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Camera calibration is a necessary process in the field of vision measurement. In this paper, we propose a flexible and high-accuracy
method to calibrate a camera. Firstly, we compute the center of radial distortion, which is important to obtain optimal results.Then,
based on the radial distortion of the divisionmodel, the camera intrinsic parameters and distortion coefficients are solved in a linear
way independently. Finally, the intrinsic parameters of the camera are optimized via the Levenberg-Marquardt algorithm. In the
proposed method, the distortion coefficients and intrinsic parameters are successfully decoupled; calibration accuracy is further
improved through the subsequent optimization process. Moreover, whether it is for relatively small image distortion or distortion
larger image, utilizing our method can get a good result. Both simulation and real data experiment demonstrate the robustness and
accuracy of the proposed method. Experimental results show that the proposed method can be obtaining a higher accuracy than
the classical methods.

1. Introduction

Camera calibration is an important part of the application
of photogrammetry that aims to compute the camera model
parameters from two-dimensional images [1, 2]. Camera
model parameters include intrinsic and extrinsic parameters.
The intrinsic parameters describe the geometry of imaging
process, while the extrinsic parameters indicate camera
position and attitude in the world coordinate system. Camera
calibration precision directly affects the measuring accuracy
of vision measurement system. Therefore, the study of a
flexible and high-precision camera calibration method has
very important significance.

Nowadays, the techniques of camera calibration can be
divided into two categories: the traditional camera calibration
and the self-calibration of the camera.The traditional camera
calibration methods use scene information, including the
points or lines with precise coordinates, to solve camera

parameters, while self-calibration methods only use the
relationship between the sequences of images to solve the
camera parameters. In general, to satisfy the high-accuracy
requirement, we always make use of the traditional camera
calibration method. Besides, the traditional method consists
of three types: the linear method, nonlinear optimization
method, and the two-step method. Hall et al. [3] introduced
the first linear method by computing the 3 × 4 transforma-
tion matrix based on the pinhole model. Later, the nonlinear
calibration method is developed by introducing a variety
of lens distortion [4–10]. Zhang [11] proposed a flexible
calibration technique for desktop vision system (DVS) by
using a printed planar calibration pattern, which is a typical
representative of the two-step method.

Recently, more research is dedicated to improving the
performance of the camera calibration. Wang et al. [12]
proposed a new calibration model of camera lens distortion,
which is according to a transform from ideal image plane
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to real sensor array plane. Ahmed and Farag [13] proposed
a robust approach to distortion calibration by using a least-
median-of-squares estimator based on the analysis of dis-
torted straight lines in the images. Later, Ricolfe-Viala and
Sánchez-Salmerón [14] presented a robust metric calibration
method with nonlinear camera lens distortion, which com-
putes the camera lens distortion isolated from the camera
calibration process under stable conditions, independently
of the computed lens distortion model or the number of
parameters. Many other researchers [15–19] also proposed
the nonlinear objective function in three-dimensional space
or distortion free space to minimize the calibration error to
improve the accuracy of the calibration.

However, in the above literatures, most of the calibration
methods employ the same nonlinear optimization methods.
And almost completely, the lens distortion coefficients and
other intrinsic and extrinsic camera parameters are estimated
in an optimization framework at the same time. According
to the report of Hartley [20], such nonlinear iteration can be
troublesome and may converge to the local minima without
selecting a good initial value. Moreover, due to the distortion
often coupling parameters in the camera’s internal parameters
and external parameters, methods which extend the calibra-
tion of the pinhole model to obtain the camera distortion
parameters lead to high internal parameters miscalculation
[7]. In addition, the coupling between the different param-
eters can make the estimation results quite unreliable [7,
13]. Therefore, it is important to use a different method to
estimate the camera distortion coefficients apart from the
pinhole model. In [14], Ricolfe-Viala and Sánchez-Salmerón
computed lens distortion model or the number of distortion
parameters independently. But they solved the distortion cen-
ter by a nonlinear minimization method. Although Ahmed
and Farag [13] successfully decoupled intrinsic parameters
and distortion coefficient, they relied on the fact that straight
lines in the scenemust always perspectively project to straight
lines in the image.Moreover, they assumed that the distortion
center is known. In [21], Fitzgibbon proposed a noniterative
method to estimate radial distortion by introducing the
division model. He also successfully decoupled intrinsic
parameters and distortion coefficient. However, the radial
distortion includes only one parameter in his work.

In this paper, a high-accuracy calibration method is
proposed. Different from [13, 14, 21], this method computes
the center of radial distortion firstly, which is important to
obtain optimal results. Afterwards, based on the division
model, the interior parameter and distortion coefficients of
the camera are estimated by linear method, which provide
a good initial value for the subsequent optimization. More-
over, our method can calculate camera intrinsic parameters
and any number of distortion coefficients. In addition, the
intrinsic parameters of the camera are optimized via the
Levenberg-Marquardt algorithm, and then we obtain more
accurate results. Experimental results show that the proposed
method can be obtaining a higher accuracy than the classical
methods.

This paper is organized as follows. Section 2 gives a brief
description of the camera model and the lens distortion
model. Section 3 describes the detail procedure of the
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Figure 1: The model of camera.

proposed camera calibration method. Section 4 verifies the
proposed calibration method by simulation experiments and
real data experiments. At last, this paper ends with several
important conclusions in Section 5.

2. Camera Model

The camera model is shown in Figure 1. Given one homoge-
neous coordinates point P𝑤 = (𝑋𝑤, 𝑌𝑤, 𝑍𝑤, 1)𝑇 in 3D space.
P𝑢 = (𝑋𝑢, 𝑌𝑢, 1)𝑇 is the perspective projection of P𝑤 in the
image plane based on pinhole model without lens distortion.
P𝑑 = (𝑋𝑑, 𝑌𝑑, 1)𝑇 is the real projection of P𝑤 in the image
plane of camera considering the lens distortion.

Without consideration of lens distortion, the mapping
between the 3D point P𝑤 and 2D image point P𝑢 is given by

𝑠P𝑢 = K [R t]P𝑤,
K = [[[

𝑓𝑢 𝑠𝑘 𝑢00 𝑓V V00 0 1 ]]] ,
(1)

where 𝑠 represents the nonzero scale factors; K is the camera
intrinsic matrix, with (𝑢0, V0) being the coordinates of the
principal point, 𝑓𝑢 and 𝑓V being the effective focal length
in pixels, and 𝑠𝑘 being the parameter describing the skew
of the two image axes; [R t] represent the rotation and
translation vector from the world coordinate system to the
camera coordinate system, respectively.
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Because of the plane calibration model used in our
calibration procedure, we assume that the model plane 𝑍𝑤 =0 with no loss of generality. From (1), we have

𝑠(𝑋𝑢𝑌𝑢1 ) = K ( r1 r2 r3 t)(𝑋𝑤𝑌𝑤01 )
= K (r1 r2 t)(𝑋𝑤𝑌𝑤1 ) ,

(2)

where r𝑖 is the 𝑖th columnof the rotationmatrixR. By abuse of
notation, we still denote the point on themodel plane byP𝑤 =(𝑋𝑤, 𝑌𝑤, 1)𝑇. Therefore, 3D point P𝑤 and its image point P𝑢
are related by a homographyH,𝑠P𝑢 = HP𝑤,

H = K (r1 r2 t) . (3)

With the influence of lens distortion, as shown in Figure 1,
the actual image point P𝑑 is not the point P𝑢, which is the
image plane intersection of the connection of the 3D point
P𝑤 and the optical center O𝑐, but it has some deviation.
Theoretical calculations will be carried out through the
actual image coordinates after correction for the ideal image
coordinates; the calibration process can be achieved through
distortion compensation model. Camera lens distortion was
first introduced by Conrady in 1919 with the decentring
lens distortion. Afterwards, Brown [22] proposed the radial,
decentring, and prism distortion model which has been
widely used. In general, the radial distortion is sufficient
for a high-accuracy measurement. Brown proposed the
Polynomial Model (PM), which is the most popular model
to describe radial distortion:

P𝑢 − e = (P𝑑 − e) ⋅ 𝐿 (𝑟𝑑, 𝑘) ,
with 𝐿 (𝑟𝑑, 𝑘) = (1 + 𝑘1𝑟2𝑑 + 𝑘2𝑟4𝑑 + ⋅ ⋅ ⋅) , (4)

where 𝑘1, 𝑘2, . . . are the distortion coefficients, e = (𝑑𝑢0,𝑑V0, 1)𝑇 is the homogeneous coordinate of the center of
distortion (COD), and 𝑟𝑑 is the pixel radius to e.

PM works best for lens with small distortions. For
the wide-angle lens or fisheye lens, there is considerable
distortion and they often need too many terms compared to
the actual. So, Fitzgibbon [21] suggested the division model
(DM) to describe the radial distortion model,

P𝑢 − e = (P𝑑 − e)𝐿 (𝑟𝑑, 𝑘) , (5)

where 𝐿(𝑟𝑑, 𝑘) is the same as in (4). Combining (4) and (5) we
can get a more generic Rational Model (RM):

P𝑢 − e = (P𝑑 − e) ⋅ 𝐿1 (𝑟𝑑, 𝑘1)𝐿2 (𝑟𝑑, 𝑘2) . (6)

However, the calculation speed of the imaging model
based on the RM is relatively slow, and the convergence
results are more dependent on the accuracy of the initial
value. On the other hand, the most remarkable advantage of
theDMover the PM is that it is able to express high distortion
at much lower order. So, our work for camera calibration is
based on the DM.

3. Camera Calibration Procedure

In this section, the process of the proposed calibration
method is described in detail. The whole process is divided
into four steps. Firstly, in order to make the center of
distortion (COD) to the original, the COD is estimated
accurately and the calibration image is corrected. Then
the corresponding points between the model plane and its
image are used to compute the homography and distortion
coefficients simultaneously based on the radial distortion
division model (DM) [21]. In the third step, all the camera
intrinsic parameters are analytically calculated from the
homographies of calibration images. Finally, the intrinsic
parameters of the camera are optimized via the Levenberg-
Marquardt algorithm.

3.1. Find theCOD. In the literatures [9, 14, 23], the researchers
assume that the COD is the center of the image or the
principal point of the camera. However, we all know that this
is not a good assumption. The COD can be displaced by a
number of factors from the center of the image, such as an
offset from the center of theCCD lens, a tilt with respect to the
plane of the lens sensor, or the installation of a combination
of lenses and image cropping. In general consumer level
cameras (such as several hundred dollar costs), it should
not be assumed that the photocenters of the camera are
accurate, because these effects are not much different from
the subjective image quality [24].

Experiments have been done by Hartley and Zisserman
[25] to show that the general assumption that the COD is
at the center of the image is not exactly right. Besides, they
have also proved that the point may be remarkably deviated
from the center of the image, or the principal point of the
camera. So the accurate estimation of COD is important to
obtain optimal results in camera calibration. Here, we adopt
the novel method proposed in [24] to accurately estimate
the position of COD in this paper. This method is simple,
but it produces perfect results. We briefly introduce this
approach here. For more details, the reader can refer to the
literature [24]. The known point P𝑤 on the calibration model
plane and its corresponding image point P𝑑 are related by a
radial fundamental relationship, and it can be represented as
follows: [P𝑑]𝑇 ([e]×H)P𝑤 = 0, (7)

where H is the same as in (3) and [e]× (the skew symmetric
matrix) represents the cross-product. Writing F𝑟 = [e]×H (in
[24], the matrix F𝑟 is called as radial fundamental matrix),
then (7) can be rewritten as[P𝑑]𝑇 F𝑟P𝑤 = 0. (8)
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Note that F𝑟 can be calculated in a general way [25]
(such as the eight-point algorithm) from some corresponding
points. Then the COD can be estimated from its left epipole:

e𝑇F𝑟 = e𝑇 [e]×H = 0. (9)

Of course, in the absence of radial deformation, the basic
matrix of the above calculation is not stable, and the estimated
value of e is essentially arbitrary and meaningless. Therefore,
if there is no radial distortion, then it is not much of a sense
to talk about the distorted center [24].

3.2. Compute the Distortion Coefficients and Homography.
We will compute the distortion coefficients and homography
in this section. Based on the reports in the literatures [6,
22, 26], it is likely that the distortion function is completely
dominated by the radial components, in particular the dom-
inant first term. In addition, any more detailed modeling
not only does not help (ignore when compared with sensor
quantization), but also leads to numerical instability [6, 26].

After getting the COD e, we can compute the H by
factoring the matrix F𝑟 (F𝑟 = [e]×H). Although [e]× is
singular, this decomposition is not unique. Here, a novel
method is presented to solve this problem. In doing this, we
change the coordinates of the image, so that the COD is the
original. As is shown in Figure 1, the image plane coordinate
system O𝑥𝑦𝑥𝑦 is transformed to O𝑑󵱰𝑋𝑑 󵱰𝑌𝑑. Where O𝑑 is the
real position of the COD, we represent it as 󵱰e = [0 0 1]𝑇
in homogeneous coordinates.Then the transformed distorted
image point 󵱰P𝑑 can be represented as

󵱰P𝑑 = (󵱰𝑋𝑑󵱰𝑌𝑑1 ) = (𝑋𝑑 − 𝑑𝑢0𝑌𝑑 − 𝑑V01 )
= (1 0 −𝑑𝑢00 1 −𝑑V00 0 1 )(𝑋𝑑𝑌𝑑1 ) = (1 0 −𝑑𝑢00 1 −𝑑V00 0 1 )P𝑑.

(10)

Similarly, the transformed undistorted image point 󵱰P𝑢
and the original undistorted image point P𝑢 are described as

󵱰P𝑢 = (1 0 −𝑑𝑢00 1 −𝑑V00 0 1 )P𝑢. (11)

When the coordinate origin is converted to the center of
distortion, the homography matrix is redefined as 󵱰H and the
corresponding radial fundamental matrix is defined as 󵱰F𝑟 =[󵱰e]×󵱰H. Then, from (8), we can get[󵱰P𝑑]𝑇 󵱰F𝑟P𝑤 = 0. (12)

Using (10) into (12), we can get

[P𝑑]𝑇(1 0 −𝑑𝑢00 1 −𝑑V00 0 1 )𝑇 󵱰F𝑟P𝑤 = 0. (13)

Besides, from (8) and (13), we can get

F𝑟 = (1 0 −𝑑𝑢00 1 −𝑑V00 0 1 )𝑇 󵱰F𝑟. (14)

󵱰F𝑟 can be calculated as

󵱰F𝑟 = ( 1 0 00 1 0𝑑𝑢0 𝑑V0 1) F𝑟. (15)

Note that 󵱰F𝑟 = [󵱰e]×󵱰H and 󵱰e = [0 0 1]𝑇; we have
󵱰F𝑟 = [󵱰e]× 󵱰H = (0 −1 01 0 00 0 0) 󵱰H. (16)

Let 󵱰F𝑟 = [󵱰f𝑇1 ; 󵱰f𝑇2 ; 󵱰f𝑇3 ] and 󵱰H = [󵱰h𝑇1 ; 󵱰h𝑇2 ; 󵱰h𝑇3 ]. Here, 󵱰f𝑇𝑖 =[ 󵱰𝑓𝑖1 󵱰𝑓𝑖2 󵱰𝑓𝑖3] is the 𝑖th row of the radial fundamental matrix󵱰F𝑟, and 󵱰h𝑇𝑖 = [󵱰ℎ𝑖1 󵱰ℎ𝑖2 󵱰ℎ𝑖3] is the 𝑖th row of matrix 󵱰H. Due to
the fact that final row of 󵱰F𝑟 is zero, so we only need to solve
the first two rows of 󵱰H from (16), that is,󵱰h𝑇1 = 󵱰f𝑇2 ,󵱰h𝑇2 = −󵱰f𝑇1 . (17)

Then by calculating the homography 󵱰H, present up to
only three unknown parameters 󵱰h𝑇3 = [󵱰ℎ31 󵱰ℎ32 󵱰ℎ33]. As the
homography 󵱰H relates themodel pointP𝑤 and its undistorted
image point 󵱰P𝑢, 𝑠󵱰P𝑢 = 󵱰HP𝑤. (18)

Note that 󵱰P𝑢 = [󵱰𝑋𝑢 󵱰𝑌𝑢 1] is the undistorted image point
after the origin of the image coordinates is transferred to the
COD. Considering the division model (DM), we have󵱰𝑋𝑢 = 󵱰𝑋𝑑𝐿 (󵱰𝑟𝑑, 𝑘) ,󵱰𝑌𝑢 = 󵱰𝑌𝑑𝐿 (󵱰𝑟𝑑, 𝑘) , (19)

where 𝐿(󵱰𝑟𝑑, 𝑘) is the same as in (4), that is,𝐿 (󵱰𝑟𝑑, 𝑘) = (1 + 𝑘1󵱰𝑟2𝑑 + 𝑘2󵱰𝑟4𝑑 + ⋅ ⋅ ⋅) . (20)

We substitute (19) into (18); then we can get

𝑠 [[[[[[[[[
󵱰𝑋𝑑𝐿 (󵱰𝑟𝑑, 𝑘)󵱰𝑌𝑑𝐿 (󵱰𝑟𝑑, 𝑘)1

]]]]]]]]]
= [[[[

󵱰h𝑇1󵱰h𝑇2󵱰h𝑇3
]]]]P𝑤. (21)
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So each point can be given the two equations,

[[󵱰𝑋𝑑 (󵱰h𝑇3P𝑤) − (󵱰h𝑇1P𝑤) ⋅ (𝑘1 [󵱰𝑟𝑑]
2 + 𝑘2 [󵱰𝑟𝑑]4 + ⋅ ⋅ ⋅ )󵱰𝑌𝑑 (󵱰h𝑇3P𝑤) − (󵱰h𝑇2P𝑤) ⋅ (𝑘1 [󵱰𝑟𝑑]2 + 𝑘2 [󵱰𝑟𝑑]4 + ⋅ ⋅ ⋅ )]]= [󵱰h𝑇1P𝑤󵱰h𝑇2P𝑤] .

(22)

Using (17) in (22), we can get

[[󵱰𝑋𝑑 [P𝑤]
𝑇 (−󵱰f𝑇2 P𝑤) [[󵱰𝑟𝑑]2 [󵱰𝑟𝑑]4 ⋅ ⋅ ⋅]󵱰𝑌𝑑 [P𝑤]𝑇 (󵱰f𝑇1 P𝑤) [[󵱰𝑟𝑑]2 [󵱰𝑟𝑑]4 ⋅ ⋅ ⋅] ]]

[[[[[[[[
󵱰h3𝑘1𝑘2...
]]]]]]]]= [ 󵱰f𝑇2 P𝑤−󵱰f𝑇1 P𝑤] .

(23)

Given 𝑁 corresponding point and that it satisfies that 2𝑁 ≥𝑛+3, where 𝑛 is the number of distortion parameters, we can
solve the system of equations in the least squares sense. Then
the third row of 󵱰H (i.e., 󵱰h𝑇3 ) is solved.Moreover, the distortion
coefficients {𝑘1, 𝑘2, . . .} are computed at the same time.

3.3. Linear Solution of Intrinsic Parameters of the Camera.
After 󵱰H is obtained, the homographymatrixH for the original
image coordinates can be computed very easily. From (3), (11),
and (18), we can get

H = (1 0 −𝑑𝑢00 1 −𝑑V00 0 1 )−1 󵱰H = (1 0 𝑑𝑢00 1 𝑑V00 0 1 ) 󵱰H. (24)

Let us denote homography matrix byH = [h𝑐1 h𝑐2 h𝑐3]
(where h𝑐𝑖 is the 𝑖th column of H). According to the
orthogonality of the rotation matrix R (r𝑇1 r2 = 0, r𝑇1 r1 =
r𝑇2 r2), we get

h𝑇𝑐1K
−𝑇K−1h𝑐2 = 0,

h𝑇𝑐1K
−𝑇K−1h𝑐1 = h𝑇𝑐2K

−𝑇K−1h𝑐2. (25)

Note that K is the camera intrinsic matrix. Because
a homography has 8 degrees of freedom and there are 6
extrinsic parameters (3 for rotation and 3 for translation),
we can only obtain 2 constraints on the intrinsic parameters.
Therefore, we need at least three images to calculate all
the parameters. After the homography H is obtained, the
analytical solution of the intrinsic parameters of the camera
can be solved in the literature [11].

3.4. Maximum Likelihood Estimation. The intrinsic parame-
ters obtained in the previous section are not accurate enough
due to image noise. We can refine it through maximum
likelihood estimation. Ahmed and Farag [13] have proved

that including the distortion center and the decentering
coefficients in the nonlinear optimization step may lead to
instability of the estimation algorithm. Therefore, we do not
need to optimize the distortion coefficient and distortion
center. Meanwhile, it can reduce the search space of the
calibration problem without sacrificing the accuracy and
produce more stable and noise-robust results. Here, we give𝑛 images of a model plane and there are 𝑚 points on the
model plane. Assume that the image points are corrupted
by independent and identically distributed noise. Then the
maximum likelihood estimate can be obtained byminimizing
the following function:

𝑛∑
𝑖=1

𝑚∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩P𝑖𝑗 − 󵱰P (K,R𝑖, t𝑖,P𝑗)󵄩󵄩󵄩󵄩󵄩2 , (26)

where 󵱰P(K,R𝑖, t𝑖,P𝑗) is the projection of point P𝑗 in image 𝑖
according to (3). A rotation R is parameterized by a vector of
3 parameters, denoted by r, which is parallel to the rotation
axis and whose magnitude is equal to the rotation angle.
Minimizing (26) is a nonlinearminimization problem, which
is solved by the Levenberg-Marquardt algorithm [27]. It
requires an initial value of K and {R𝑖, 𝑡𝑖 | 𝑖 = 1, . . . , 𝑛}, which
can be obtained using the technique described in the previous
subsection.

4. Experimental Results

In this section, the proposed calibration method has been
tested on both computer simulated data and real data. Exper-
iments mainly consider two calibration methods, Zhang’s
calibration method based on planar target [28] and our
method (before-optimization and after-optimization).

4.1. Simulated Experiments. The simulated camera has
the following property: 𝑓𝑢 = 850, 𝑓V = 850, 𝑢0 = 512,
V0 = 384. The image size is 1024 × 768 pixels. The skew
factor is set to zero. Besides, a second-order radial distortion
is simulated with the coefficients 𝑘1 = −6.09 × 10−7
pixel-2, 𝑘2 = −1.97 × 10−13 pixel-4 and the COD is
set to (500, 366). The plane is a checkerboard image with
70 corners (7 × 10) evenly distributed and the minimum
point interval is set to 23mm, which is the same as
the real data experiments. The direction of the plane is
denoted by a 3-dimensional vector r, which is parallel to
the rotation axis and whose magnitude is the same as the
angle of rotation. In addition, the position of the plane
is denoted by a 3-dimensional vector t. We employ four
planes with 𝑟1 = [20∘, 0∘, 0∘]𝑇, 𝑡1 = [−80, −60, 200]𝑇, 𝑟2 =[0∘, 0∘, 20∘]𝑇, 𝑡2 = [−110, −80, 250]𝑇, 𝑟3 = [−40∘, 0∘, 20∘]𝑇,𝑡3 = [−100, −40, 330]𝑇, 𝑟4 = [−10∘, 0∘, 20∘]𝑇, 𝑡4 = [−100,−60, 280]𝑇 in the experiment. Figure 2 presents the
simulation of the images, which show the true projection
of the image point and the distorted point. The Gauss noise
with a mean of 0 and a standard deviation of 𝜎 is added to
the distorted image.

Then the estimated camera parameters and the actual
value of the real were compared. We calculated the relative
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Figure 2: The simulated images with the true projection image points and the distorted points.
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error for 𝑓𝑢 and 𝑓V and the absolute errors for 𝑢0 and V0.
Besides, the mean value of the reprojection error 𝐸rms is also
used as an evaluation index. It is calculated by the discrepancy
between the ground true pointP𝑡,𝑖 and the reprojection image
point P𝑟,𝑖,

𝐸rms = (∑𝑛𝑖=1√󵄩󵄩󵄩󵄩P𝑟,𝑖 − P𝑡,𝑖
󵄩󵄩󵄩󵄩2)𝑛 . (27)

Noise is added to the projected image points with 𝜎
ranging from 0.1 pixels to 2.0 pixels. For each noise level,
50 independent repeated trials were performed, and the
results were shown to be average. The relative error and
calibration precision of the camera are shown in Figures 3
and 4, respectively. From the two figures, we can see that the
errors increase linearly with the noise level. It is worth noting
that the error of the two methods is relatively low when the
noise is low. For example, for 𝜎 = 0.5 (it is larger than the
normal noise in practical calibration), the absolute errors in𝑢0 and V0 are around 1 pixel, the relative errors in 𝑓𝑢, 𝑓V are
less than 0.3%, and the mean calibration errors are around
0.2 pixels. Besides, the error in V0 is larger than that in 𝑢0.The
main reason is that there are less data in the V0 direction than
in the 𝑢0 direction.
4.2. Real Data Experiments. For the real data experiments,
the calibration images provided by The Robotics Institute
of Carnegie Mellon University [28] are used to test our
approach. The calibration template is a planar checkerboard
pattern with 70 corners (7 × 10) evenly distributed and the
minimumpoint interval is 23mm in both the vertical and the
horizontal directions. Ten images of the plane under different
orientations were taken, as shown in Figure 5. (It is worth
noting that the algorithm proposed in this paper is suitable
for the calibration of all kinds of image of the board, including
all the pictures provided by Carnegie Mellon University. Due
to the limitation of space, this paper only randomly selected
ten pictures as our experimental object.) We can observe an
obvious lens distortion in the images, particularly in Image 1,
Image 3, Image 5, and Image 6. In addition, the resolution of
the image is 1024 × 768 pixels.

First, we use the corner detection method to get subpixel
precision of checkerboard angular point position. Next, we
compare our proposed calibration method with Zhang’s
method. In the experiment, we utilize the first three images to
obtain the camera parameters, which are displayed in Table 1.
In Zhang’smethod, he does not consider the distortion center
(𝑑𝑢0, 𝑑V0), while our method does. It is necessary to explain
that (𝑑𝑢0, 𝑑V0) are the mean of the first three images. In fact,
theCODof the three images are 507.368, 508.087, and 506.139,
respectively. In addition, our approach adopts the DM to
represent lens distortion, andZhang’smethod depends on the
PM, so the generating distortion coefficients are different. At
last, it is worth noting that the before-optimization method
also computes theCOD.However, the resulting𝑓𝑢, 𝑓V, 𝑢0, and
V0 are almost the same as Zhang’s. We will see later that the
accuracy of the before-optimization is not high.

To investigate the effectiveness of the proposed method,
the other seven test images are used to evaluate the calibration

Table 1: Comparative result of intrinsic parameters and distortion
coefficients.

Method 𝑓𝑢 𝑓V 𝑢0 V0
Zhang 839.50 838.56 507.89 367.02
Before-
optimization 839.79 838.87 506.17 367.14

After-
optimization 838.23 837.27 505.99 366.21

Method 𝑘1 𝑘2 𝑑𝑢0 𝑑V0
Zhang −0.42mm-2 0.20mm-4 — —
Before-
optimization

−6.09𝑒 − 07
pixel-2

−1.97𝑒 − 13
pixel-4 507.20 367.59

After-
optimization

−6.09𝑒 − 7
pixel-2

−1.97𝑒 − 13
pixel-4 507.20 367.59

accuracy. Here, we once again put the calculated reprojection
error 𝐸𝑟-rms as the evaluation index. Unlike the simulation
test, the ground true image points are unknown here, so we
use the undistorted pointP𝑢𝑑,𝑖 instead.The reprojection error𝐸𝑟-rms is defined as

𝐸𝑟-rms = (∑𝑛𝑖=1√󵄩󵄩󵄩󵄩󵄩P𝑟𝑝,𝑖 − P𝑢𝑑,𝑖
󵄩󵄩󵄩󵄩󵄩2)𝑛 . (28)

Table 2 shows the comparison of the reprojection error
of the test data, and the distribution is shown in Figure 6.
As shown in Table 2, in both the average accuracy level
and standard error, the after-optimization method is better
than Zhang’s method and the before-optimization method.
From Figure 6, we can see that the distribution of the after-
optimization method is more concentrated in the near zero.

Besides, in order to further study the stability of the pro-
posed (after-optimization) algorithm, we have also applied
it to some combinations of 4 images from the fifth to the
ninth images. The results are shown in Table 3, where the
second column (5678), for example, displays the result with
the quadruple of the fifth, sixth, seventh, and eighth image.
The last two columns display the mean and deviations. The
deviations for all parameters are very small, whichmeans that
the proposed algorithm is quite stable.

Finally, for a few images with a larger distortion, we
conducted an experiment separately. We utilize four images
(Image 1, Image 3, Image 5, and Image 6) to calibrate the
internal parameters. The results are shown in Table 4. As
can be seen from the results, we obtained similar results
compared to Zhang.

5. Conclusion

In this paper, we proposed a flexible and high-accuracy
camera calibration method. Compared with the traditional
method, this method overcomes a lot of problems. Firstly,
it decouples the estimation of the distortion coefficients
and intrinsic parameters, producing more stable and reliable
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Figure 3: Effects of pixel coordinates noise on intrinsic parameters using the proposed method (after-optimization: (a) the relative error for𝑓𝑢 and 𝑓V and (b) the absolute error for 𝑢0 and V0; before-optimization: (c) the relative error for 𝑓𝑢 and 𝑓V and (d) the absolute error for 𝑢0
and V0).
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Figure 4: Effects of pixel coordinates noise on calibration accuracy: (a) after-optimization; (b) before-optimization.

Table 2: Comparative result of calibration error 𝐸𝑟-rms evaluated by testing data.

Method Image 4 Image 5 Image 6 Image 7 Image 8

Zhang 0.1683 0.1763 0.1319 0.1380 0.1658
Before-
optimization

0.1613 0.1716 0.1389 0.1421 0.1746

After-
optimization

0.1534 0.1670 0.1374 0.1310 0.1609

Method Image 9 Image 10 Average Standard error —

Zhang 0.1321 0.1580 0.1529 0.0186 —
Before-
optimization

0.1347 0.1372 0.1515 0.0172 —

After-
optimization

0.1212 0.1383 0.1442 0.0167 —

results. Then, the distortion of the center is accurately esti-
mated and it is important to obtain the best results.Moreover,
whether it is for a relatively small image distortion or
distortion larger image, utilizing our method can get a good
result. Finally, the robustness and accuracy of the proposed
method are verified by simulation and real data experiments
and the experimental results show that this method has the
advantages of simple operation, high accuracy, and better
flexibility.
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Table 3: Variation of the calibration results among all quadruples of images.

Quadruples (5678) (5689) (5789) (6789)𝑓𝑢 843.39 843.26 843.31 845.70𝑓V 842.60 842.44 842.65 844.71𝑢0 504.50 504.79 504.73 504.92
V0 365.68 365.48 365.75 366.51𝑘1 −6.0822𝑒 − 07 −6.1079𝑒 − 07 −6.0732𝑒 − 07 −6.0985𝑒 − 07𝑘2 −2.2510𝑒 − 13 −2.0867𝑒 − 13 −2.2243𝑒 − 13 −1.9719𝑒 − 13
Quadruples (5679) Mean Var —𝑓𝑢 843.07 843.7460 1.2070 —𝑓V 842.23 842.9260 1.0214 —𝑢0 504.53 504.6940 0.0315 —
V0 365.41 365.7660 0.1924 —𝑘1 −6.1882𝑒 − 07 −6.1100𝑒 − 07 2.0947𝑒 − 17 —𝑘2 −1.2948𝑒 − 13 −1.9657𝑒 − 13 1.5326𝑒 − 27 —

Image 4Image 3Image 2Image 1

Image 8Image 7Image 6Image 5

Image 10Image 9

Figure 5: Images used for calibration.
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Figure 6: Reprojection error: (a) Zhang’s method; (b) proposed method (after-optimization). Each point marked as “+” in the figure denotes
the reprojection error of corresponding chessboard corner in the testing images.

Table 4: Comparative result of intrinsic parameters and distortion
coefficients.

Method 𝑓𝑢 𝑓V 𝑢0 V0
Zhang 846.95 845.92 505.66 365.81
Before-
optimization 842.57 841.01 504.97 365.33

After-
optimization 846.03 844.93 505.81 366.24

Method 𝑘1 𝑘2 𝑑𝑢0 𝑑V0
Zhang −0.43mm-2 0.21mm-4 — —
Before-
optimization

−6.12𝑒 − 07
pixel-2

−2.01𝑒 − 13
pixel-4 506.40 366.92

After-
optimization

−6.12𝑒 − 07
pixel-2

−2.01𝑒 − 13
pixel-4 506.40 366.92
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