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To realize the fault diagnosis of bearing effectively, this paper presents a novel bearing fault diagnosis method based on Gaussian
restricted Boltzmannmachine (Gaussian RBM). Vibration signals are firstly resampled to the same equivalent speed. Subsequently,
the envelope spectrums of the resampled data are used directly as the feature vectors to represent the fault types of bearing. Finally,
in order to deal with the high-dimensional feature vectors based on envelope spectrum, a classifiermodel based onGaussian RBM is
applied. Gaussian RBM has the ability to provide a closed-form representation of the distribution underlying the training data, and
it is very convenient for modeling high-dimensional real-valued data. Experiments on 10 different data sets verify the performance
of the proposed method. The superiority of Gaussian RBM classifier is also confirmed by comparing with other classifiers, such as
extreme learningmachine, support vectormachine, and deep belief network.The robustness of the proposedmethod is also studied
in this paper. It can be concluded that the proposed method can realize the bearing fault diagnosis accurately and effectively.

1. Introduction

Bearing is the most important component of rotating
machinery. The majority of problems in rotating machinery
arise from the faulty bearing [1, 2]. When fault occurs in
bearing, it may lead to fatal breakdown and serious damage.
Therefore, the fault diagnosis of bearing is very important and
can yield good results.

Vibration signals usually contain lots of information
which can reflect the fault types of bearing. Therefore,
vibration-based monitoring techniques have been widely
used [3]. Feature extraction from vibration signals is a critical
step in bearing fault diagnosis. There are many feature
extraction methods, such as wavelet transform [4], empirical
mode decomposition (EMD) [5], andmorphological analysis
[6]. In order to further improve the accuracy and efficiency
of the diagnosis work, some new feature extraction methods
have been proposed in recent years. Reference [7] combined
wavelet leaders’ multifractal features and wavelet package
energy features together for the bearing fault diagnosis. Liu

et al. [8] extracted statistical features from several intrinsic
mode functions (IMFs) both in time and in frequency
domains. The aforementioned feature extraction methods
have been successfully used in the bearing fault diagnosis.
However, most of them are complex, and the computation of
the features is really a burden. Excessive irrelevant features
are often extracted from vibration signals. In order to fur-
ther improve the diagnosis accuracy, many feature selection
techniques have to be used [9]. This often makes the fault
diagnosis much more complex.

Envelope spectrum analysis is a common and wildly used
feature extraction method. When fault occurs in bearing, the
envelope spectrums of vibration signals would change and
the character frequency could be found. Envelope spectrums
can reflect the fault types of bearing in frequency domain
clearly. To make the feature extraction process more simple,
envelope spectrums are used directly as the feature vectors
to represent different fault types in this paper. The variety
of speed would influence the envelope spectrum greatly. To
solve this problem, the vibration signals are resampled to
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the same equivalent speed [3]. Therefore, the feature vectors
based on envelope spectrum could be more robust and not
sensible to the change of speed.

Pattern recognition is another task of bearing fault diag-
nosis process. Artificial neural networks (ANN) [10] and
support vector machine (SVM) [11] are the most widely used
classifiers. However, these classifiers have some disadvan-
tages such as local optimal solution, low convergence rate,
and time-consuming, especially when dealing with high-
dimensional data.

In the past decades, pattern recognition techniques have
moved into a new platform of learning procedure called deep
learning [12]. In deep learning, Gaussian restricted Boltz-
mann machine (Gaussian RBM) has the ability to provide
a closed-form representation of the distribution underlying
the training data [13]. Therefore, Gaussian RBM can be used
for modeling high-dimensional real-valued data. Successful
implementations of Gaussian RBM have been reported in
digit recognition [14], image recognition [15], and so forth.
However, Gaussian RBM has not been applied in the field of
bearing fault diagnosis so far.

In this paper, we propose a novel bearing fault diagnosis
method based on Gaussian RBM. In the proposed method,
the vibration signals are resampled to the same equiva-
lent speed. Then, the envelope spectrums of the resampled
vibration signals are used directly as the feature vectors to
represent the fault types of bearing. Finally, a Gaussian RBM
classifier model is established to realize the fault diagnosis of
bearing.The experiments on 10 different data sets are used to
demonstrate the effectiveness of the proposedmethod. Gaus-
sian RBM classifier is also compared with other classifiers,
and the results indicate that Gaussian RBM classifier can have
a better performance.The robustness of the proposedmethod
is also studied in this paper.

In this paper, the feature extraction method based on
envelope spectrum is described briefly in Section 2. In
Section 3, Gaussian RBM is introduced, and a Gaussian RBM
classifier model is established. Section 4 introduces the fault
diagnosis methodology. In Section 5, the performance of the
proposedmethod is studied. Finally, a conclusion is drawn in
Section 6.

2. Feature Extraction

When fault occurs in bearing, the envelope spectrum of
vibration signal contains a considerable amount of fault
information. Statistical features extracted from envelope
spectrum are often used for bearing fault diagnosis. However,
the process of selecting the most sensitive features is a task
which needs considerable expertise. In order to avoid too
complex feature extraction process, the envelope spectrum
of vibration signal is used directly to construct the feature
vector in this paper. Because the feature vector is influenced
greatly by the speed, the vibration signal should be resampled
firstly. By resampling, we can get the same number of sample
points at every revolution of bearing.Therefore, the influence
of different speeds can be reduced. In the resampling process,
an antialiasing (low-pass) FIR filter is applied to compensate

W

h

v

h1 h2 hj

· · ·

· · ·

�1 �2 �3 �i

Figure 1: Architecture of Gaussian RBM.

for the signal delay [3]. In this paper, the feature extraction
method can be described as below.

Step 1. Resample the vibration signals to the same equivalent
speed.

Step 2. Get the envelope spectrum of the resampled vibration
signals and use it directly as the feature vector to represent the
fault type of bearing. The feature vector can be formulated as

T = [𝑓0, 𝑓1, . . . , 𝑓𝑛] , (1)

where T is the feature vector and 𝑓0, 𝑓1, . . . , 𝑓𝑛 are the values
of the envelope spectrum lines.

3. Gaussian RBM Classifier Model

3.1. Architecture of Gaussian RBM. The architecture of Gaus-
sian RBM is shown in Figure 1. Gaussian RBM is made up
by a visible layer k and a hidden layer h, and it is a bipartite
undirected graphical model. For the visible layer k and the
hidden layer h, all visible units are connected to all hidden
units, and there are no connections between any two units in
the same layer [13]. The visible units of Gaussian RBM are
linear units with independent Gaussian noise, whereas the
hidden units are binary stochastic units [14, 15].

Gaussian RBM is an energy-based stochastic neural
network [14, 16].The joint probability distribution over visible
layer k and hidden layer h is defined by an energy function.
The energy function is given as

𝐸 (v, h; 𝜃) = ∑
𝑖

(V𝑖 − 𝑏𝑖)22𝜎2𝑖 − a𝑇h − v𝑇Wh. (2)

The joint distribution is formulated as

𝑝 (v, h; 𝜃) = 1𝑍 (𝜃) exp (−𝐸 (v, h; 𝜃)) ,
𝑍 (𝜃) = ∫∑

ℎ

exp (−𝐸 (k, h; 𝜃)) 𝑑V, (3)

where 𝑍(𝜃) is the normalizing factor.
Based on the joint distribution of Gaussian RBM, the

probability that the model assigns to a visible vector is given
as

𝑝 (k; 𝜃) = ∑
ℎ

exp (−𝐸 (k, h; 𝜃))∫∑ℎ exp (−𝐸 (k, h; 𝜃)) 𝑑V . (4)
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For Gaussian RBM, since there are no visible-visible or
hidden-hidden connections, the conditional probability𝑝(ℎ |
k; 𝜃) and 𝑝(V | h; 𝜃) can be expressed as

𝑝 (ℎ𝑗 = 1 | k; 𝜃) = 11 + exp (− (𝑎𝑗 + ∑𝑖 𝑤𝑖𝑗 (V𝑖/𝜎𝑖))) , (5)

𝑝 (V𝑖 = 𝑥 | h; 𝜃)
= 1√2𝜋𝜎𝑖 exp(−(𝑥 − 𝑏𝑖 − 𝜎𝑖∑𝑗 ℎ𝑗𝑤𝑖𝑗)22𝜎2𝑖 ) , (6)

where 𝑎𝑗 and 𝑏𝑖 are biases, 𝜎𝑖 is standard deviation of visible
unit V𝑖, and 𝑥 is real number.

In order tomake themodel implementationmore simple,
each component of the input data is normalized to zeromean
and unit variance by a simple linear transformation [17].

3.2. Training Gaussian RBM. Training a Gaussian RBM
means adjusting its parameters such that the probability
distribution of the model represents fits the training data
as much as possible [13]. For Gaussian RBM, 𝑝(k; 𝜃) is
the probability of the model simply on the input data. By
maximizing 𝑝(k; 𝜃), the training of Gaussian RBM can be
realized [18, 19]. Therefore, the gradient of the negative log
probability of the visible layer kwith respect to the parameters𝜃 can be obtained from

𝜕 log𝑝 (k; 𝜃)𝜕𝑤𝑖𝑗 = ⟨V𝑖ℎ𝑗⟩data − ⟨V𝑖ℎ𝑗⟩model ,
𝜕 log𝑝 (k; 𝜃)𝜕𝑎𝑗 = ⟨ℎ𝑗⟩data − ⟨ℎ𝑗⟩model ,
𝜕 log𝑝 (k; 𝜃)𝜕𝑏𝑖 = ⟨V𝑖⟩data − ⟨V𝑖⟩model ,

(7)

where ⟨⋅⟩data is an expectation with respect to the training
data’s distribution and ⟨⋅⟩model denotes an expectation with
respect to the distribution defined by Gaussian RBM.

According to (7) and stochastic gradient descent, the
update rule of the parameters 𝜃 is given as

Δ𝑤𝑖𝑗 = 𝜖 (⟨V𝑖ℎ𝑗⟩data − ⟨V𝑖ℎ𝑗⟩model) ,
Δ𝑎𝑗 = 𝜖 (⟨ℎ𝑗⟩data − ⟨ℎ𝑗⟩model) ,
Δ𝑏𝑖 = 𝜖 (⟨V𝑖⟩data − ⟨V𝑖⟩model) ,

(8)

where 𝜖 is a learning rate.
Due to the special architecture of Gaussian RBM, it is

very easy to get the unbiased sample of ⟨⋅⟩data. However, the
unbiased sample of ⟨⋅⟩model is intractable to computer. In
order to solve this problem, Hinton developed a fast learning
procedure based on contrastive divergence (CD) [13, 16]. The
algorithm starts by setting the states of the visible units to a
training vector.Then the binary states of the hidden units are
all computed in parallel using (5). Once the binary states have
been chosen for the hidden units, a “reconstruction” can be
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Figure 2: Architecture of Gaussian RBM classifier.

produced by setting each V𝑖 to 1 with a probability given by
(6). The change of the parameters 𝜃 is then given by

Δ𝑤𝑖𝑗 ≈ 𝜖 (⟨V𝑖ℎ𝑗⟩data − ⟨V𝑖ℎ𝑗⟩recon) ,
Δ𝑎𝑗 ≈ 𝜖 (⟨ℎ𝑗⟩data − ⟨ℎ𝑗⟩recon) ,
Δ𝑏𝑖 ≈ 𝜖 (⟨V𝑖⟩data − ⟨V𝑖⟩recon) .

(9)

In order to train Gaussian RBM more efficiently, the
training set is divided into many small “minibatches” of
several cases. After estimating the gradient on the minibatch,
the parameters of the model are updated. To avoid having
to change the learning rate when the size of a minibatch is
changed, it is helpful to divide the total gradient computed
on a minibatch by the size of the minibatch [19].

3.3. Classifier Model. After Gaussian RBM’s training process,
the hidden layer could extract features from the visible layer.
The extracted features (the output of the hidden layer) are
better for classification than the input data. As shown in
Figure 2, the Gaussian RBM classifier consists of three layers,
namely, visible layer, hidden layer, and output layer. The
visible layer and the hidden layer form a Gaussian RBM.The
hidden layer and the output layer form a BP network.

The training of Gaussian RBM classifier contains two
main steps, namely, pretraining and backpropagation train-
ing. In the pretraining process, Gaussian RBM is trained in an
unsupervised manner. The pretraining process is described
in Section 3.2. In the backpropagation training process,
Gaussian RBM classifier is to be trained with the target values
in a supervised manner.
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Figure 3: Structure diagram of the proposed bearing fault diagnosis method.

4. The Proposed Bearing Fault
Diagnosis Method

The diagram of the proposed bearing fault diagnosis method
is depicted in Figure 3.Thewhole procedure can be described
as follows.

Step 1. Acquire vibration signals through bearing experiment
system.

Step 2. Preprocess vibration signals by resampling and make
them have the same equivalent speed.

Step 3. Get the envelope spectrums of the resampled vibra-
tion signals and use them directly as the feature vector to
represent the fault type of bearing.

Step 4. Build a training data set and testing data set.

Step 5. Develop the Gaussian RBM classifier model and train
it by inputting the training data set.

Step 6. Realize the bearing fault diagnosis by using the
trained Gaussian RBM classifier model.

5. Experiments

5.1. Experiment System and Experiment Data. The experi-
ment data used in this paper are obtained from the Case
Western Reserve University Bearing Data Center [20]. The
bearing experiment system consists of a 2 hp induction
motor, a torque transducer, accelerometer, a dynamometer,
and so on, as shown in Figure 4. The bearing used in the
experiment is 6205-2RS JEM SKF deep groove ball bearing.
Single-point faults with different fault diameters (7, 14, and
21mil) are introduced to the driving end bearing using
electrodischarge machining.The bearings with different fault
diameters (7, 14, and 21mil) are tested under four different

Figure 4: Bearing experiment system.

loads (0, 1, 2, and 3 hp). In the experiment, the speeds of the
motor would change because of different loads. In order to
acquire the vibration signals, an accelerometer is placed at the
drive end of the motor. A data recorder is used to collect the
vibration signals with the sample frequency 12 kHz. All the
experiment data used in this paper are listed in Table 1.

5.2. Feature Extraction and Data Sets. Figure 5 displays the
time domain signals of some fault types under four different
loads. Each signal contains 2048 points. From these signals,
it is not easy to identify the fault types.

All the data in Table 1 are resampled to the same
equivalent speed 1772 r/min. Then, the resampled data are
truncated into time-series with 2048 points, and the envelope
spectrums of these time-series are used directly as the feature
vectors to represent the fault types of bearing. Finally, all the
feature vectors (samples) are separated into 10 different data
sets, which include different fault types under four different
loads (0 hp, 1 hp, 2 hp, and 3 hp). Each sample of the data sets
contains 1024 points.

In many published references [7, 21, 22], the authors
analyzed only a few fault types, and the training data and
the testing data have the same speed and load. However, the
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Figure 5: Time domain signals of some fault types under four different loads: (a) normal; (b) inner race fault (7mil); (c) outer race fault
(7mil); (d) ball fault (7mil); (e) inner race fault (14mil); (f) outer race fault (14mil); and (g) ball fault (14mil). The colors blue, red, purple,
and green represent the 0 hp, 1 hp, 2 hp, and 3 hp load, respectively.

Table 1: Experiment data description.

Fault diameter (mil) Load (hp) Speed (r/min) Normal Inner race Outer race Ball

0

0 1797 Normal 0 — — —
1 1772 Normal 1 — — —
2 1750 Normal 2 — — —
3 1730 Normal 3 — — —

7

0 1797 — IR007 0 OR007@6 0 B007 0
1 1772 — IR007 1 OR007@6 1 B007 1
2 1750 — IR007 2 OR007@6 2 B007 2
3 1730 — IR007 3 OR007@6 3 B007 3

14

0 1797 — IR014 0 OR014@6 0 B014 0
1 1772 — IR014 1 OR014@6 1 B014 1
2 1750 — IR014 2 OR014@6 2 B014 2
3 1730 — IR014 3 OR014@6 3 B014 3

21

0 1797 — IR021 0 OR014@6 0 B021 0
1 1772 — IR021 1 OR014@6 1 B021 1
2 1750 — IR021 2 OR014@6 2 B021 2
3 1730 — IR021 3 OR014@6 3 B021 3

running conditions of bearing are very complex in engineer-
ing application, and the fault diagnosis method should be
robust and insensible to the variation of speed and load. For
all the data sets in this paper, only the samples under 0 hp
load are used for training, and the rest of samples under 0 hp,
1 hp, 2 hp, and 3 hp load are used for testing. The details of 10
different data sets are presented in Table 2.

The feature vectors of some fault types under four
different loads are shown in Figure 6. The dimension of each
feature vector is 1024. The feature vectors of the same fault
type are close to each other, while that of different fault types
can be clearly distinguished. It means that the feature vectors
extracted by the proposed method can represent the fault
types of bearing very well. Furthermore, the feature vectors



6 Mathematical Problems in Engineering

0

10

20

0 1024 2048 3072 4096A
m

pl
itu

de
 (V

)

(a)

0

100

200

0 1024 2048 3072 4096A
m

pl
itu

de
 (V

)

(b)

0
200

500

0 1024 2048 3072 4096A
m

pl
itu

de
 (V

)

(c)

0

20

40

0 1024 2048 3072 4096A
m

pl
itu

de
 (V

)

(d)

0

50

100

0 1024 2048 3072 4096A
m

pl
itu

de
 (V

)

(e)

0

10

20

0 1024 2048 3072 4096A
m

pl
itu

de
 (V

)

(f)

0 1024 2048 3072 4096
0

20

50

A
m

pl
itu

de
 (V

)

(g)

Figure 6: Feature vectors of some fault types under four different loads: (a) normal; (b) inner race fault (7mil); (c) outer race fault (7mil);
(d) ball fault (7mil); (e) inner race fault (14mil); (f) outer race fault (14mil); and (g) ball fault (14mil). The colors blue, red, purple, and green
represent the 0 hp, 1 hp, 2 hp, and 3 hp load, respectively.

Table 2: Details of 10 different data sets.

Data set Training data Testing data Fault diameter (mil) Fault type Classification label
D070707 160 240 0 7 7 7 N I O B 1 2 3 4
D141414 160 240 0 14 14 14 N I O B 1 2 3 4
D212121 160 240 0 21 21 21 N I O B 1 2 3 4
DINN 160 240 0 7 14 21 N I I I 1 2 3 4
DOUT 160 240 0 7 14 21 N O O O 1 2 3 4
DBALL 160 240 0 7 14 21 N B B B 1 2 3 4
D071421 160 240 0 7 14 21 N I O B 1 2 3 4
D142107 160 240 0 14 21 7 N I O B 1 2 3 4
D210714 160 240 0 21 07 14 N I O B 1 2 3 4

DALL 400 600

0 N 1
7 14 21 I 2 3 4
7 14 21 O 5 6 7
7 14 21 B 8 9 10

N—normal, B—ball fault, I—inner race fault, O—inner race fault.

are robust and not very sensible to the change of speed and
load.

5.3. Results and Analysis. Gaussian RBM classifier is utilized
to realize the automatic recognition of the bearing fault types.
For Gaussian RBM classifier, the visible layer and the output
layer are constructed with neurons denoting the input data
and the target classes, respectively, whereas 1000 neurons are
used for the hidden layer.Theminibatch size is set equal to the
number of target classes. The learning rates for weights and

biases are set to 0.001.The numbers of epochs for pretraining
and backpropagation training are 50 and 100, respectively.

In order to show the superiority of Gaussian RBM
classifier, other methods, such as extreme learning machine
(ELM), support vector machine (SVM), and deep belief net-
work (DBN), are also used for comparison in this paper. For
ELM, the number of neurons in the hidden layer is set to 1000.
For SVM, its type is one-against-all and the kernel function is
selected as Gaussian function. For DBN, there are two hidden
layers with 1000 and 100 neurons, respectively. The visible
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Table 3: Classification results of the data sets.

Data set ELM (%) SVM (%) DBN (%) Gaussian RBM classifier (%)
D070707 95.92 95.88 99.33 100
D141414 91.53 97.44 98.79 100
D212121 97.15 98.69 99.58 100
DINN 100 94.50 87.25 100
DOUT 94.63 98.81 99.41 99.75
DBALL 76.18 82.75 89.7 95.33
D071421 85.12 89.69 92.2 97.99
D142107 92.99 93.56 96.01 100
D210714 95.49 99.19 99.28 100
DALL 71.43 89.52 90.75 93.25

layer of DBN is selected as the Gaussian neurons. InDBN, the
minibatch size, the learning rates, and the numbers of epochs
for pretraining and backpropagation training are the same as
Gaussian RBM classifier. To account for the stochastic nature
of machine learning, the classification process is repeated for
10 times and then the results are averaged. Table 3 summarizes
the classification results of the above methods.

From Table 3, it can be seen that Gaussian RBM classifier
performs better than ELM, SVM, and DBN for all the data
sets. ELM is suitable for dealing with high-dimensional data,
and its training process is very fast. However, the random
choice of input weights and biases easily causes the so-called
hidden layer output matrix not full column rank, and this
lowers the effectiveness of ELM. For most of the data sets,
ELM could achieve high classification accuracy. Because the
complexity of DBALL and DALL is higher than the other
data sets in Table 2, their classification accuracies achieved by
ELMare only 76.18% and 71.43%, respectively. SVMperforms
better than ELM for most data sets except D070707 and
DINN. However, the training process of SVM is quite time-
consuming. DBN is a deep neural network; it can learn
high complexity relationship between the input data and the
target classes in the deep learning process. DBN performs
better than ELM and SVM for most data sets. In this paper,
the training processes of Gaussian RBM and DBN are the
same, but the former has a simpler architecture. This makes
Gaussian RBM classifier learn the relationship between the
input data and the target classes much more efficiently.
Therefore, Gaussian RBM classifier could outperform DBN
for all the data sets.

5.4. Robustness of the ProposedMethod. In engineering appli-
cation, the running conditions of bearing are often very
complex. The robustness is very important for the fault
diagnosis method. DALL is the most complex data set in
Table 2. For a clear understanding of the robustness of the
proposed method, we use DALL to illustrate the robustness
of the proposed method in this paper.

The training data of DALL are samples under 0 hp load,
and they are replaced by the samples under 1 hp, 2 hp, and
3 hp load.Therefore, we can get four different data sets which
are denoted as DALL 0, DALL 1, DALL 2, and DALL 3,
respectively. For each data set, the classification process is
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Figure 7: Classification results for DALL 0, DALL 1, DALL 2, and
DALL 3.

repeated for 10 times, and the results are displayed in Figure 7.
Although the training data are under different loads, the
classification accuracies of four different data sets are still
very high. The average classification accuracies for DALL 0,
DALL 1, DALL 2, and DALL 3 are 93.25%, 95.15%, 96.08%,
and 94.57%, respectively. In the experiment, the speeds of
the motor would change under different loads. The results in
Figure 7 demonstrate that the proposed method has a high
robustness and is not sensible to the change of load and speed.

6. Conclusions

This paper has proposed a novel bearing fault diagnosis
method based on Gaussian RBM. In the proposed method,
the vibration signals are firstly resampled to the same equiva-
lent speed. Then, the envelope spectrums of the resampled
vibration signals are used directly as the feature vectors to
represent the fault types of bearing. Finally, to deal with
the high-dimensional feature vectors based on envelope
spectrum, a Gaussian RBM classifier is applied to realize the
bearing fault diagnosis. Experiment on ten different data sets
verifies the performance of the proposed method. Gaussian
RBM classifier is also compared with ELM and DBN, and the
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result demonstrates that Gaussian RBM classifier has a better
performance. The robustness of the proposed method is also
verified in this paper. It can be concluded that the proposed
method can realize the fault diagnosis of bearing accurately
and effectively.
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