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This paper investigates the distributed shortest-distance problem of multiagent systems where agents satisfy the same continuous-
time dynamics. The objective of multiagent systems is to find a common point for all agents to minimize the sum of the distances
from each agent to its corresponding convex region. A distributed consensus algorithm is proposed based on local information. A
sufficient condition also is given to guarantee the consensus. The simulation example shows that the distributed shortest-distance
consensus algorithm is effective for our theoretical results.

1. Introduction

In recent years, distributed control of multiagent systems has
attracted considerable attention within control community
because of its important applications including distributed
task allocation, distributed motion planning, and distributed
alignment problems [1–8]. For example, in [1], Nedić et al.
introduced a distributed projected consensus algorithm for
discrete-time multiagent systems where each agent lies in
a closed convex set and gave corresponding convergence
analysis on dynamically changing balanced graphs. Founded
on the work of [1], [5, 6] considered the networks of fixed and
switching topologies. In [7], Matei and Baras proposed the
consensus-based multiagent distributed subgradient method
to solve the collaborative optimization of an objective func-
tion. In [8], Lin and Ren studied the constrained consen-
sus problem in unbalanced networks with communication
delays.

In this paper, we will study the distributed control prob-
lem with shortest-distance constraints. Distributed shortest-
distance consensus problem is one important problem in the
distributed control of multiagent systems. The objective of
multiagent systems is to find a common point for all agents to
minimize the sum of squared distances from each agent to its
corresponding convex region. For example, [9] investigated

consensus and optimization problems for directed networks
of agents with external disturbances. Currently, most of the
existing related works concentrate on the case where the
intersection set of all convex regions is nonempty [1, 10–12].
A projected consensus algorithm was proposed to solve the
constrained consensus problemwhere each agent is restricted
in its own convex set [1]. Reference [10] proposed a class
of subgradient-based methods, where some estimate of the
optimal solution can be delivered over the network through
randomized iteration. In [11], Johansson et al. introduced a
subgradient method based on consensus steps to solve cou-
pled optimization problems with fixed undirected topology.
In [12], Lou et al. proposed an approximately projected con-
sensus algorithm to achieve the intersection of convex sets. In
[13], Wang and Elia proposed a distributed continuous-time
algorithm to achieve optimization by controlling the sum of
subgradients of convex functions. However, the case where
the intersection set of all convex regions is empty is rarely
concerned. In [14], the case of no intersection is studied, but
the sign functions are used to make the system nonsmooth.
Reference [15] investigated a distributed optimization prob-
lem and proposed a subgradient projection algorithm for
multiagent systems subject to nonidentical constraints and
communication delays under local communication. Com-
paring with [1, 12], this paper focuses on the constrained
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problem where all convex regions have no intersection and
the undirected graph is connected. Following thework of [14],
we investigate the distributed control problem with shortest-
distance constraints and propose a new distributed shortest-
distance consensus algorithm. By a Lyapunov approach, a
sufficient condition is given to make all agents converge to
the optimal set of the shortest-distance problem. Finally, we
provide a simulation example to show that the distributed
shortest-distance consensus algorithm is effective for our
theoretical results. Different from [14], we calculate the
difference and the Euclidean norm between two different
agents and use the ratio of them to replace the sign function.
It makes the system smoother than that of [14].

2. Preliminaries

2.1. Graph Theory. Let G(𝑉,E, 𝐴) be an undirected graph of
node 𝑛, where V = {𝑠1, . . . , 𝑠𝑛} is the set of nodes and 𝜀 ⊆
V×V is the set of edges. The node indexes belong to a finite
index setI = {1, 2, 3, . . . , 𝑛}. An edge ofG is denoted by 𝑒𝑖𝑗 =(𝑠𝑖, 𝑠𝑗), where node 𝑠𝑖 can obtain information from node 𝑠𝑗.
Theweighted adjacencymatrix is denoted by𝐴 = {𝑎𝑖𝑗}, where𝑎𝑖𝑖 = 0, 𝑎𝑖𝑗 = 𝑎𝑗𝑖 > 0 if and only if (𝑠𝑖, 𝑠𝑗) ∈ 𝜀 and 𝑠𝑖 ̸= 𝑠𝑗. Since
the graph is considered undirected, the adjacency matrix𝐴 is
a symmetric nonnegativematrix.The set of neighbors of node𝑠𝑖 is denoted by𝑁𝑖 = {𝑠𝑗 ∈ V; (𝑠𝑖, 𝑠𝑗) ∈ E}. The in-degree and
out-degree of node 𝑠𝑖 are defined as 𝑑𝑖𝑛(𝑠𝑖) = ∑𝑛𝑗=1 𝑎𝑗𝑖 and𝑑𝑜(𝑠𝑖) = ∑𝑛𝑗=1 𝑎𝑖𝑗. Then, the Laplacian corresponding to the
undirected graph is defined as 𝐿 = [𝑙𝑖𝑗], where 𝑙𝑖𝑗 = 𝑑𝑜(𝑠𝑖) and𝑙𝑖𝑗 = −𝑎𝑖𝑗, 𝑖 ̸= 𝑗. Obviously, the Laplacian of any undirected
graph is symmetric. A path is a sequence of ordered edges
of the form (𝑠𝑖1, 𝑠𝑖2), (𝑠𝑖2, 𝑠𝑖3), . . ., where 𝑖𝑗 ∈ I and 𝑠𝑖𝑗 ∈ V. If
there is a path from every node to every other node, the graph
is said to be connected [16].

Lemma 1 (see [16]). If the undirected graph G is connected,
then the Laplacian 𝐿 ofG has the following properties:

(1) Zero is an eigenvalue of 𝐿, and 1𝑛 is the corresponding
eigenvector; that is, 𝐿1𝑛 = 0.

(2) The rest 𝑛 − 1 eigenvalues are all positive and real.
2.2. ConvexTheory. Let dist(𝑥, 𝑋) be the standard Euclidean
distance of a vector 𝑥 from a set𝑋; that is,

dist (𝑥, 𝑋) = inf
𝑥∈𝑋

‖𝑥 − 𝑥‖ . (1)

The projection of vector 𝑥 on a closed convex set𝑋 is denoted
by the projection term 𝑆𝑋(𝑥); that is,

𝑆𝑋 (𝑥) = argmin
𝑥∈𝑋

‖𝑥 − 𝑥‖ , (2)

where ‖𝑥‖ denotes the standard Euclidean norm, ‖𝑥‖ = √𝑥𝑇𝑥
[17].

Lemma 2 (see [1]). Suppose that 𝑋 is a nonempty closed
convex set in R𝑚, the squared distance function 𝜌(𝑥) =

(1/2)‖(𝑥 − 𝑆𝑋(𝑥))‖2, 𝑥 ∈ R𝑚 is continuously differentiable in𝑥. Then, we have󵄩󵄩󵄩󵄩𝑆𝑋 (𝑥) − 𝑦󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑆𝑋 (𝑥) − 𝑥󵄩󵄩󵄩󵄩2 ,󵄩󵄩󵄩󵄩𝑆𝑋 (𝑥) − 𝑆𝑋 (𝑧)󵄩󵄩󵄩󵄩 ≤ ‖𝑥 − 𝑧‖ ,
(𝑆𝑋 (𝑥) − 𝑆𝑋 (𝑧))𝑇 (𝑥 − 𝑧) ≥ 󵄩󵄩󵄩󵄩𝑆𝑋 (𝑥) − 𝑆𝑋 (𝑧)󵄩󵄩󵄩󵄩2 ,

𝑑12 (󵄩󵄩󵄩󵄩𝑥 − 𝑆𝑋 (𝑥)󵄩󵄩󵄩󵄩2) = (𝑆𝑋 (𝑥) − 𝑥) 𝑑𝑥,
(3)

where 𝑥, 𝑧 ∈ R𝑚, 𝑦 ∈ 𝑋, and 𝑑(⋅) is differential operator.
Lemma 3 (see [18]). LaSalle’s invariance principle: consider
an autonomous system of the form 𝑥̇ = 𝑓(𝑥), with 𝑓(𝑥)
continuous, and let 𝑉(𝑥) : R𝑛 → R be a scalar function with
continuous first partial derivatives on Ω𝑙 = {𝑥 ∈ R𝑛 : 𝑉(𝑥) ≤𝑙}. Assume that

(1) for some 𝑙 > 0 the set Ω𝑙 defined by 𝑉(𝑥) ≤ 𝑙 is
bounded.

(2) 𝑉̇(𝑥) ≤ 0 for all 𝑥 in Ω𝑙.
IfΩ𝑙 extends to the whole spaceR𝑛, then global asymptotic

stability can be established. Define 𝑅 = {𝑥 ∈ R𝑛 : 𝑉̇(𝑥) = 0}.
Then if 𝑅 contains no other trajectories other than 𝑥 = 0, then
the origin 0 is asymptotically stable. In summary,

(1) if 𝑉(𝑥) is a negative semidefinite in a region Ω, where𝑉(𝑥) ≤ 0, then a solution starting in the interior of Ω
remains there;

(2) if, in addition, no solutions (except the equilibrium 𝑥 =0) remain in 𝑅 (the subset of Ω where 𝑉̇(𝑥) = 0), then
all solutions starting in the interior of Ω will converge
to the equilibrium.

Lemma 4 (see [19]). Let 𝑓0(𝜒) : R𝑚 → R be a differentiable
convex function. 𝑓0(𝜒) is minimized if and only if 𝑑𝑓0(𝜒)/𝑑𝜒 =0.
3. Problem Description and Results

3.1. Problem Description. The multiagent system under con-
sideration contains 𝑛 agents, where each agent corresponds to
a certain bounded convex set, denoted by 𝑋𝑖. Our objective
is to design a distributed consensus algorithm for the system
to make all agents able to reach consensus and minimize the
sum of squared distances between the global point and the
convex sets.

12
𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩(𝑥 − 𝑆𝑋𝑖 (𝑥))󵄩󵄩󵄩󵄩󵄩2 , 𝑋𝑖 ∈ R
𝑚. (4)

We assume that the closed set 𝑋𝑖 ∈ R𝑚 is nonempty,
R𝑚 is the set of all dimensional real column vectors, and⋂𝑛𝑖=1𝑋𝑖 = 0. In other words, we need to find a global optimal
point that minimizes the sum of squared distances form 𝑖 to
its all closed convex sets. Each agent is assumed to have the
following continuous-time dynamics:

𝑥̇𝑖 (𝑡) = 𝑢𝑖 (𝑡) , 𝑖 ∈ I, (5)
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where 𝑥𝑖 ∈ R𝑚 is the state of the 𝑖th agent,I is the index set{1, 2, . . . , 𝑛}, and 𝑢𝑖(𝑡) is the control input of the 𝑖th agent.

3.2. A New Distributed Shortest-Distance Consensus Algo-
rithm. We propose a new distributed shortest-distance con-
sensus algorithm as the following form:

𝑢𝑖 (𝑡) = 𝛼 ∑
𝑗∈𝑁𝑖(𝑡)

𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩 + 𝑆𝑋𝑖 (𝑥𝑖 (𝑡)) − 𝑥𝑖 (𝑡) ,
𝑖 ∈ I,

(6)

where 𝛼 > 0 is a positive integer andI is the index set {1, 2,. . . , 𝑛} and 𝑥𝑗(𝑡) ̸= 𝑥𝑖(𝑡).𝑁𝑖(𝑡) is neighbor set of agent 𝑖 at time𝑡, and 𝑥𝑖(𝑡) is the state of agent 𝑖 at the time 𝑡. If 𝑥𝑗(𝑡) = 𝑥𝑖(𝑡),
we define ∑𝑗∈𝑁𝑖(𝑡)((𝑥𝑗(𝑡) − 𝑥𝑖(𝑡))/‖𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)‖) = 0.
Assumption 5. Suppose that, for 𝑖, the closed set𝑋𝑖 is compact
set; that is,

‖𝑥‖ ≤ 𝑔, 𝑔 > 0, (7)

where 𝑖 ∈ I and 𝑥 ∈ 𝑋𝑖.
Assumption 6. Suppose that the set𝑋𝑖 ∈ R𝑚 is nonempty and
the set𝑋𝑖 satisfies

𝑛⋂
𝑖=1

𝑋𝑖 = 0. (8)

Theorem7. Suppose that the undirected graphG is connected.
Under Assumption 6, if 𝛼 > 2𝑛𝑔, using Lemmas 2 and 3 for (4),
the convex function (4) is minimized as 𝑡 → +∞.

Proof. Define a Lyapunov function

𝑉𝑎 (𝑡) = 12
𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) −
1𝑛
𝑛∑
𝑗=1

𝑥𝑗 (𝑡)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

. (9)

According to 𝑑(1/2)‖𝑥𝑖 − 𝑥𝑗‖2/𝑑𝑥 = (𝑥𝑖 − 𝑥𝑗)𝑇(𝑥̇𝑖 − 𝑥̇𝑗)
and (5)-(6), we get

𝑉̇𝑎 (𝑡) = 𝑛∑
𝑖=1

[
[
𝑥𝑖 (𝑡) − 1𝑛

𝑛∑
𝑗=1

𝑥𝑗 (𝑡)]]
𝑇

𝑥̇𝑖 (𝑡)

= 𝑛∑
𝑖=1

[
[
𝑥𝑖 (𝑡) − 1𝑛

𝑛∑
𝑗=1

𝑥𝑗 (𝑡)]]
𝑇

⋅ [
[
𝛼 ∑
𝑗∈𝑁𝑖(𝑡)

𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩 + 𝑆𝑋𝑖 (𝑥𝑖 (𝑡)) − 𝑥𝑖 (𝑡)]]
.

(10)

Suppose that the undirected graph G is connected. It
follows that

𝑉̇𝑎 (𝑡)
= 𝑛∑
𝑖=1

∑
𝑗∈𝑁𝑖(𝑡)

𝛼2 [𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)]𝑇 𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩
+ 𝑛∑
𝑖=1

[
[
𝑥𝑖 (𝑡) − 1𝑛

𝑛∑
𝑗=1

𝑥𝑗 (𝑡)]]
𝑇

𝑆𝑋𝑖 (𝑥𝑖 (𝑡))

− 𝑛∑
𝑖=1

[
[
𝑥𝑖 (𝑡) − 1𝑛

𝑛∑
𝑗=1

𝑥𝑗 (𝑡)]]
𝑇

[
[
𝑥𝑖 (𝑡) − 1𝑛

𝑛∑
𝑗=1

𝑥𝑗 (𝑡)]]
= 𝑛∑
𝑖=1

∑
𝑗∈𝑁𝑖(𝑡)

𝛼2 [𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)]𝑇 𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩
+ 𝑛∑
𝑖=1

[
[
𝑥𝑖 (𝑡) − 1𝑛

𝑛∑
𝑗=1

𝑥𝑗 (𝑡)]]
𝑇

𝑆𝑋𝑖 (𝑥𝑖 (𝑡))

− 𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) −
1𝑛
𝑛∑
𝑗=1

𝑥𝑗 (𝑡)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

.

(11)

Let ‖𝑥𝑖𝑚(𝑡) − 𝑥𝑗𝑚(𝑡)‖ denote the maximum distance be-
tween agent 𝑖 and agent 𝑗 at time 𝑡; that is,

󵄩󵄩󵄩󵄩󵄩𝑥𝑖𝑚 (𝑡) − 𝑥𝑗𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩 = max
𝑖,𝑗∈I

󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 . (12)

From 𝑖𝑚, 𝑗𝑚 ∈ I, we get

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) −
1𝑛
𝑛∑
𝑗=1

𝑥𝑗 (𝑡)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑥𝑖𝑚 (𝑡) − 𝑥𝑗𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩 . (13)

Since undirected graph G(𝑉,E, 𝐴) is connected, the
distance between node V𝑖𝑚 and node V𝑗𝑚 is less than the sum
of squared distances between agent 𝑖 and its neighbors; that
is,

󵄩󵄩󵄩󵄩󵄩𝑥𝑖𝑚 (𝑡) − 𝑥𝑗𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝑛∑
𝑖=1

∑
𝑗∈𝑁𝑖(𝑡)

󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 , (14)

󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ − [𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)]𝑇 𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩 . (15)

Combining (13)–(15), we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) −
1𝑛
𝑛∑
𝑗=1

𝑥𝑗 (𝑡)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑥𝑖𝑚 (𝑡) − 𝑥𝑗𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩

≤ − 𝑛∑
𝑖=1

∑
𝑗∈𝑁𝑖(𝑡)

[𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)]𝑇 𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩󵄩 .
(16)
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If 𝛼 > 2𝑛𝑔, substituting (7) and (11), we have

𝑉̇𝑎 (𝑡) = − 𝑛∑
𝑖=1

∑
𝑗∈𝑁𝑖(𝑡)

𝛼2 󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩

+ 𝑛∑
𝑖=1

[
[
𝑥𝑖 (𝑡) − 1𝑛

𝑛∑
𝑗=1

𝑥𝑗 (𝑡)]]
𝑇

𝑆𝑋𝑖 (𝑥𝑖 (𝑡))

− 𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) −
1𝑛
𝑛∑
𝑗=1

𝑥𝑗 (𝑡)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

≤ − 𝑛∑
𝑖=1

∑
𝑗∈𝑁𝑖(𝑡)

󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 (𝛼2 − 𝑛𝑔)

− 𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) −
1𝑛
𝑛∑
𝑗=1

𝑥𝑗 (𝑡)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

≤ − 𝑛∑
𝑖=1

∑
𝑗∈𝑁𝑖(𝑡)

󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 (𝛼2 − 𝑛𝑔) .

(17)

From (14),
𝑛∑
𝑖=1

∑
𝑗∈𝑁𝑖(𝑡)

󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 ≥ 󵄩󵄩󵄩󵄩󵄩𝑥𝑖𝑚 (𝑡) − 𝑥𝑗𝑚 (𝑡)󵄩󵄩󵄩󵄩󵄩
≥ √ 2𝑉𝑎 (𝑡)𝑛 .

(18)

Thus

𝑉̇𝑎 (𝑡) ≤ −√2𝑉𝑎 (𝑡)𝑛 . (19)

That is, 𝑉̇𝑎(𝑡)/√𝑉𝑎(𝑡) ≤ −√2/𝑛. And integrating both sides
of this inequality from 0 to 𝑡, we have

√𝑉𝑎 (+∞) − √𝑉𝑎 (0) ≤ −√2𝑛𝑡. (20)

Since 𝑉𝑎(𝑡) ≥ 0, it is clear that 𝑉𝑎(𝑡) vanishes to zero in finite
time and hence all agents reach a consensus in finite time.
Thus, there is a constant𝑇 > 0 such that𝑉𝑎(𝑡) = 0 and 𝑥𝑖(𝑡) =𝑥𝑗(𝑡) for all 𝑖, 𝑗 ∈ I and all 𝑡 > 𝑇. Thus

lim
𝑡→+∞

(𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)) = 0. (21)

Consider the average value of all agents, denoted by𝑥∗(𝑡) = (1/𝑛)∑𝑛𝑖=1 𝑥𝑖(𝑡), for 𝑡 > 𝑇. It is clear that
𝑥̇∗ (𝑡) = 1𝑛

𝑛∑
𝑘=1

𝑆𝑋𝑘 (𝑥∗ (𝑡)) − 𝑥∗ (𝑡) (22)

for all 𝑡 > 𝑇. Consider the Lyapunov function
𝑉𝑏 (𝑡) = 12

𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩𝑥∗ (𝑡) − 𝑆𝑋𝑖 (𝑥∗ (𝑡))󵄩󵄩󵄩󵄩󵄩2 ≤ 0 (23)

for 𝑡 > 𝑇.

1 2

34

Figure 1: Topology.

Calculating 𝑉̇𝑏(𝑡), for all 𝑡 > 𝑇, we have

𝑉̇𝑏 (𝑡) = 𝑛∑
𝑖=1

[𝑥∗ (𝑡) − 𝑆𝑋𝑖 (𝑥∗ (𝑡))]𝑇

⋅ [1𝑛
𝑛∑
𝑘=1

𝑆𝑋𝑘 (𝑥∗ (𝑡)) − 𝑥∗ (𝑡)]

= −1𝑛
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑛∑
𝑖=1

(𝑥∗ (𝑡) − 𝑆𝑋𝑖 (𝑥∗ (𝑡)))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2 .

(24)

Since each 𝑋𝑖 is bounded and 𝑉̇𝑏(𝑡) ≤ 0, thus 𝑉𝑏(𝑡) is
bounded. And fromLemma 2, (1/𝑛)∑𝑛𝑘=1 𝑆𝑋𝑘(𝑥∗(𝑡))−𝑥∗(𝑡) is
continuous. Note that𝑉𝑏(𝑡) ≤ 0; then from Lemma 3, we have𝑥∗(𝑡) converges to the set {𝑉̇𝑏(𝑡) = 0} as 𝑡 → +∞. 𝑉̇𝑏(𝑡) = 0
implies that (1/𝑛)∑𝑛𝑘=1 𝑆𝑋𝑘(𝑥∗(𝑡)) − 𝑥∗(𝑡) = 0. Thus

lim
𝑡→+∞

(1𝑛
𝑛∑
𝑘=1

𝑆𝑋𝑘 (𝑥∗ (𝑡)) − 𝑥∗ (𝑡)) = 0. (25)

Note that (𝑑/𝑑𝑡)(1/2)∑𝑛𝑖=1 ‖(𝑥∗(𝑡) − 𝑆𝑋𝑖(𝑥∗(𝑡)))‖2 = 𝑥∗(𝑡) −(1/𝑛)∑𝑛𝑘=1 𝑆𝑋𝑘(𝑥∗(𝑡)). From Lemma 4 and (25), the convex
function (4) is minimized as 𝑡 → +∞.

Remark 8. In Theorem 7, we only discuss the undirected
connected graphs and our future work will be directed to the
general jointly connected graphs.

4. Simulation

In this section, we provide a numerical example to show the
effectiveness ofTheorem7.Weuse the fixed topologywhich is
showed in Figure 1. And let 𝛼 = 10, 𝑋1 = {(𝑥11, 𝑥12)𝑇 ∈ R2 |‖(𝑥11, 𝑥12)𝑇‖ ≤ 5}, 𝑋2 = {(𝑥21, 𝑥22)𝑇 ∈ R2 | ‖(𝑥21, 𝑥22)𝑇 −(−10, 30)𝑇‖ ≤ 2.5}, 𝑋3 = {(𝑥31, 𝑥32)𝑇 ∈ R2 | ‖(𝑥31, 𝑥32)𝑇 −(20, 10)𝑇‖ ≤ 2.5}, and 𝑋4 = {(𝑥41, 𝑥42)𝑇 ∈ R2 | ‖(𝑥41, 𝑥42)𝑇 −(30, 30)𝑇‖ ≤ 2.5}. Figure 2 shows the simulation results.
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Figure 2: State trajectories of agents 1, 2, 3, and 4.
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Figure 3: Position-time (𝑎).

Figures 3 and 4 show the position trajectories, respec-
tively. It is obvious that all agents reach a consensus point that
is the optimal point of the function (4).This is consistent with
Theorem 7.

5. Conclusion

In the paper, we purpose a new distributed shortest-distance
algorithm for multiagent systems. The objective of multia-
gent systems is to find a common point for all agents to
minimize the sum of squared distances from each agent
to its corresponding convex regions. A sufficient condition
also is given to guarantee the consensus. And the simulation
example is given to show that the distributed shortest-
distance consensus algorithm is effective for our theoretical
results.

0

5

10

15

0 5 10 15 20 25 30 35 40 45 50

Figure 4: Position-time (𝑏).
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