Sections
3 and 4 present the basic theory of HPM and its application
to Casson fluid model. Section 5 comprises the results and
discussion. Finally, conclusion is presented in Section 6.

2. Mathematical Formulation

An incompressible flowofCasson fluid is considered between
two parallel plates that have been separated by a distance 𝑧 =±𝑙(1−𝛼𝑡)1/2 = ±ℎ(𝑡). Here, 𝑙 is the initial gap between the two
plates at time 𝑡, and 𝛼 is the squeezing motion of both plates.
Both plates touch one another at 𝑡 = 𝑎/𝛼. 𝛼 < 0 implies a
recedingmotion of the plates.With these conditions, the non-
Newtonian Casson fluid, using [32, 33], is defined as

𝜏𝑖𝑗 =
{{{{{{{
2[𝜇𝐵 + 𝑃𝑦2𝜋] 𝑒𝑖𝑗, 𝜋 > 𝜋𝑐,
2 [𝜇𝐵 + 𝑃𝑦2𝜋𝑐 ] 𝑒𝑖𝑗, 𝜋𝑐 > 𝜋,

(1)

where 𝜏𝑖𝑗 is the (𝑖, 𝑗)th component of the stress tensor, 𝜋 =𝑒𝑖𝑗𝑒𝑖𝑗, 𝑒𝑖𝑗 being the (𝑖, 𝑗)th component of the deformation rate,𝜋𝑐 is the critical value of the material, 𝜇𝐵 is plastic dynamic
viscosity, and 𝑃𝑦 is the yield stress of the fluid. A constant
magnetic field of strength𝑀𝑔 is applied perpendicularly and
relatively fixed to the walls. It is assumed that the intensity
of the effective field produced due to the conducting fluid is
negligible and that there is no other external electric field.The
governing relation for flow under these assumptions is given
as
𝜕𝑢𝑥𝜕𝑥 + 𝜕𝑢𝑦𝜕𝑦 = 0, (2)

𝜕𝑢𝑥𝜕𝑡 + 𝑢𝑥 𝜕𝑢𝑥𝜕𝑥 + 𝑢𝑦 𝜕𝑢𝑥𝜕𝑦
= −1𝜌 𝜕𝑝𝜕𝑥 + ](1 + 1𝛽)(2𝜕

2𝑢𝑥𝜕𝑥2 + 𝜕
2𝑢𝑥𝜕𝑦2 + 2

𝜕2𝑢𝑦𝜕𝑦𝜕𝑥)

− 𝜎𝐵2𝜌 𝑢𝑥 − 𝜇𝜌𝑘𝑢𝑥,

(3)

𝜕𝑢𝑦𝜕𝑡 + 𝑢𝑥
𝜕𝑢𝑦𝜕𝑥 + 𝑢𝑦 𝜕𝑢𝑦𝜕𝑦

= −1𝜌 𝜕𝑝𝜕𝑦 + ](1 + 1𝛽)(2
𝜕2𝑢𝑦𝜕𝑥2 +

𝜕2𝑢𝑦𝜕𝑦2 + 2 𝜕
2𝑢𝑥𝜕𝑦𝜕𝑥)

− 𝜇𝜌𝑘𝑢𝑦,
(4)

where 𝑢𝑥 and 𝑢𝑦 are the velocity components in 𝑥 and 𝑦
directions, 𝑝 is the pressure, 𝜇 and ] are the viscosity and
kinematic viscosity of the fluid, 𝛽 = 𝜇𝐵√2𝜋/𝑃𝑦 is the Casson
fluid parameter, 𝐵 is the magnitude of the imposed magnetic
field, and 𝑘 is the permeability constant. The boundary
conditions for the problem are given as follows:

𝑢𝑥 = 0,
𝑢𝑦 = V𝑤 = 𝑑ℎ𝑑𝑡 at 𝑦 = ℎ (𝑡) ,
𝜕𝑢𝑥𝜕𝑦 = 0,
𝑢𝑦 = 0 at 𝑦 = 0.

(5)

Cross differentiating (3) and (4) and by introducing the
vorticity function 𝜔, we get

𝜕𝜔𝜕𝑡 + 𝑢𝑥 𝜕𝜔𝜕𝑥 + 𝑢𝑦 𝜕𝜔𝜕𝑦 = ](1 + 1𝛽)(𝜕
2𝜔𝜕𝑥2 + 𝜕

2𝜔𝜕𝑦2 )
− 𝜎𝐵2𝜌 𝜕𝑢𝑥𝜕𝑦 − 𝜇𝜌𝑘𝜔,

(6)

where

𝜔 = (𝜕𝑢𝑦𝜕𝑥 − 𝜕𝑢𝑥𝜕𝑦 ) . (7)
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The similarity transform for a two-dimensional flow [34] is

𝑢𝑥 = 𝛼𝑥2 (1 − 𝛼𝑡)𝑈󸀠 (𝜂) ,
𝑢𝑦 = −𝛼𝑙

2 (1 − 𝛼𝑡)1/2𝑈 (𝜂) ,
(8)

where 𝜂 = 𝑦/[𝑙(1 − 𝛼𝑡)1/2]. Substituting (8) into (6) using
(7) gives the following nonlinear differential equation that
describes Casson’s fluid flow:

(1 + 1𝛽)
𝑑4𝑈 (𝜂)
𝑑𝜂4 − 𝑆𝑞 [𝜂𝑈 (𝜂) + 3𝑑

2𝑈 (𝜂)
𝑑𝜂2

+ 𝑑𝑈 (𝜂)𝑑𝜂
𝑑2𝑈(𝜂)
𝑑𝜂2 − 𝑈 (𝜂) 𝑑3𝑈(𝜂)𝑑𝜂3 ] −𝑀𝑔 𝑑

2𝑈(𝜂)
𝑑𝜂2

−𝑀𝑝 𝑑
2𝑈(𝜂)
𝑑𝜂2 = 0,

(9)

where 𝑆𝑞 = 𝛼𝑙2/(2]) is the nondimensional squeeze number
that describes movement of the plates. 𝑆𝑞 > 0 corresponds
to the plates moving apart, while 𝑆𝑞 < 0 corresponds to the
collapsingmovement. Using (8), the boundary conditions for
the problem are reduced to

𝑈 (0) = 0,
𝑈󸀠󸀠 (0) = 0,
𝑈 (1) = 1,
𝑈󸀠 (1) = 0.

(10)

When𝑀𝑔 = 𝑀𝑝 = 0 and 𝛽 → ∞, the current problem is
reduced to the problem discussed in [34].

The skin friction coefficient is defined as [35]

𝐶𝑓 = ](1 + 1𝛽)
(𝜕𝑢𝑥/𝜕𝑦)𝑦=ℎ(𝑡)

V2𝑤
. (11)

In terms of (8), we have

𝑙2𝑥2 (1 − 𝛼𝑡)Re𝑥𝐶𝑓 = (1 +
1𝛽)𝑈󸀠󸀠 (1) , (12)

where Re𝑥 = 2𝑙V2𝑤/[]𝑥(1 − 𝛼𝑡)1/2].
3. Basic Theory of Homotopy

Perturbation Method

Thebasic theory ofHPMcan be exhibited using the following
differential equation:

𝐿 (𝑤) + 𝑁 (𝑤) − 𝑔 (𝑟) = 0, 𝑟 ∈ Ω,
𝐵(𝑤, 𝑑𝑤𝑑𝑛 ) = 0, 𝑟 ∈ Υ, (13)

where 𝑤 is an unknown and 𝑔(𝑟) is a known function, 𝐿,𝑁,𝐵 are linear, nonlinear, and boundary operators, and Υ is the
boundary of the domainΩ. A homotopy 𝜃(𝑟, 𝑝) : Ω×[0, 1] →
R is then constructed which satisfies

𝜓 (𝜃, 𝑝) = (1 − 𝑝) [𝐿 (𝜃) − 𝐿 (𝑤0)]
+ 𝑝 [𝐿 (𝜃) + 𝑁 (𝜃) − 𝑔 (𝑟)] = 0, 𝑟 ∈ Ω, (14)

where 𝑝 ∈ [0, 1] is an embedding parameter and 𝑤0 is the
initial guess which satisfies the boundary conditions. From
(14), we have

𝜓 (𝜃, 0) = 𝐿 (𝜃) − 𝐿 (𝑤0) = 0,
𝜓 (𝜃, 1) = 𝐿 (𝜃) + 𝑁 (𝜃) − 𝑔 (𝑟) = 0. (15)

Thus, as 𝑝 varies from 0 to 1, the solution 𝜃(𝑟, 𝑝) approaches
from 𝑤0(𝑟) to 𝑤̃(𝑟). To obtain an approximate solution, we
expand 𝜃(𝑟, 𝑝) in a Taylor series about 𝑝 as follows:

𝜃 (𝑟, 𝑝) = 𝜃0 + ∞∑
𝑘=1

𝜃𝑘𝑝𝑘. (16)

Setting 𝑝 = 1, the approximate solution of (25) would be

𝑈̃ = lim
𝑝→1
𝜃 (𝑟, 𝑝) = ∞∑

𝑘=1

𝜃𝑘. (17)

Substituting (17) into (13) will give

𝑅 (𝑥) = 𝐿 [𝑈̃ (𝑥)] + 𝑁 [𝑈̃ (𝑥)] − 𝑓 (𝑥) . (18)

If 𝑅 = 0, then 𝑈̃ will be the exact solution but usually this
does not happen in nonlinear problems.

4. Implementation of HPM to
Squeezing Flow of Casson Fluid

Using (9) and (10), various-order problems are presented as
follows.

Zeroth-order problem is

𝑈(𝑖V)0 (𝜂) + 1𝛽𝑈(𝑖V)0 (𝜂) = 0,
𝑈0 (0) = 0,
𝑈󸀠󸀠0 (0) = 0,
𝑈0 (1) = 1,
𝑈󸀠0 (1) = 0.

(19)

Solution of the zeroth order problem is

𝑈0 (𝜂) = 12 (3𝜂 − 𝜂3) . (20)
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First-order problem is

1𝛽𝑈(𝑖V)1 (𝜂) + 𝑈(𝑖V)1 (𝜂) − 𝑆𝑞𝜂𝑈0 (𝜂) − 𝑀𝑝𝑈󸀠󸀠0 (𝜂)
−𝑀𝑔𝑈󸀠󸀠0 (𝜂) − 3𝑆𝑞𝑈󸀠󸀠0 (𝜂) − 𝑆𝑞𝑈󸀠0 (𝜂)𝑈󸀠󸀠0 (𝜂)
+ 𝑆𝑞𝑈0 (𝜂)𝑈󸀠󸀠󸀠0 (𝜂) = 0,

𝑈1 (0) = 0,
𝑈󸀠󸀠1 (0) = 0,
𝑈1 (1) = 0,
𝑈󸀠1 (1) = 0.

(21)

Solution of the first-order problem is

𝑈1 (𝜂) = − 16720 (1 + 𝛽) (Φ11𝜂 − Φ12𝜂3 + Φ13𝜂5
− Φ14𝜂6 − Φ15𝜂7 + Φ16𝜂8) .

(22)

Second-order problem is

𝑈(𝑖V)2 (𝜂) + 1𝛽𝑈(𝑖V)2 (𝜂) − 𝑆𝑞𝜂𝑈1 (𝜂) − 𝑆𝑞𝑈󸀠1 (𝜂)𝑈󸀠󸀠0 (𝜂)
−𝑀𝑝𝑈󸀠󸀠1 (𝜂) −𝑀𝑔𝑈󸀠󸀠1 (𝜂) − 3𝑆𝑞𝑈󸀠󸀠1 (𝜂)
− 𝑆𝑞𝑈󸀠0 (𝜂)𝑈󸀠󸀠1 (𝜂) + 𝑆𝑞𝑈1 (𝜂)𝑈󸀠󸀠󸀠0 (𝜂)
+ 𝑆𝑞𝑈0 (𝜂)𝑈󸀠󸀠󸀠1 (𝜂) ,

𝑈2 (0) = 0,
𝑈󸀠󸀠2 (0) = 0,
𝑈2 (1) = 0,
𝑈󸀠2 (1) = 0.

(23)

Solution of the second-order problem is

𝑈2 (𝜂) = − 1
9686476800 (1 + 𝛽)2 [Φ21𝜂 + Φ22𝜂3

+ Φ23𝜂5 + Φ24𝜂6 + Φ25𝜂7 + Φ26𝜂8 + Φ27𝜂9
+ Φ28𝜂10 − Φ29𝜂11 + Φ210𝜂12 + Φ211𝜂13] ,

(24)

where Φ1𝑖 and Φ2𝑗 are the coefficients of various powers of𝜂. These coefficients are given in the Appendix for the reader
convenience.

In a similar way, higher order problems can be formulated
and solved. These approximations have been excluded from
the manuscript for brevity purpose.

Considering the third-order solution,

𝑈̃ (𝜂) = 3∑
𝑗=0

𝑈𝑗 (𝜂) . (25)

By fixing values of 𝛽, 𝑆𝑞,𝑀𝑔, and 𝑀𝑝 in (25) polynomial
solution can be found. For instance, when 𝛽 = 0.01, 𝑆𝑞 =−0.2, 𝑀𝑔 = 0.5, and 𝑀𝑝 = 0.5, the third-order solution is
therefore

𝑈̃ (𝜂) =

{{{{{{{{{{{{{{{{{{{{{{{{{

0.0 + 1.49988𝜂 − 0.499762𝜂3 − 0.0000989628𝜂5 − 8.25014 × 10−6𝜂6
−7.08874 × 10−6𝜂7 + 5.87168 × 10−7𝜂8 − 2.33686 × 10−9𝜂9
+1.61604 × 10−10𝜂10 + 4.40191 × 10−11𝜂11 − 4.96322 × 10−12𝜂12
−3.44636 × 10−14𝜂13 − 3.72105 × 10−15𝜂14 − 1.04633 × 10−15𝜂15
+1.29806 × 10−16𝜂16 + 2.11403 × 10−19𝜂17 + 1.83374 × 10−21𝜂18.

(26)

The residual error of the problem is

RE = (1 + 1𝛽) 𝑑
4𝑈̃𝑑𝜂4

− 𝑆𝑞 [𝜂𝑈̃ + 3𝑑2𝑈̃𝑑𝜂2 + 𝑑𝑈̃𝑑𝜂 𝑑
2𝑈̃𝑑𝜂2 − 𝑈̃𝑑

3𝑈̃𝑑𝜂3 ]

−𝑀𝑔 𝑑2𝑈̃𝑑𝜂2 −𝑀𝑝 𝑑
2𝑈̃𝑑𝜂2 .

(27)

5. Results and Discussion

In this article, an unsteady squeezing flow of Casson fluid
having MHD effect and passing through porous medium
channel is considered. Four parameters are considered here:
the squeeze number 𝑆𝑞, Casson parameter 𝛽, MHD param-
eter 𝑀𝑔, and the permeability parameter 𝑀𝑝. The resulting
boundary value problem is solved for various values of
the mentioned parameters using HPM and the results are
compared with numerical solutions obtained using explicit
Runge-Kuttamethod of order 4 (ERK4). Tables 4–7 shows the
comparison of analytical and numerical solutions along with
residual errors for various values of fluid parameters. A quick
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Figure 1: Convergence of homotopy perturbation solution.
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Figure 2: Comparison of analytical and numerical solutions.

analysis of these tables reveals that the results from HPM are
consistent and in good agreement with the numerical results.

The convergence of the homotopy solution is confirmed
by finding various-order solutions along with absolute resid-
ual errors in Table 2. Here, it can be observed that the HPM
solution improves considerably as the order of approximation
is increased.The validity of analytical solution based onHPM
is checked by comparing it with numerical solutions of ERK4
in Table 3. Here, 𝑀𝑔 = 0.5, 𝛽 = 0.05, and the squeeze
number is varied as −0.2 ≤ 𝑆𝑞 ≤ 0.6. Validity is confirmed for
all variations of squeeze number. Both the convergence and
validity are also demonstrated graphically in Figures 1 and 2.

Numerical values of skin friction coefficients correspond-
ing to various fluid parameters are given inTable 1. Analysis of
these numerical quantities show that increase in 𝛽 decreases
the skin friction coefficient. Furthermore, increase in 𝑆𝑞,𝑀𝑔, and𝑀𝑝 increases the skin friction coefficient. It is also
observed that increase in 𝑀𝑔 and 𝑀𝑝 increases the skin
friction coefficient.

The effects of identified parameters on the velocity profile
are illustrated graphically in Figures 3–10. The effect of
negative 𝑆𝑞 on the velocity profile is shown in Figure 3,

Table 1: Skin friction coefficient for various values of fluid parame-
ters.

𝑆𝑞 𝛽 𝑀𝑔 𝑀𝑝 (1 + 1𝛽)𝑈󸀠󸀠(1)−8.0 0.5 1.0 1.0 −2.144−6.0 1.0 1.0 −4.919−3.0 1.0 1.0 −7.728−0.6 0.05 0.5 0.5 −62.922−0.2 1.5 −63.307
1.7 −63.347

0.01 0.5 −303.108
0.1 −33.107
0.3 −13.108
0.4 −10.608
0.5 −9.108
0.8 −6.858
1.0 −6.108
0.05 0.1 −63.563

0.7 −63.147
1.2 −63.247

0.2 0.01 0.5 −303.292
0.3 −13.287
0.4 −10.786
0.05 1.4 −63.470

1 −63.390
0.6 0.5 −63.473
0.8 −63.563
1.0 0.5 1.0 1.0 −9.785
2.0 −10.130
4.0 −10.756

1.0 −7.731
3.0 −5.969
5.0 −5.722
8.0 −5.620

8.0 0.5 −12.310
3.0 1.0 1.0 −7.381

4.0 −7.862
8.0 −8.542

5.0 1.0 0.1 −7.998
5.0 −8.972
10 −10.146

where it is shown that the normal velocity profile increases
with the increase in negative 𝑆𝑞. On the other hand, the
radial velocity increases near the lower plate and terminates
near the upper plate. It can also be observed that, for fixed
values of fluid parameters, the normal velocitymonotonically
increases while the radial velocity monotonically decreases.
Moreover, the radial velocity increases when 0 < 𝜂 ≤ 0.45
and decreases when 0.45 < 𝜂 ≤ 1.

In the next three figures, the effect of various fluid
parameters on the velocity profile with 𝑆𝑞 < 0 is depicted.
First, the effect of Casson parameter 𝛽 is shown in Figure 4,
showing that the normal velocity increases as 𝛽 is increased,
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Table 2: Various-order homotopy perturbation solutions along with absolute residual errors for fixed values of fluid parameters.

𝜂 Zeroth order First order Second order Third order
Solution Error Solution Error Solution Error Solution Error

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00.1 0.1495 0.12395 0.149488 5.58 × 10−5 0.149488 6.38 × 10−9 0.149488 8.92 × 10−130.2 0.296 0.25664 0.295977 1.03 × 10−4 0.295977 7.98 × 10−9 0.295977 2.45 × 10−120.3 0.4365 0.40239 0.436469 1.30 × 10−4 0.436469 1.13 × 10−9 0.436469 4.63 × 10−120.4 0.568 056384 0.567965 1.25 × 10−4 0.567965 1.52 × 10−8 0.567965 6.20 × 10−120.5 0.6875 074375 0.687464 7.15 × 10−5 0.687464 3.76 × 10−8 0.687464 4.79 × 10−120.6 0.792 094464 0.791969 5.16 × 10−5 0.791969 5.52 × 10−8 0.791969 1.91 × 10−120.7 0.8785 1.16879 0.878477 2.67 × 10−4 0.878477 4.70 × 10−8 0.878477 1.37 × 10−110.8 0.944 1.41824 0.943987 6.05 × 10−4 0.943987 2.20 × 10−8 0.943987 2.36 × 10−110.9 0.9855 1.69479 0.985496 1.09 × 10−3 0.985496 2.05 × 10−7 0.985496 1.05 × 10−111.0 1.0 2.0 1.0 1.78 × 10−3 1.0 5.77 × 10−7 1.0 6.93 × 10−11

Table 3: Comparison of analytical and numerical solution for various 𝑆𝑞.

𝜂 |ERK4 −HPM|𝑀𝑝 = 𝑀𝑔 = 0.5, 𝛽 = 0.05𝑆𝑞 = −0.2 𝑆𝑞 = −0.4 𝑆𝑞 = −0.6 𝑆𝑞 = 0.2 𝑆𝑞 = 0.4 𝑆𝑞 = 0.60.0 0.0 0.0 0.0 0.0 0.0 0.00.1 8.32 × 10−15 5.77 × 10−14 6.37 × 10−12 2.12 × 10−11 9.52 × 10−11 2.80 × 10−100.2 1.38 × 10−14 1.10 × 10−13 1.20 × 10−11 3.94 × 10−11 1.77 × 10−10 5.23 × 10−100.3 1.38 × 10−14 1.52 × 10−13 1.63 × 10−11 5.21 × 10−11 2.36 × 10−10 6.97 × 10−100.4 7.38 × 10−15 1.78 × 10−13 1.88 × 10−11 5.77 × 10−11 2.63 × 10−10 7.80 × 10−100.5 4.44 × 10−15 1.85 × 10−13 1.90 × 10−11 5.56 × 10−11 2.55 × 10−10 7.61 × 10−100.6 1.68 × 10−14 1.70 × 10−13 1.70 × 10−11 4.65 × 10−11 2.16 × 10−10 6.48 × 10−100.7 2.37 × 10−14 1.32 × 10−13 1.29 × 10−11 3.27 × 10−11 1.54 × 10−10 4.65 × 10−100.8 1.97 × 10−14 7.87 × 10−14 7.63 × 10−12 1.75 × 10−11 8.42 × 10−11 2.55 × 10−100.9 7.67 × 10−15 2.53 × 10−14 2.49 × 10−12 5.13 × 10−12 2.50 × 10−11 7.68 × 10−111.0 1.24 × 10−19 1.10 × 10−16 1.11 × 10−16 2.57 × 10−21 6.86 × 10−22 4.98 × 10−19
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Figure 3: Effect of negative squeeze number 𝑆𝑞 on the velocity profile.
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Table 4: Solutions along with residual errors for various 𝑆𝑞 when𝑀𝑔 = 𝑀𝑝 = 0.5, 𝛽 = 0.05.
Parameter 𝜂 Solution Residual error

HPM ERK4 HPM ERK4

𝑆𝑞 = −0.2

0.0 0.0 0.0 0.0 1.40 × 10−70.1 0.149441 0.149441 9.93 × 10−11 6.59 × 10−90.2 0.29589 0.29589 2.73 × 10−10 −1.35 × 10−90.3 0.436351 0.436351 5.16 × 10−10 2.71 × 10−100.4 0.567829 0.567829 6.89 × 10−10 −2.04 × 10−100.5 0.687329 0.687329 5.33 × 10−10 2.41 × 10−100.6 0.791849 0.791849 −2.13 × 10−10 −8.42 × 10−110.7 0.878387 0.878387 −1.53 × 10−9 −5.29 × 10−100.8 0.943935 0.943935 −2.63 × 10−9 2.65 × 10−90.9 0.985479 0.985479 −1.17 × 10−9 −1.08 × 10−81.0 1.0 1.0 7.72 × 10−9 −1.50 × 10−7

𝑆𝑞 = −0.4

0.0 0.0 0.0 0.0 7.25 × 10−70.1 0.1495 0.1495 −5.03 × 10−11 3.68 × 10−80.2 0.295999 0.295999 −9.77 × 10−11 −8.75 × 10−90.3 0.436497 0.436497 −1.52 × 10−10 2.33 × 10−90.4 0.567995 0.567995 −2.62 × 10−10 −7.32 × 10−100.5 0.687493 0.687493 −5.45 × 10−10 −5.65 × 10−120.6 0.791991 0.791991 −1.15 × 10−9 6.91 × 10−100.7 0.878491 0.878491 −2.09 × 10−9 −1.86 × 10−90.8 0.943994 0.943994 −2.85 × 10−9 6.26 × 10−90.9 0.985498 0.985498 −1.81 × 10−9 −2.54 × 10−81.0 1.0 1.0 4.49 × 10−9 −4.34 × 10−7

𝑆𝑞 = −0.6

0.0 0.0 0.0 0.0 1.61 × 10−60.1 0.149558 0.149558 −1.24 × 10−8 8.03 × 10−80.2 0.296108 0.296108 −2.49 × 10−8 −1.93 × 10−80.3 0.436644 0.436644 −3.79 × 10−8 5.07 × 10−90.4 0.568161 0.568161 −5.28 × 10−8 −1.55 × 10−90.5 0.687657 0.687657 −7.21 × 10−8 3.17 × 10−100.6 0.792134 0.792134 −9.99 × 10−8 1.06 × 10−90.7 0.878596 0.878596 −1.42 × 10−7 −4.49 × 10−90.8 0.944053 0.944053 −2.06 × 10−7 1.61 × 10−80.9 0.985561 0.985561 −3.01 × 10−7 −6.40 × 10−81.0 1.0 1.0 −4.33 × 10−7 −1.05 × 10−6
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Figure 4: Effect of Casson parameter 𝛽 on the velocity profile when 𝑆𝑞 is negative.
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Table 5: Solutions along with residual errors for various 𝛽 when𝑀𝑔 = 𝑀𝑝 = 0.5, 𝑆𝑞 = −0.2.
Parameter 𝜂 Solution Residual error

HPM ERK4 HPM ERK4

𝛽 = 0.01

0.0 0.0 0.0 0.0 −1.76 × 10−70.1 0.149488 0.149502 8.92 × 10−13 −8.33 × 10−90.2 0.295977 0.296004 2.45 × 10−12 4.75 × 10−90.3 0.436469 0.436506 4.63 × 10−12 −2.87 × 10−90.4 0.567965 0.568006 6.20 × 10−12 −3.59 × 10−100.5 0.687464 0.687506 4.79 × 10−12 2.45 × 10−90.6 0.791969 0.792005 −1.91 × 10−12 −1.50 × 10−90.7 0.878477 0.878504 −1.37 × 10−11 −1.89 × 10−90.8 0.943987 0.944002 −2.36 × 10−11 8.25 × 10−90.9 0.985496 0.985501 −1.05 × 10−11 −2.78 × 10−81.0 1.0 1.0 6.93 × 10−11 −3.31 × 10−7

𝛽 = 0.1

0.0 0.0 0.0 0.0 3.51 × 10−70.1 0.149388 0.149522 6.91 × 10−10 1.83 × 10−80.2 0.295789 0.296041 1.90 × 10−9 −4.39 × 10−90.3 0.436215 0.436554 3.59 × 10−9 1.08 × 10−90.4 0.567674 0.568059 4.79 × 10−9 −2.68 × 10−100.5 0.687173 0.687557 3.71 × 10−9 −2.80 × 10−110.6 0.791712 0.792048 −1.48 × 10−9 2.99 × 10−100.7 0.878285 0.878533 −1.06 × 10−8 −8.24 × 10−100.8 0.943876 0.944018 −1.83 × 10−8 2.81 × 10−90.9 0.985461 0.985505 −8.20 × 10−9 −1.16 × 10−81.0 1.0 1.0 5.37 × 10−8 −1.95 × 10−7

𝛽 = 0.2

0.0 0.0 0.0 0.0 6.28 × 10−70.1 0.149295 0.14954 4.25 × 10−9 3.03 × 10−80.2 0.295614 0.296075 1.17 × 10−8 −7.38 × 10−90.3 0.435977 0.436599 2.21 × 10−8 2.07 × 10−90.4 0.567403 0.568109 2.95 × 10−8 −7.36 × 10−100.5 0.686901 0.687605 2.28 × 10−8 1.63 × 10−100.6 0.791472 0.792087 −9.14 × 10−9 4.70 × 10−100.7 0.878105 0.878561 −6.57 × 10−8 −1.87 × 10−90.8 0.943773 0.944032 −1.12 × 10−7 6.77 × 10−90.9 0.985428 0.985509 −5.05 × 10−8 −2.73 × 10−81.0 1.0 1.0 3.31 × 10−7 −4.47 × 10−7
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Figure 5: Effect of MHD parameter𝑀𝑔 on the velocity profile when 𝑆𝑞 is negative.
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Table 6: Solutions along with residual errors for various𝑀𝑔 when𝑀𝑝 = 0.5, 𝑆𝑞 = −0.2, 𝛽 = 0.05.
Parameter 𝜂 Solution Residual error

HPM ERK4 HPM ERK4

𝑀𝑔 = 0.1

0.0 0.0 0.0 0.0 1.73 × 10−70.1 0.149372 0.149488 −3.30 × 10−8 1.73 × 10−70.2 0.29576 0.295977 −6.29 × 10−8 −2.10 × 10−90.3 0.436177 0.436469 −8.69 × 10−8 4.10 × 10−100.4 0.567634 0.567964 −1.02 × 10−7 −7.13 × 10−110.5 0.687137 0.687463 −1.08 × 10−7 5.99 × 10−110.6 0.791684 0.791966 −1.02 × 10−7 −1.65 × 10−110.7 0.878267 0.878474 −8.46 × 10−8 −3.51 × 10−100.8 0.943868 0.943985 −5.38 × 10−8 1.99 × 10−90.9 0.985459 0.985459 −9.68 × 10−9 −9.11 × 10−91.0 1.0 1.0 4.83 × 10−8 −1.24 × 10−7

𝑀𝑔 = 0.4

0.0 0.0 0.0 0.0 8.57 × 10−80.1 0.149338 0.149453 −7.57 × 10−8 1.30 × 10−90.2 0.295695 0.295912 −1.43 × 10−7 −2.14 × 10−100.3 0.436089 0.43638 −1.95 × 10−7 7.59 × 10−110.4 0.567534 0.567863 −2.26 × 10−7 −3.50 × 10−100.5 0.687037 0.687362 −2.31 × 10−7 5.60 × 10−100.6 0.791597 0.791878 −2.08 × 10−7 −2.96 × 10−100.7 0.878202 0.878409 −1.55 × 10−7 −7.90 × 10−100.8 0.943831 0.943947 −7.53 × 10−8 3.92 × 10−90.9 0.985447 0.985483 3.09 × 10−8 −1.56 × 10−81.0 1.0 1.0 1.59 × 10−7 −2.04 × 10−7

𝑀𝑔 = 1.0

0.0 0.0 0.0 0.0 1.28 × 10−70.1 0.149268 0.149383 −2.69 × 10−7 4.96 × 10−90.2 0.295564 0.29578 −5.05 × 10−7 −1.04 × 10−90.3 0.435913 0.436203 −6.78 × 10−7 3.68 × 10−100.4 0.567334 0.567662 −7.64 × 10−7 −4.53 × 10−100.5 0.686833 0.687162 −7.49 × 10−7 2.64 × 10−100.6 0.791422 0.791703 −6.25 × 10−7 3.42 × 10−100.7 0.878073 0.878279 −3.99 × 10−7 −8.95 × 10−100.8 0.943757 0.943873 −8.61 × 10−8 1.28 × 10−90.9 0.985424 0.98546 2.89 × 10−7 −2.79 × 10−91.0 1.0 1.0 6.93 × 10−7 −9.05 × 10−8
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Figure 6: Effect of permeability constant𝑀𝑝 on the velocity profile when 𝑆𝑞 is negative.
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Table 7: Solutions along with residual errors for various𝑀𝑝 when𝑀𝑔 = 0.5, 𝑆𝑞 = −0.2, 𝛽 = 0.05.
Parameter 𝜂 Solution Residual error

HPM ERK4 HPM ERK4

𝑀𝑝 = 1.0

0.0 0.0 0.0 0.0 1.28 × 10−70.1 0.149383 0.149383 −2.87 × 10−9 4.96 × 10−90.2 0.29578 0.295978 −4.06 × 10−9 −1.04 × 10−90.3 0.436203 0.436203 −2.56 × 10−9 3.68 × 10−100.4 0.567662 0.567662 1.37 × 10−9 −4.53 × 10−100.5 0.687162 0.687162 6.02 × 10−9 2.64 × 10−100.6 0.791703 0.791703 8.52 × 10−9 3.42 × 10−100.7 0.878279 0.878279 6.00 × 10−9 −8.95 × 10−100.8 0.943873 0.943873 −2.25 × 10−9 1.28 × 10−90.9 0.98546 0.98546 −1.14 × 10−8 −2.79 × 10−91.0 1.0 1.0 −6.12 × 10−9 −9.05 × 10−8

𝑀𝑝 = 1.5

0.0 0.0 0.0 0.0 5.71 × 10−80.1 0.149325 0.149325 −2.60 × 10−8 1.22 × 10−100.2 0.295671 0.295671 −4.28 × 10−8 1.00 × 10−100.3 0.436056 0.436056 −4.40 × 10−8 8.10 × 10−110.4 0.567495 0.567495 −2.82 × 10−8 −3.44 × 10−100.5 0.686995 0.686995 −3.16 × 10−10 4.62 × 10−100.6 0.791558 0.791558 2.87 × 10−8 −2.07 × 10−100.7 0.878171 0.878171 4.50 × 10−8 −6.54 × 10−100.8 0.943812 0.943812 3.74 × 10−8 3.13 × 10−90.9 0.985441 0.985441 7.51 × 10−9 −1.22 × 10−81.0 1.0 1.0 −1.60 × 10−8 −1.62 × 10−7

𝑀𝑝 = 1.7

0.0 0.0 0.0 0.0 1.58 × 10−70.1 0.149302 0.149302 −4.79 × 10−8 1.08 × 10−80.2 0.295627 0.295627 −8.04 × 10−8 −2.34 × 10−90.3 0.435997 0.435997 −8.64 × 10−8 2.54 × 10−100.4 0.567428 0.567428 −6.27 × 10−8 1.88 × 10−100.5 0.686929 0.686929 −1.60 × 10−8 −7.14 × 10−110.6 0.791499 0.791499 3.70 × 10−8 −8.03 × 10−110.7 0.878128 0.878128 7.43 × 10−8 −1.19 × 10−100.8 0.943787 0.943787 7.58 × 10−8 1.11 × 10−90.9 0.985433 0.985433 3.80 × 10−8 −4.87 × 10−91.0 1.0 1.0 −5.44 × 10−9 −6.74 × 10−8
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Figure 7: Effect of positive squeeze number 𝑆𝑞 on the velocity profile.
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Figure 8: Effect of Casson parameter 𝛽 on the velocity profile when 𝑆𝑞 is positive.
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Figure 9: Effect of MHD parameter𝑀𝑔 on the velocity profile when 𝑆𝑞 is positive.
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Figure 10: Effect of permeability constant𝑀𝑝 on the velocity profile when 𝑆𝑞 is positive.
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whereas the radial velocity increases near the lower plates
and terminates near the upper plate. The effect when 𝛽
is increased is similar to that of increasing negative 𝑆𝑞.
Secondly, the effect of MHD parameter 𝑀𝑔 is depicted in
Figure 5. Here, it is seen that the normal component of the
velocity decreases with the increase in 𝑀𝑔, while the radial
component decreases near the lower plate and terminates
near the upper plate. Moreover, the radial component of
velocity decreases when 0 < 𝜂 ≤ 0.45 and increases when0.45 < 𝜂 ≤ 1. Lastly, the effect of permeability parameter𝑀𝑝 is shown in Figure 6. Here, the normal velocity decreases
when𝑀𝑝 is increased, while the radial velocity decreases near
the lower plate and terminates near the upper plate. It can
therefore be concluded from these observations that the effect
of 𝑀𝑝 and 𝑀𝑔 is similar on the velocity profile in case of
negative squeeze number.

The effect of 𝑆𝑞 > 0 on the velocity profile is also
investigated. In Figure 7, it is shown that the normal compo-
nent of velocity decreases as 𝑆𝑞 is increased, while the radial
component of velocity decreases near the lower plate and
terminates near the upper plate. Moreover, the radial velocity
decreases in the interval 0 < 𝜂 ≤ 0.45 and increases in0.45 < 𝜂 ≤ 1. The next three figures show the effect of𝛽, 𝑀𝑔, and 𝑀𝑝 in case of positive squeeze number. First,
the effect of 𝛽 is illustrated in Figure 8, showing that the
normal component of velocity decreases as 𝛽 is increased,
while the radial component decreases near the lower plate
and terminates near the upper plate.The effect of𝑀𝑔 is shown
in Figure 9, while that of𝑀𝑝 is shown in Figure 10. In both
cases, a similar effect as that of 𝛽 can be observed.

In summary, it can be observed that positive and negative𝑆𝑞 have opposite effects on the velocity profile. Moreover,𝛽 shows opposite effect on the velocity profile in case of
positive and negative 𝑆𝑞. However,𝑀𝑔 and𝑀𝑝 have similar
effects on the velocity profile irrespective of the sign of the

squeeze number. It is also observed that 𝑆𝑞,𝑀𝑔, and𝑀𝑝 have
similar effect while 𝛽 has opposite effect on the skin friction
coefficient.

6. Conclusion

This article presents a similarity solution for an unsteady
squeezing flow of the non-Newtonian Casson fluid with
MHD effect and passing through porous medium.The PDEs
were reduced to a highly nonlinear fourth-order ODE by
applying similarity transformations and then solved using
the Homotopy Perturbation Method (HPM) and the fourth-
order explicit Runge-Kutta method. Convergence and valid-
ity of the obtained solution was confirmed and found to
be in good agreement. A comprehensive analysis was also
performed to investigate the effect of various fluid factors like
squeeze number, Casson, permeability, andMHDparameters
on the velocity profile.

Appendix

Φ1𝑖, 𝑖 = 1, 2, . . . , 6 are the coefficients of various powers of 𝜂
in first-order solution:

Φ11 = 168𝑀𝑝𝛽 + 168𝑀𝑔𝛽 + 419𝑆𝑞𝛽,Φ12 = 336𝑀𝑝𝛽 + 336𝑀𝑔𝛽 + 873𝑆𝑞𝛽,Φ13 = 168𝑀𝑝𝛽 + 168𝑀𝑔𝛽 + 504𝑆𝑞𝛽,Φ14 = 28𝑆𝑞𝛽,Φ15 = 24𝑆𝑞𝛽,Φ16 = 2𝑆𝑞𝛽.

(A.1)

Φ2𝑗, 𝑗 = 1, 2, . . . , 11 are the coefficients of various powers of𝜂 in second-order solution:

Φ21 = {−12684672𝑀
2
𝑝𝛽2 − 25369344𝑀𝑝𝑀𝑔𝛽2 − 12684672𝑀2𝑔𝛽2−92692600𝑀𝑝𝑆𝑞𝛽2 − 92692600𝑀𝑔𝑆𝑞𝛽2 − 154163807𝑆2𝑞𝛽2,

Φ22 = {31135104𝑀
2
𝑝𝛽2 + 62270208𝑀𝑝𝑀𝑔𝛽2 + 31135104𝑀2𝑔𝛽2+205741536𝑀𝑝𝑆𝑞𝛽2 + 205741536𝑀𝑔𝑆𝑞𝛽2 + 324472661𝑆2𝑞𝛽2,

Φ23 = {−24216192𝑀
2
𝑝𝛽2 − 48432384𝑀𝑝𝑀𝑔𝛽2 − 24216192𝑀2𝑔𝛽2−135567432𝑀𝑝𝑆𝑞𝛽2 − 135567432𝑀𝑔𝑆𝑞𝛽2 − 188756568𝑆2𝑞𝛽2,

Φ24 = {672672𝑀𝑝𝑆𝑞𝛽2 + 672672𝑀𝑔𝑆𝑞𝛽2 + 1677676𝑆2𝑞𝛽2,
Φ25 = {5765760𝑀

2
𝑝𝛽2 + 11531520𝑀𝑝𝑀𝑔𝛽2 + 5765760𝑀2𝑔𝛽2+24216192𝑀𝑝𝑆𝑞𝛽2 + 24216192𝑀𝑔𝑆𝑞𝛽2 + 17976816𝑆2𝑞𝛽2,

Φ26 = {−1009008𝑀𝑝𝑆𝑞𝛽2 − 1009008𝑀𝑔𝑆𝑞𝛽2 + 332046𝑆2𝑞𝛽2,
Φ27 = {−1441440𝑀𝑝𝑆𝑞𝛽2 − 1441440𝑀𝑔𝑆𝑞𝛽2 − 1441440𝑆2𝑞𝛽2,
Φ28 = {+80080𝑀𝑝𝑆𝑞𝛽2 + 80080𝑀𝑔𝑆𝑞𝛽2,
Φ29 = 109928𝑆2𝑞𝛽2,
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Φ210 = 12376𝑆2𝑞𝛽2,
Φ211 = 168𝑆2𝑞𝛽2.

(A.2)
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