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Bonded joints are very common inmany pipeline systems, in which the bond behavior of the joint interface is of crucial importance.
This paper presents two analytical solutions for the debonding process of a pipe joint under torsion, assuming that the bond
interface follows either an exponential softening bond-slip law or a simplified bilinear model. The solutions are general, applicable
to composites andmetallic and indeed other pipes. Based on the analytical solutions, the influences of the bond length and stiffness
on the torque-displacement curve and ultimate load are investigated. The solutions can be used to explain the stress transfer
mechanism, the interface crack propagation, and the ductility of the joint.

1. Introduction

Pipes are very important structures in many industries such
as energy, aerospace, and construction [1]. In consideration
of whole weight, strength, and maintenance workload, it is
commonly accepted that there should be less joints in a piping
system at first design. Due to the limitation of transportation,
installation, and rehabilitation, a joint seems essential for a
large structure system containing different components. The
limitations of the overall system performance usually come
from the capacity of pipe joints.Therefore, the pipe joints play
themost important role in the overall integrity ofmost piping
systems [2].

For metallic piping system, the joints can be divided into
three types: flange coupling, welding, and adhesive bonding.
The first two traditional connections have the same shortage,
such as high stress concentration. However, the adhesively
bonded pipe joint can effectively lower the stress concen-
tration [3]. While for composite piping system, connecting
methods can be roughly summarized as adhesive bonding,
butt-strap, heat-activated coupling, and flange coupling. The
first three joints are considered as permanent joints and
the same joint mechanism is found. Most composite flanges
are connected to composite pipe with one of the three
permanent methods. Therefore, a general adhesively bonded

pipe joint analysis can be used to analyze all the three types
of permanent composite pipe joints [4].

Adhesively bonded pipe joints provide uniform load
transfer over the bonded area. Nevertheless, stress distri-
bution in the bondline adhesive is nonuniform. Among all
the possible loading configurations, such as tension, torsion,
and bending, torsion is one of the fundamental types. Due
to the difficulties in the analysis of interfacial behavior, few
theoretical studies of mode III (torsion) interfacial fracture
problems are available in the previous references.

Based on the mechanics of composite materials and the
maximum strain failure criterion, an analytical and experi-
mental study was conducted to investigate the elastic and fail-
ure behavior of composite laminated pipe under torsion [5].
Based on the general composite shell theory, Zou and Taheri
[6] studied the stress concentrations at and near the end of the
joints as functions of various parameters, such as the overlap
length and thickness of the adhesive layer. Pugno and Surace
[7] confirmed that the maximum stresses were attained at the
ends of the adhesive and that the peak of maximum stress
was reached at the end of the stiffer tube and does not tend
to zero as the adhesive length approaches infinity. Cheng
and Li [8] developed an adhesively bonded smart composite
pipe joint system by integrating electromechanical coupling
piezoelectric layers with the connection coupler.
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Finite element results are good supplements to analytical
research. A finite element analysis was used to calculate the
residual thermal stresses generated by cooling down from the
adhesive cure temperature and a nonlinear analysis incorpo-
rating the nonlinear adhesive behavior was performed [9].
Taheri et al. [10–13] developed a simple method for assessing
the behavior of adhesively bonded tubular joints under
torsion, based on a parametric study conducted by 2D and
3D finite element analysis. A finite difference method was
utilized to solve the system of equilibrium equations and
it was modeled as a separate 3D elastic body without the
uniform stress assumption [14].

In all previous solutions, linear elastic properties are
assumed for the entire pipe joints. The linear elastic behavior
may be appropriate for the pipes themselves. While for the
adhesive layer which is usually the weakest link in the bonded
joints andoften suffers frommicrocracking and local damage,
nonlinear modeling may be necessary. When the crack tip
experiences inelastic damage, the concepts based purely on
the theory of elasticity are not valid. Therefore, different
bond-slip models with softening region were proposed in the
previous references, such as rigid-softening, bilinear, trape-
zoidal, and exponential models [15–24].Themain differences
between these models lie in the shape of the traction-
displacement response and the parameters used to describe
that shape. Based on the existing models, some studies have
also been presented to solve interfacial debonding problem
for the adhesively bonded joints and closed-form solutions
are obtained [25–36].

However, there are very few studies focusing on the
analytical solution of full debonding process of pipe joints
in the literatures. To the best of the authors’ knowledge,
linear elastic properties are assumed for the entire pipe joints
and very few researchers have taken interfacial softening and
debonding into consideration. In the present study, there are
two analytical solutions for the failure process of adhesively
bonded interface, assuming that the bond interface follows
either an exponential softening bond-slip law or a simplified
bilinear model. The expressions for the interface slip and
shear stress are derived for the different failure stages. The
present research improves and clarifies the understanding
of the interfacial debonding problem of bonded pipe joints
under torsion. By modifying different shear modulus, the
present results may be further extended to composite pipe
joints, composite-metal pipe joints, or metallic pipe joints.

2. Interface Model of Pipe Joint

2.1. The Bonded Pipe Joint. Figure 1 shows a bonded pipe
joint where two pipes (inner pipes) of the same diameter
are joined together symmetrically with a pipe coupler (outer
pipe) adhesively bonded to both pipes. Here the inner and
outer pipes are defined as Pipes 1 and 2, respectively. Due to
symmetry, only the right half of the pipe joint is considered.
Let the length of the pipe coupler be 2L; the distance between
the left end of Pipe 1 and the right end of the Pipe 2 is 𝐿.
Assuming that the pipe coupler is fully bonded with the inner
pipes, the bond length between Pipe 1 and Pipe 2 is also 𝐿 for
the right half of the pipe joint.

2.2. Assumptions. The following assumptions are made for
the simplicity:

(1) The adherents are homogeneous and linear elastic.

(2) The adhesive is only under pure shear.

(3) The pipe joint is under pure torsion which is resisted
by the main pipe and coupler pipe; that is, the adhe-
sive layer is assumed to only transmit shear stresses
between Pipes 1 and 2, not contributing to any direct
resistance to the torque.

(4) Local bending effects in the pipe joint under the
torsional load are neglected.

According to the classical torsion theory, the internal torsion𝑇1 and 𝑇2 in Pipes 1 and 2 can be expressed, respectively, as
follows:

𝑇1 = 𝜑󸀠1𝐺1𝐽1 (1)

𝑇2 = 𝜑󸀠2𝐺2𝐽2, (2)

where subscripts 1 and 2 represent Pipes 1 and 2, respectively;𝐺 is the shear modulus of the pipe material; 𝜑󸀠 is the
first derivation of the rotational angle with respect to 𝑥
(Figure 1(c)); and 𝐽 is polar moment of inertia of the thin-
walled pipes which can be expressed as follows:

𝐽1 = 2𝜋𝑅31𝑡1
𝐽2 = 2𝜋𝑅32𝑡2, (3)

in which 𝑡 is the thickness of the pipes and 𝑅 is the radius the
midline of the pipe cross sections (Figure 1(a)).

As the torque resultant in the soft and thin adhesive
layer is ignored following assumption number 3 above, the
equilibrium between external and internal torsion load in the
pipe joint requires

𝑇1 + 𝑇2 = 0
𝑑𝑇1𝑑𝑥 + 𝑑𝑇2𝑑𝑥 = 0. (4)

2.3. Governing Equations. Let the relative rotation between
Pipes 1 and 2 at 𝑥 be 𝜑 as illustrated in Figure 2. Consider the
torsional equilibrium of an infinitely small section 𝑑𝑥 in Pipe
1 (Figure 2):

2𝜋𝑅𝜏𝑅𝑑𝑥 = 𝑑𝑇1, (5)

where 𝜏 is the interfacial shear stress in the circumferential
direction and 𝑅 is the distance between the center of the pipe
and midline of the adhesive layer which can be calculated by

𝑅 = 12 [(𝑅1 + 𝑡12 ) + (𝑅2 − 𝑡22 )] . (6)
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Figure 1: An adhesively bonded pipe joint.
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Figure 2: Equilibrium of local interfacial shear stresses.

The relative slip at the bond interface in the circumferential
direction as 𝛿 can be found from the relative interfacial
rotation 𝜑:

𝛿 = 𝑅𝜑 = 𝑅𝜑1 − 𝑅𝜑2. (7)

After substituting (1)–(4) into (5) and introducing the param-
eter 𝜆, local bond strength 𝜏𝑓, and interfacial fracture energy𝐺𝑓, we have

𝑑2𝛿𝑑𝑥2 − 2𝐺𝑓𝜏2
𝑓

𝜆2𝑓 (𝛿) = 0 (8)

𝜑󸀠1 = 𝜏2𝑓2𝐺𝑓𝜆2 2𝜋𝑅
2

𝐺1𝐽1 𝑑𝛿𝑑𝑥 , (9)

where

𝜆2 = 2𝜋𝑅3𝐺1𝐽1 + 𝐺2𝐽2𝐺1𝐽1𝐺2𝐽2
𝜏2𝑓2𝐺𝑓 . (10)

Substituting (9) into (1), the relationship of 𝑇1 and derivative
of 𝛿 can be obtained:

𝑇1 = 2𝜋𝑅2 𝜏2𝑓2𝐺𝑓𝜆2 𝑑𝛿𝑑𝑥 . (11)

Equation (8) is the governing differential equation of the
adhesively bonded joint. It can be solved once the local bond-
slip model is given.

2.4. Bond-SlipModel. As introduced before, researchers have
proposed various bond-slip models. Experimental results
indicate that the bilinear model which features a linear
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Figure 3: Bond-slip models.

ascending branch followed by a linear descending branch
provides a close approximation [31]. However, the use of
linear softening law may lead to overestimating the mechan-
ical properties of the joint. Therefore, a bond-slip law char-
acterised by a linear phase, with slope 𝛼, followed by an
exponential softening branch is used [35]. And the results
based on the two models are compared in order to provide
better understanding of failure process.

For the exponential bond-slip law (Figure 3), the inter-
facial shear stress increases linearly with slip within the
elastic range. The shear stress peaks at 𝜏𝑓 at which the
value of the slip is denoted by 𝛿1. This stage is defined as
elastic stage which is simplified as E. The interface enters
the softening stage thereafter and the interfacial shear stress
decays exponentially with the interfacial slip. This stage is
defined as softening stage which is simplified as S. The
mathematical expressions of the interfacial bond-slip law in
Figure 3 are

𝜏 = 𝑓 (𝛿) = {{{{{
𝜏𝑓𝛿1 𝛿 (0 ≤ 𝛿 ≤ 𝛿1)
𝜏𝑓𝑒−2𝛼2(𝛿/𝛿1−1) (𝛿 > 𝛿1) . (12)

The bilinear model (Figure 3) features a linear ascending
branch followed by a linear descending branch to zero at a
slip 𝛿𝑓. This stage is defined as debonding stage which is
simplified as D. It is usually treated as a simplified model of
the exponential softening model. The results are usually very
close if the fracture energy𝐺𝑓 is the same for the two models
[28].This bond-slipmodel ismathematically described by the
following:

𝜏 = 𝑓 (𝛿) =
{{{{{{{{{{{{{

𝜏𝑓𝛿1 𝛿 (0 ≤ 𝛿 ≤ 𝛿1)𝜏𝑓𝛿𝑓 − 𝛿1 (𝛿𝑓 − 𝛿) (𝛿1 < 𝛿 ≤ 𝛿𝑓)
0 (𝛿 > 𝛿𝑓) .

(13)

The positive coefficient 𝛼2 in (12) characterises the exponen-
tial decay can be related to the slip parameters of the bilinear
model by letting the interfacial fracture energy 𝐺𝑓 be equal
for the two models:

𝛼2 = 𝛿1𝛿𝑓 − 𝛿1 . (14)

3. Debonding Process: The Exponential Model

3.1. Elastic Stage. At small loads, there is no interfacial soft-
ening or debonding along the interface, so the entire length
of the interface is in an elastic stress state. Substituting the
first expression in (12) into (8) gives the following differential
equation:

𝛿󸀠󸀠 (𝑥) − 𝜆21𝛿 (𝑥) = 0 (0 ≤ 𝛿 ≤ 𝛿1) , (15)

where

𝜆21 = 2𝜋𝑅3𝐺1𝐽1 + 𝐺2𝐽2𝐺1𝐽1𝐺2𝐽2
𝜏𝑓𝛿1 . (16)

The inner pipe is free from stress at 𝑥 = 0 and subjected
to a torque 𝑇 at 𝑥 = 𝐿, so the boundary conditions can be
expressed as

𝜑󸀠1 (0) = 0 (17)

𝜑󸀠1 (𝐿) = 𝑇𝐺1𝐽1 . (18)

Based on these boundary conditions, the solution of (15)
for the relative shear displacement and shear stress of the
adhesive layer can be written in the form

𝛿 (𝑥) = 𝑇𝛿1𝜆12𝜋𝑅2𝜏𝑓 cosh (𝜆1𝑥)sinh (𝜆1𝐿) (19)

𝜏 (𝑥) = 𝑇𝜆12𝜋𝑅2 cosh (𝜆1𝑥)sinh (𝜆1𝐿) . (20)

The interfacial slip at the free end of the outer pipe (i.e., the
value of 𝛿 at 𝑥 = 𝐿) is defined as the displacement of the
bonded joint for convenience and denoted by Δ here. From
(19), the torque-displacement is expressed as

𝑇 = 2𝜋𝑅2𝜏𝑓𝛿1𝜆1 tanh (𝜆1𝐿) Δ. (21)

3.2. Elastic-Softening Stage. As the load increases, the interfa-
cial slip reaches 𝛿1 at 𝑥 = 𝐿 and the bond enters the softening
stage there.Thewhole interface is in an elastic-softening stage
and the length of the softening region 𝑎 increases with the
increase of torque 𝑇. Substituting (12) into (8) gives (15) and
the following equation for this stage:

𝛿󸀠󸀠 (𝑥) − 𝜆22𝑒−2𝛼2(𝛿(𝑥)/𝛿1) = 0 (𝛿 > 𝛿1) , (22)
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where

𝜆22 = 2𝜋𝑅3𝐺1𝐽1 + 𝐺2𝐽2𝐺1𝐽1𝐺2𝐽2 𝜏𝑓𝑒2𝛼2 . (23)

Applying the boundary conditions of (17) and (18) and the
following continuity conditions:

𝛿 (𝐿 − 𝑎) = 𝛿1
𝛿󸀠 (𝑥) is continues at 𝑥 = 𝐿 − 𝑎, (24)

the solution for the elastic region of the interface (0 ≤ 𝛿 ≤ 𝛿1,
i.e., 0 ≤ 𝑥 ≤ 𝐿 − 𝑎) is obtained as

𝛿 (𝑥) = 𝛿1 cosh (𝜆1𝑥)
cosh [𝜆1 (𝐿 − 𝑎)]

𝜏 (𝑥) = 𝜏𝑓 cosh (𝜆1𝑥)
cosh [𝜆1 (𝐿 − 𝑎)]

(25)

and the solution for the softening region of the interface (𝛿 >𝛿1, i.e., 𝐿 − 𝑎 ≤ 𝑥 ≤ 𝐿) is
𝛿 (𝑥) = 1𝑛 ln(2𝑚𝑛𝑐1 ) + 2𝑛 ln {cosh [𝑛2√𝑐1 (𝑥 − 𝑐2)]} (26)

𝜏 (𝑥) = 𝜏𝑓𝑒−2𝛼2[𝛿(𝑥)/𝛿1−1], (27)

where

𝑚 = 𝜆22
𝑛 = 2𝛼2𝛿1 .

(28)

Using (24), the constants 𝑐1 and 𝑐2 can be obtained as

𝑐1 = {𝛿1𝜆1 tanh [𝜆1 (𝐿 − 𝑎)]}2 + 2𝑚𝑛 𝑒−𝑛𝛿1 (29)

𝑐2 = 𝐿 − 𝑎 − 2𝑛√𝑐1 arccosh(√ 𝑛𝑐12𝑚𝑒𝑛𝛿1) . (30)

The expression of slip at 𝑥 = 𝐿 can be obtained from (26) as

Δ = 𝛿 (𝐿)
= 1𝑛 ln(2𝑚𝑛𝑐1 ) + 2𝑛 ln {cosh [𝑛2√𝑐1 (𝐿 − 𝑐2)]} . (31)

Substituting (18) and (26) into (9) yields

𝑇 = 2𝜋𝑅2𝜏𝑓𝛿𝑓𝜆2 √−2𝑚𝑛 𝑒−𝑛Δ + 𝑐1. (32)

For exponential model, by substituting (31) into (32), the
expression of 𝑇 above can be rewritten as

𝑇 = 2𝜋𝑅2𝜏𝑓𝛿𝑓𝜆2 √𝑐1 tanh [𝑛2√𝑐1 (𝐿 − 𝑐2)] . (33)

When 𝐿 is sufficiently large (approaches to infinity), (33) and
(29) converge to

𝑇𝑢 = 2𝜋𝑅2𝜏𝑓𝛿𝑓𝜆2 √𝑐1, (34)

where

𝑐1 = (𝛿1𝜆1)2 + 2𝑚𝑛 𝑒−𝑛𝛿1 (35)

in which 𝑇𝑢 is the maximum possible value (the asymptotic
value) 𝑇 can reach.

In bonded joints, there is usually an effective bond length𝑙𝑒, which is defined as the length beyond which an increase of
the bond length the loading capacity of the bonded joint does
not increase further [37]. For the exponential bond-slip law
employed here, the loading (torque) capacity always increases
with the bond length 𝐿, but the rate of increase would be very
small if 𝐿 is sufficiently large. Following Yuan et al. 2004, the
effective bond length is defined here as the bond lengthwhich
provides a resistance of 97% of 𝑇𝑢. Following this definition,𝑙𝑒 can be obtained from (30) and (33)–(35) as

𝑙𝑒 = 𝑎𝑒 + 2𝜆1 , (36)

where

𝑎𝑒 = 4𝑛√𝑐1 − 2𝑛√𝑐1 arccosh(√ 𝑛𝑐12𝑚𝑒𝑛𝛿1) . (37)

3.3. Softening Stage. As the load increases, the peak of the
shear stress moves towards the middle of the joint (𝑥 = 0).
When the interfacial slip at 𝑥 = 0 reaches 𝛿1, the whole
interface enters into softening. This stage is governed by
(22) with the boundary conditions of (17) and (18). The
solution for the interfacial slip and the shear stress of the bond
interface can be obtained as

𝛿 (𝑥) = 1𝑛 ln(2𝑚𝑛𝑐3 ) + 2𝑛 ln {cosh [𝑛2√𝑐3 (𝑥 − 𝑐4)]} (38)

𝜏 (𝑥) = 𝜏𝑓𝑒−2𝛼2[𝛿(𝑥)/𝛿1−1], (39)

where the constants 𝑐3 and 𝑐4 are
𝑐3 tanh2 [𝑛√𝑐32 (𝐿 − 𝑐4)] = ( 𝑇𝛿𝑓𝜆22𝜋𝑅2𝜏𝑓)

2 .
𝑐4 = 0

(40)

Substituting (18) and (38) into (9) yields

𝑇 = 2𝜋𝑅2𝜏𝑓𝛿𝑓𝜆2 √−2𝑚𝑛 𝑒−𝑛Δ + 𝑐3. (41)
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The expression of the slip at 𝑥 = 𝐿 can be obtained from (38):

Δ = 1𝑛 ln(2𝑚𝑛𝑐3 ) + 2𝑛 ln {cosh [𝑛2√𝑐3 (𝐿 − 𝑐4)]} . (42)

4. Debonding Process: Bilinear Model

4.1. Elastic Stage. The solution for the elastic stage is the same
as that in Section 3.1.

4.2. Elastic-Softening Stage. As the load increases, softening
commences at 𝑥 = 𝐿 once the shear stress reaches 𝜏𝑓 there. 𝑇
increases as the softening length 𝑎 increases. Substituting the
first or the second expression in (13) into (8) gives (15) and
the following:

𝛿󸀠󸀠 (𝑥) − 𝜆23 [𝛿𝑓 − 𝛿 (𝑥)] = 0 (𝛿1 < 𝛿 ≤ 𝛿𝑓) , (43)

where

𝜆23 = 2𝜋𝑅3𝐺1𝐽1 + 𝐺2𝐽2𝐺1𝐽1𝐺2𝐽2
𝜏𝑓𝛿𝑓 − 𝛿1 . (44)

With the same boundary and continuity conditions as in
Section 3.2, the solution for the elastic region of the interface
(0 ≤ 𝛿 ≤ 𝛿1, i.e., 0 ≤ 𝑥 ≤ 𝐿 − 𝑎) is the same as that in
Section 3.2, and the solution for the softening region of the
interface (𝛿1 < 𝛿 ≤ 𝛿𝑓, i.e., 𝐿 − 𝑎 ≤ 𝑥 ≤ 𝐿) is given by

𝛿 (𝑥) = (𝛿𝑓 − 𝛿1)
⋅ {𝜆3𝜆1 tanh [𝜆1 (𝐿 − 𝑎)] sin [𝜆3 (𝑥 − 𝐿 + 𝑎)]
− cos [𝜆3 (𝑥 − 𝐿 + 𝑎)] + 𝛿𝑓𝛿𝑓 − 𝛿1}

(45)

𝜏 (𝑥)
= −𝜏𝑓 {𝜆3𝜆1 tanh [𝜆1 (𝐿 − 𝑎)] sin [𝜆3 (𝑥 − 𝐿 + 𝑎)]
− cos [𝜆3 (𝑥 − 𝐿 + 𝑎)]} .

(46)

Substituting (18) and (45) into (9) yields

𝑇 = 2𝜋𝑅2𝜏𝑓𝜆3 {𝜆3𝜆1 tanh [𝜆1 (𝐿 − 𝑎)] cos (𝜆3𝑎)
+ sin (𝜆3𝑎)} .

(47)

The expression of the slip at 𝑥 = 𝐿 can be obtained from (45):

Δ = (𝛿𝑓 − 𝛿1) {𝜆3𝜆1 tanh [𝜆1 (𝐿 − 𝑎)] sin (𝜆3𝑎)
− cos (𝜆3𝑎) + 𝛿𝑓𝛿𝑓 − 𝛿1} .

(48)

During this stage, the torque-displacement curve can be
determined from (47) and (48). When the interfacial slip
increases to 𝛿𝑓 at 𝑥 = 𝐿 but the slip at 𝑥 = 0 is less than 𝛿1,
the interface enters into elastic-softening-debonding stage.
When the slip at 𝑥 = 0 reaches 𝛿1 and the slip at 𝑥 = 𝐿 is less
than 𝛿𝑓, the interface enters into softening stage. Therefore,
there exists a critical bond length to distinguish the failure
process:

𝐿𝑐𝑟 = 𝜋2𝜆3 . (49)

When the bond length is larger than 𝐿𝑐𝑟, the interface enters
into elastic-softening-debonding stage. When the bond
length is shorter than 𝐿𝑐𝑟, the interface enters into softening
stage. For the bilinear model, 𝑇 reaches its maximum when
the derivative of (47) with respect to 𝑎 equals zero.Therefore,𝑎 at the ultimate load can be found from the following
relationship:

tanh [𝜆1 (𝐿 − 𝑎)] = 𝜆3𝜆1 tan (𝜆3𝑎) . (50)

Substituting (50) into (47) yields

𝑇 = 2𝜋𝑅2𝜏𝑓𝜆3
𝛿𝑓𝛿𝑓 − 𝛿1 sin (𝜆3𝑎) . (51)

It can be shown from (50) and (51) that 𝑇 approaches the
following value when 𝐿 is large:

𝑇𝑢 = 2𝜋𝑅2𝜏𝑓𝜆 . (52)

Following the same definition in (36) and considering that
tanh(2) ≈ 0.97, the effective bond length when 0.97𝑇𝑢 is
reached can be obtained from (50)–(52) to give

𝑙𝑒 = 𝑎𝑒 + 12𝜆1 ln[𝜆1 + 𝜆3 tan (𝜆3𝑎𝑒)𝜆1 − 𝜆3 tan (𝜆3𝑎𝑒)] , (53)

where

𝑎𝑒 = 1𝜆3 arcsin[[0.97√
𝛿𝑓 − 𝛿1𝛿𝑓 ]] . (54)

4.3. Joints with 𝐿 > 𝐿𝑐𝑟
4.3.1. Elastic-Softening-Debonding Stage. If 𝐿 > 𝐿𝑐𝑟, as the
torque increases, the interfacial slip at 𝑥 = 𝐿 reaches 𝛿𝑓 which
represents the initiation of debonding (or macrocracking or
fracture). Because Δ = 𝛿𝑓 at the initiation of debonding,
the corresponding value of 𝑎, denoted by 𝑎𝑑, can be obtained
from (48) as

𝜆3𝜆1 tanh [𝜆1 (𝐿 − 𝑎𝑑)] sin (𝜆3𝑎𝑑) − cos (𝜆3𝑎𝑑) = 0. (55)
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Debonding propagates hereafter and the peak shear stress
moves towards 𝑥 = 0. Assuming that the debonded length
of the interface starting at 𝑥 = 𝐿 is 𝑑, (25) and (45)-(46)
are still valid if replacing 𝐿 by 𝐿 − 𝑑. Therefore, the torque-
displacement relationship can be written as

𝑇 = 2𝜋𝑅2𝜏𝑓𝜆3 {𝜆3𝜆1 tanh [𝜆1 (𝐿 − 𝑑 − 𝑎)] cos (𝜆3𝑎)
+ sin (𝜆3𝑎)}

(56)

Δ = 𝛿𝑓 + 𝛿𝑓𝑇𝜆22𝜋𝑅2𝜏𝑓 𝑑. (57)

As the interfacial shear stress at𝑥 = 𝐿−𝑑 is zero, the following
relationship can be obtained:

𝜆3𝜆1 tanh [𝜆1 (𝐿 − 𝑑 − 𝑎)] sin (𝜆3𝑎) − cos (𝜆3𝑎) = 0. (58)

Substituting (58) into (56) yields the following simplified
form:

𝑇 = 2𝜋𝑅2𝜏𝑓𝜆3 1
sin (𝜆3𝑎) . (59)

At the end of this stage, the softening-debonding stage starts
when 𝐿 − 𝑑 = 𝑎𝑢. Substituting this into (58) yields

𝑎𝑢 = 𝜋2𝜆3 . (60)

Moreover, by substituting (60) into (59), (59) can be written
as

𝑇 = 2𝜋𝑅2𝜏𝑓𝜆3 . (61)

4.3.2. Softening-Debonding Stage. This stage is governed by
(43) with the boundary conditions of (17) and

𝜑󸀠1 (𝑎) = 𝑇𝐺1𝐽1 (62)

𝛿 (𝑎) = 𝛿𝑓. (63)

Based on the boundary conditions, the following solution can
thus be found by solving the governing equation (43):

𝑎 = 𝜋2𝜆3 = 𝑎𝑢 (64)

𝛿 (𝑥) = 𝛿𝑓 − 𝛿𝑓𝑇𝜆22𝜋𝑅2𝜏𝑓𝜆3 cos (𝜆3𝑥) (0 ≤ 𝑥 ≤ 𝑎𝑢) (65)

𝜏 (𝑥) = 𝜆3𝑇2𝜋𝑅2 cos (𝜆3𝑥) (0 ≤ 𝑥 ≤ 𝑎𝑢) . (66)

From (64) it is seen that the length of softening zone
remains constant during this stage. The torque-displacement
relationship can be obtained by solving (8) for the case of 𝛿 >𝛿𝑓 or directly displacement superposition along the bonded
joint:

Δ = 𝛿𝑓 + 𝛿𝑓𝑇𝜆22𝜋𝑅2𝜏𝑓 (𝐿 − 𝑎𝑢) . (67)

4.4. For Joints with 𝐿 < 𝐿𝑐𝑟
4.4.1. Softening Stage. As the load increases, the shear stress
peak moves towards 𝑥 = 0. When the interfacial slip at𝑥 = 0 reaches 𝛿1, the whole interface enters into the softening
zone.This stage is governed by (43)with boundary conditions
of (17) and (18). Based on the boundary conditions, the
following solution can be obtained by solving the governing
equation (43):

𝛿 (𝑥) = 𝛿𝑓 − 𝑇𝜆2𝛿𝑓 cos (𝜆3𝑥)2𝜋𝑅2𝜏𝑓𝜆3 sin (𝜆3𝐿) (68)

𝜏 (𝑥) = 𝑇𝜆3 cos (𝜆3𝑥)2𝜋𝑅2 sin (𝜆3𝐿) . (69)

The expression of the slip at 𝑥 = 𝐿 can be obtained from (68):

Δ = 𝛿𝑓 − 𝑇𝜆2𝛿𝑓2𝜋𝑅2𝜏𝑓𝜆3 cot (𝜆3𝐿) . (70)

As shown in the bond-slip law, when the interface slip reaches𝛿𝑓, debonding occurs. Substituting this condition into (70),
the external load reduces to zero. Hence, it can be concluded
that the softening stage here always represents the ultimate
failure stage.

5. Numerical Simulations

The results of an adhesively bonded metal-composite pipe
joint are presented here. The typical inner diameter and
thickness are assumed to be 300 and 10mm for the metallic
main pipe, respectively. And the inner diameter and thickness
of the composite coupler are assumed to be 320.4 and
5mm, respectively. For metallic main pipe, the mechanical
properties are chosen as 𝐸11 = 𝐸22 = 200GPa, 𝐺12 =75GPa, and 𝜇12 = 0.3. For composite coupler, themechanical
properties are chosen as 𝐸11 = 25.2GPa, 𝐸22 = 7.5GPa,𝐺12 = 2.4GPa, and 𝜇12 = 0.32. The parameters for interfacial
bond-slip laws are identified as 𝜏𝑓 = 7.2MPa, 𝛿1 = 0.034mm,
and 𝛿𝑓 = 0.16mm.

According to the material properties and geometry
parameters given above, the critical bond length for bilinear
model can be calculated as 𝐿𝑐𝑟 = 23mm. Therefore, bond
lengths of 20 and 80mm are chosen.

5.1. Load-Displacement Curves

5.1.1. Load-Displacement Curves for Exponential Model. The
load-displacement curve for exponential model is shown in
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Figure 4: Load-displacement curves: exponential model.
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Figure 5: Load-displacement curves: bilinear model.

Figure 4. OA, AB, and BC are elastic, elastic-softening, and
softening stages, respectively.

5.1.2. Load-Displacement Curves for Bilinear Model. When
the bond length is shorter than 𝐿𝑐𝑟, take 𝐿 = 20mm and
the load-displacement curve is shown in Figure 5(a). OA, AB,
and BC are elastic, elastic-softening, and softening stages,
respectively. When the bong length is longer than 𝐿𝑐𝑟, take𝐿 = 80mm and the load-displacement curve is shown in
Figure 5(b). OA, AB, BC, and CD are elastic, elastic-soften-
ing, elastic-softening-debonding, and softening-debonding
stages, respectively.

5.2. Shear Stress Distribution. Theshear stress distribution for
exponential model is shown in Figure 6. When the load is
small, the interfacial shear stress at loaded end is less than
peak stress and the interface is in an elastic stage. When the
interfacial shear stress reaches peak stress at loaded end, the
interface enters into elastic-softening stage. As load increases,
the peak stress moves from loaded end to unloaded end and
the length of softening zone increases. When the interfacial
shear stress at unloaded end reaches peak stress, the interface
enters into softening stage. For simplified legend, the critical
status is defined as the end. For example, the critical status

between elastic stage and elastic-softening stage is defined as
E-end in Figure 6(a). And the following abbreviations are the
same.

The shear stress distribution of 𝐿 = 20mm and 𝐿 =80mm for bilinear model are shown in Figures 7(a) and 7(b),
respectively. When the load is small, the interfacial shear
stress at loaded end is less than peak stress and the interface
is an in elastic stage. When the interfacial shear stress reaches
peak stress at loaded end, the interface enters into elastic-
softening stage. As load increases, the peak stress moves from
loaded end to unloaded end and the length of softening zone
increases. When the interfacial shear stress at unloaded end
reaches peak stress while Δ < 𝛿𝑓, the interface enters into
softening stage shown as in Figure 7(a).WhenΔ = 𝛿𝑓 and the
interfacial shear stress at unloaded end is less than peak stress,
then the interface enters into elastic-softening-debonding
stage as shown in Figure 7(b). The length of debonding zone
increases as the peak stressmoves to unloaded end.When the
interfacial shear stress at unloaded end reaches peak stress,
the interface enters into softening-debonding stage.

5.3. Parametric Study. Figure 8(a) shows the influence for
different bond lengths of bilinearmodel on the load-displace-
ment curves. From the figure, the significant influence for
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Figure 9: Comparison of the load-displacement curves predicted from using the two bond-slip models.

bond length on the curves could be observed. In the range
of the effective bond length, as the bond length increases,
not only the interface failure processes change but also the
ultimate load and interfacial slip. Specifically, the increase
of the bond length can increase damage ductility. However,
when the bond length reaches a certain length (effective bond
length), the ultimate load will hardly change. Figure 8(b)
shows the influence for different bond lengths of exponential
model on the load-displacement curves. From the figure we
know that as the bond length increases the ultimate load
increases. But the failure processes are all the same. Namely,
the increase of the bond length can also increase damage
ductility.

Figure 9 shows the comparison of the load-displacement
curves between the two models for different bond lengths.
The load-displacement curves are different when a softening
area exists. In addition, since there is no debonding situation
in the exponential model, the displacement can increase
unlimitedly, with this being different from bilinear model
in which the slip would approach 𝛿𝑓. From the figures,
the load increases faster in the bilinear model as the bond
lengths increases. However, when the bond length is long,

the ultimate loads between the two models seem no more
different.

Figure 10 shows the load-displacement curves for differ-
ent ratios of torsion stiffness (𝛽 = (𝐺2𝐽2)/(𝐺1𝐽1)). From the
figures we can see that as the ratio increases, the ultimate
load increases but the slip decreases; namely, the ductility
reduces. Moreover, the larger the ratio is, the smaller the
change magnitude will be.

Figure 11 shows the relationship of effective bond length
and ratio of torsion stiffness. From the figure we can see that
a stiffer coupler leads to a longer effective bond length. But
as the ratio is getting larger, the effective bond length does
not obviously increase. As the ratio increases, the effective
bond lengths of two models have the similar trend, but the
effective bond length of exponential model is longer than that
of bilinear model.

Through the numerical computation, the ultimate load of
exponential and bilinear models for different bond lengths
could be obtained. Figure 12 shows the ultimate load for
different bond lengths. From the figure we can see that, for
bilinear model, when the bond length is short, the ultimate
load increases significantly with the bond length. When
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the bond length is long, the ultimate load stays essentially
unchanged. For the exponentialmodel, when the bond length

is short, the trend is similar to the bilinear model, but the
ultimate load is relatively smaller. Bothmodels have the same
ultimate load when the bond length is relatively long.

6. Conclusions

On the basis of fully understanding the mechanical behavior
of the joint interface, this paper gives a further understanding
of the key factors of interfacial debonding. By modifying
different shear moduli, the present results may be further
extended to composite pipe joints, composite-metal pipe
joints, or metallic pipe joints. Based on the derivations in the
current study, some important conclusions are summarized
as follows:

(1) Through the nonlinear fracture mechanics, the ana-
lytical expressions of the interfacial shear stress and
the load-displacement relationship at loaded end of
pipe joints under torsion loads could be gotten.
Thus the shear stress propagation and the debonding
progress of the whole interface for different bond
lengths could be predicted.

(2) The influences of different bond length on the load-
displacement curve and the ultimate load are studied
through the analytical solutions. The stress transfer
mechanism, the interface crack propagation, and the
ductility behavior of the joints could be explained.
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