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The focus of this paper is to analyze the influence of thermal radiation on some unsteady magnetohydrodynamic (MHD) free
convection flows of an incompressible Brinkman type fluid past a vertical flat plate embedded in a porous medium with the
Newtonian heating boundary condition. The fluid is considered as a gray absorbing-emitting but nonscattering medium and
the Rosseland approximation in the energy equations is used to describe the radiative heat flux for optically thick fluid. For a
detailed analysis of the problem, four important situations of flow due to (i) impulsive motion of the plate (ii) uniform acceleration
of the plate (iii) nonuniform acceleration of the plate, and (iv) highly nonuniform acceleration of the plate are considered. The
governing equations are first transformed into a system of dimensionless equations and then solved analytically using the Laplace
transform technique. Numerical results for temperature and velocity are shown graphically, while skin friction andNusselt number
are computed in tables. The results show that temperature and velocity increase on increasing radiation and Newtonian heating
parameters. However, the results of magnetic and porosity parameters on velocity are found quite opposite.

1. Introduction

Generally speaking, a free convection flow field is a self-
sustained flow driven by the presence of a temperature
gradient. Extensive research work has been published on free
convection flow past a vertical plate for different boundary
conditions (see [1–10] and the references therein). Perhaps,
it is due to their numerous applications in engineering, geo-
physical and astrophysical environments, geothermal energy,
oil reservoir modelling, building insulation, food processing,
and grain storage. Most of these existing studies have used
the usual boundary conditions of constant wall temperature
or constant heat flux. However, in many practical situations
it was realized that the convection flow can also be set up by
the Newtonian heating from the surface known as conjugate
convective flow [11]. The Newtonian heating situation occurs
in many important engineering devices such as in heat
exchanger where the conduction in solid tube wall is greatly

influenced by the convection in the fluid flowing over it and
in conjugate heat transfer around fins where the conduction
within the fin and the convection in the fluid surrounding
it are simultaneously analyzed in order to obtain the vital
design information [12]. In view of these applications various
researchers are involved in dealing with the Newtonian
heating problems via numerical or analytical techniques.

Chaudhary and Jain [13, 14] investigated the problem of
unsteady free convection flow of an incompressible viscous
fluid for different motions of the plate with the Newtonian
heating condition and obtained the exact solutions using
the Laplace transform technique. Recently, Guchhait et al.
[15] reinvestigated the problem of Chaudhary and Jain [14]
numerically by using the Crank-Nicolson implicit finite-
difference scheme. Mebine and Adigio [16] obtained an exact
solution for unsteady free convection flow of an incompress-
ible viscous optically thin fluid past an impulsively started
vertical porous plate with the Newtonian heating. Salleh et al.
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[17, 18] analyzed numerically the steady boundary layer flow
and heat transfer over a horizontal circular cylinder and over
a stretching sheet with the Newtonian heating. Narahari and
Ishak [19] investigated the influence of thermal radiation
on unsteady free convection flow past a moving vertical
plate with Newtonian heating. Recently Akbar and Nadeem
[20] studied mixed convective MHD peristaltic flow of a
Jeffrey nanofluid with the Newtonian heating. Narahari and
Yunus [21] performed an analytical study of free convection
flow near an impulsively started infinite vertical plate with
Newtonian heating in the presence of thermal radiation and
constant mass diffusion. The closed-form exact solutions
were obtained by the Laplace transform method.

On the other hand, the study of MHD flows has impor-
tant technological and geothermal applications in cooling
of nuclear reactors, liquid metals fluid, power generation
system, aerodynamics, and engineering problems. The study
of MHD flow with heat transfer also plays an important role
in biological sciences. In addition, the flow through a porous
medium is of great physical interest because of its various
applications found in hydrology for the sand structures in
earth, in filter beds for purification of drinking water and
sewage, in chemical engineering for the permeation chro-
matography, filtering of gases, and liquids chromatography,
and in petroleum technology for the production of petroleum
and gases. Having such motivation, Hayat et al. [22] analyzed
MHD stagnation point flow of a Jeffery fluid past a stretching
surface with the Newtonian heating. Lesnic et al. [23, 24]
analyzed the free convection flow in a porous medium
generated by Newtonian heating. In another study, Lesnic
et al. [25] considered the steady free convection boundary
layer flow along a semi-infinite plate, slightly inclined to
the horizontal and embedded in a porous medium with the
flow generated by Newtonian heating. Furthermore, radia-
tive convective flows are frequently encountered in many
environmental and scientific processes such as aeronautics,
fire research, and heating and cooling of channels. Radiation
and thermal diffusion effects on MHD free convection flow
of an incompressible viscous fluid near an oscillating plate
embedded in a porous medium were considered by Khan
et al. [26]. Radiation and porosity effects on the MHD flow
past an oscillating vertical plate with uniform heat flux were
presented by Samiulhaq et al. [27]. Mohammed et al. [28]
discussed analytical solutions of MHD natural convection
transients flow near an oscillating plate emerged in a porous
medium.

Most of the above studies with Newtonian heating con-
ditions are performed for viscous fluids and numerical or
exact solutions are obtained. However, such studies for non-
Newtonian fluids are very few, especially those that are solved
for exact solutions. Non-Newtonian fluids problems on the
other hand are of great and increasing interest for the last
five decades. Such fluids differ from the Newtonian fluids in
that the relationship between the shear stress and flow field
is more complicated. Examples of the non-Newtonian fluids
are coal water, food products, inks, glues, soaps, and polymer
solutions [29–33]. Therefore, in the present investigation we
have chosen Brinkman type fluid as a non-Newtonian fluid.
This model was first used by Brinkman in [34, 35]. Later,

several authors have used the Brinkman model in describing
several types of flows through a porous medium. Among
them, Hsu and Cheng [36] studied the natural convection
about a semi-infinite vertical flat plate in a porous medium
using Brinkman model. Varma and Babu [37], Gorla et al.
[38], and Rajagopal [39] also used Brinkman model in their
studies. By using Brinkman type fluid, Fetecǎu et al. [40]
reported some interesting results. They used Fourier sine
transform and obtained exact solutions for some unsteady
motions. Recently, this problem was reinvestigated by Ali
et al. [41] and they established some new types of exact
solutions using Laplace transform.

Motivated by above studies, the present research aims
to analyze the influence of thermal radiation on unsteady
MHD free convection flow of Brinkman type fluid past a
vertical plate embedded in a porousmediumwithNewtonian
heating. To the best of authors’ knowledge such study is
not available in the literature and the present work claims
to fill this space. Moreover, for a detailed analysis of the
problem four different types of plate motion are considered.
As a result, the following flow situations known as (i) flow
induced by an impulsive motion of the plate, (ii) flow
due to uniform acceleration of the plate, (iii) flow due to
nonuniform acceleration of the plate, and (iv) flow due to
highly nonuniform acceleration of the plate are discussed.
Exact solutions of momentum and energy equations are
obtained by using Laplace transform technique. They satisfy
all imposed initial and boundary conditions and can easily be
reduced to the similar solutions for hydrodynamic Brinkman
type and Newtonian fluids. Analytical as well as numerical
results for skin friction and Nusselt number are provided.
Graphical results are presented and discussed for various
physical parameters. Applications of the present problem are
diverse. Because this work presents a new research on free
convection flow of Brinkman type fluid for some fundamen-
tal fluid motions, therefore this problem can be extended for
more complicated studies on Brinkman type fluid in various
porous media. Furthermore, the exact solutions obtained in
this study will assist scientist and engineers as they can use
them as a check of correctness for numerical or approximate
solutions of complicated flow problems.

2. Mathematical Formulation and Solution of
the Problem

Let us consider unsteady free convection flow of an incom-
pressible and electrically conducting fluid of Brinkman
type [40]. It is assumed that the plate occupies the half
porous space 𝑦 > 0 over an infinite vertical flat plate situ-
ated in the (𝑥, 𝑧) plane of a Cartesian coordinate system 𝑥, 𝑦,
and 𝑧. The 𝑥-axis is taken along the vertical plate and the 𝑦-
axis is taken normal to the plate. A uniform magnetic field
of strength 𝐵

0
is transversely applied to the plate in the

outward direction. The applied magnetic field is assumed
to be strong enough so that the induced magnetic field
due to the fluid motion is weak and can be neglected.
As mentioned by Cramer and Pai [42], this assumption is
physically justified for partially ionized fluids and metallic
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Figure 1: Physical model and coordinates system.

liquids because of their small magnetic Reynolds number.
Since there is no applied or polarization voltage imposed on
the flow field, therefore the electric field due to polarization
of charges is zero. Initially, both the plate and fluid are at
rest with constant temperature 𝑇

∞
. After time 𝑡 = 0

+, the
flow is caused by translating the plate in its plane with time-
dependent velocity 𝐴𝑡𝑛 against the gravitational field. It is
assumed that the rate of heat transfer from the surface is
directly proportional to the local surface temperature 𝑇. Due
to the shear, the fluid is gradually moved and its velocity is of
the form

k = k (𝑦, 𝑡) = 𝑢 (𝑦, 𝑡) i, (1)

where i is the unit vector in the flow direction. The physical
model is shown in Figure 1.

In addition to the above assumptions, we assume that
the internal dissipation is absent and the usual Boussinesq
approximation is taken into consideration. Moreover, the
pressure gradient in the flow direction is compensated by the
gradient of the hydrostatic pressure gradient of the fluid. As a
result the governing equations of momentum and energy are
derived as follows:

𝜕𝑢 (𝑦, 𝑡)

𝜕𝑡
+ 𝛽𝑢 (𝑦, 𝑡) = ]

𝜕
2
𝑢 (𝑦, 𝑡)

𝜕𝑦2
−
𝜎𝐵
2

0
𝑢 (𝑦, 𝑡)

𝜌

−
]𝜙𝑢 (𝑦, 𝑡)

𝑘
+ 𝑔𝛽
𝑇
(𝑇 − 𝑇

∞
) ,

(2)

𝜌𝑐
𝑝

𝜕𝑇

𝜕𝑡
= 𝑘
1

𝜕
2
𝑇

𝜕𝑦2
−
𝜕𝑞
𝑟

𝜕𝑦
, (3)

where 𝑇 is the temperature of the fluid, ] = 𝜇/𝜌 (𝜇 is the
viscosity and 𝜌 is the constant density of the fluid) is the
kinematic viscosity, 𝜎 is the electrical conductivity of the

fluid, 𝛽 = 𝛼/𝜌 (𝛼 is the drag coefficient that is usually
assumed to be positive), 𝜙 is the porosity parameter, 𝑘 is
the permeability parameter, 𝛽

𝑇
is the volumetric coeffi-

cient of thermal expansion, 𝑔 is the acceleration due to
gravity, 𝑇

∞
is the free stream temperature, 𝑐

𝑝
is the specific

heat of the fluid at a constant pressure, 𝑘
1
is the thermal

conductivity, and 𝑞
𝑟
is the radiative flux along the 𝑦-axis.

The initial and boundary conditions relevant to the
present flow situation are

𝑡 ≤ 0 : 𝑢 (𝑦, 𝑡) = 0, 𝑇 (𝑦, 𝑡) = 𝑇
∞
; 𝑦 > 0,

𝑡 > 0 : 𝑢 (0, 𝑡) = 𝐴𝑡
𝑛
,

𝜕𝑇 (0, 𝑡)

𝜕𝑦
= −ℎ
𝑠
𝑇,

𝑢 (∞, 𝑡) = 0, 𝑇 (∞, 𝑡) = 𝑇
∞
,

(4)

where 𝑛 ≥ 0 is constant and ℎ
𝑠
is the heat transfer parameter

for Newtonian heating. The radiative heat flux term in (3) is
simplified using the Rosseland approximation as

𝑞
𝑟
= −

4𝜎
1

3𝑘
2

𝜕𝑇
4

𝜕𝑦
, (5)

where 𝜎
1
is the Stefan-Boltzmann constant and 𝑘

2
is the

mean absorption coefficient. It is assumed that the tem-
perature differences inside the flow are sufficiently small
such that 𝑇4 may be expressed as a linear function of the
temperature, and then by expanding 𝑇

4 about 𝑇
∞

using
Taylor series and neglecting the higher order terms, we get

𝑇
4
≅ 4𝑇
3

∞
𝑇 − 3𝑇

4

∞
. (6)

Now (3) after using (5) and (6) takes the following form:

𝜌𝑐
𝑝

𝜕𝑇

𝜕𝑡
= 𝑘
1
(1 +

16𝜎𝑇
3

∞

3𝑘
1
𝑘
2

)
𝜕
2
𝑇

𝜕𝑦2
. (7)
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By introducing the following dimensionless variables

V
𝑛
=

𝑢

(]𝑛𝐴)1/(2𝑛+1)
, 𝜉 = 𝑦(

𝐴

]𝑛+1
)

1/(2𝑛+1)

,

𝜏 = 𝑡(
𝐴
2

]
)

1/(2𝑛+1)

,

𝛽
𝑛
= 𝛽(

]
𝐴2

)

1/(2𝑛+1)

, 𝜃 =
𝑇 − 𝑇
∞

𝑇
∞

,

(8)

into (2)–(4) and (7), we obtain the following dimensionless
system:

𝜕V
𝑛
(𝜉, 𝜏)

𝜕𝜏
=
𝜕
2V
𝑛
(𝜉, 𝜏)

𝜕𝜉2
− 𝛽
𝑛
VV (𝜉, 𝜏)

− 𝐻V
𝑛
(𝜉, 𝜏) + Gr𝜃 (𝜉, 𝜏) ,

(9)

Pr𝜕𝜃
𝜕𝜏

= (1 + 𝑅)
𝜕
2
𝜃

𝜕𝜉2
, (10)

𝜏 ≤ 0 : V
𝑛 (𝜉, 𝜏) = 0, 𝜃 (𝜉, 𝜏) = 0; 𝜉 > 0,

𝜏 > 0 : V
𝑛
(0, 𝜏) = 𝜏

𝑛
,

𝜕𝜃 (0, 𝜏)

𝜕𝜉
= −𝛾 (1 + 𝜃) ,

V
𝑛
(∞, 𝜏) = 0, 𝜃 (∞, 𝜏) = 0,

(11)

where 𝛾 is the Newtonian heating parameter. Using the
Laplace transform technique, (9)–(11) give the following
transformed solutions:

V
𝑛
(𝜉, 𝑞) =

Γ (𝑛 + 1)

𝑞𝑛+1
𝑒
−𝜉√𝑞+𝐻

+ 𝑎
1

𝑒
−𝜉√𝑞+𝐻

√𝑞 − 𝑑
+ 𝑎
2

𝑒
−𝜉√𝑞+𝐻

𝑞

+ 𝑎
3

𝑒
−𝜉√𝑞+𝐻

√𝑞
− 𝑎
4

𝑒
−𝜉√𝑞+𝐻

𝑞 − 𝐻
1

− 𝑎
5

√𝑞𝑒
−𝜉√𝑞+𝐻

𝑞 − 𝐻
1

− 𝑎
1

𝑒
−𝜉√𝑞𝑎

√𝑞 − 𝑑
− 𝑎
2

𝑒
−𝜉√𝑞𝑎

𝑞
− 𝑎
3

𝑒
−𝜉√𝑞𝑎

√𝑞

+ 𝑎
4

𝑒
−𝜉√𝑞𝑎

𝑞 − 𝐻
1

+ 𝑎
5

√𝑞𝑒
−𝜉√𝑞𝑎

𝑞 − 𝐻
1

,

(12)

𝜃 (𝜉, 𝑞) =
𝑑

𝑞 (√𝑞 − 𝑑)
𝑒
−𝜉√𝑞𝑎

, (13)

where

𝛽
𝑛
= 𝛽(

]
𝐴2

)

1/(2𝑛+1)

, 𝑀
2
=
𝜎𝐵
2

0

𝜌
(
]
𝐴2

)

1/(2𝑛+1)

,

1

𝐾
=
]𝜙
𝑘
(
]
𝐴2

)

1/(2𝑛+1)

, Gr =
𝑔𝛽
𝑇
𝑇
∞

(𝐴3]𝑛−1)1/(2𝑛+1)
,

𝛾 = ℎ
𝑠
(
]𝑛+1

𝐴
)

1/(2𝑛+1)

, Pr =
𝜇𝑐
𝑝

𝑘
1

, 𝑅 =
16𝜎𝑇
3

∞

3𝑘
1
𝑘
2

,

𝐻 = 𝑀
2
+
1

𝐾
, 𝐻

1
=

𝐻

𝑎 − 1
,

𝑎 =
Pr

1 + 𝑅
, 𝑑 =

𝛾

√𝑎
,

Gr
1
=

Gr𝑑
𝑎 − 1

, 𝑎
1
=

Gr
1

𝑑2 (𝑑2 − 𝐻
1
)
,

𝑎
2
=

Gr
1

𝑑𝐻
1

, 𝑎
3
=

Gr
1

𝑑2𝐻
1

,

𝑎
4
=

Gr
1
𝑑

𝐻
1
(𝑑2 − 𝐻

1
)
, 𝑎

5
=

Gr
1

𝐻
1
(𝑑2 − 𝐻

1
)
.

(14)

The Laplace inverse of (13) results in

𝜃 (𝜉, 𝜏) = exp (𝑑2𝜏 − 𝑦√𝑎𝑑) erf 𝑐 [
𝑦√𝑎

2√𝜏
− 𝑑√𝜏]

− erf 𝑐 [
𝑦√𝑎

2√𝜏
] .

(15)

For a detailed analysis of (12), we are considering the
following four cases.

3. Flow Induced by an Impulsive Motion of
the Plate

For an impulsive motion of the plate (𝑛 = 0), (12) yields

V
0
(𝜉, 𝑞) =

1

𝑞
𝑒
−𝜉√𝑞+𝐻

+ 𝑎
1

𝑒
−𝜉√𝑞+𝐻

√𝑞 − 𝑑
+ 𝑎
2

𝑒
−𝜉√𝑞+𝐻

𝑞

+ 𝑎
3

𝑒
−𝜉√𝑞+𝐻

√𝑞
− 𝑎
4

𝑒
−𝜉√𝑞+𝐻

𝑞 − 𝐻
1

− 𝑎
5

√𝑞𝑒
−𝜉√𝑞+𝐻

𝑞 − 𝐻
1

− 𝑎
1

𝑒
−𝜉√𝑞𝑎

√𝑞 − 𝑑
− 𝑎
2

𝑒
−𝜉√𝑞𝑎

𝑞
− 𝑎
3

𝑒
−𝜉√𝑞𝑎

√𝑞

+ 𝑎
4

𝑒
−𝜉√𝑞𝑎

𝑞 − 𝐻
1

+ 𝑎
5

√𝑞𝑒
−𝜉√𝑞𝑎

𝑞 − 𝐻
1

.

(16)
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The solution of (16), after taking the Laplace inverse, is given
by

V
0
(𝜉, 𝜏) = 𝑓

1
(𝜉, 𝜏,𝐻) + 𝑎

2
𝑓
1
(𝜉, 𝜏,𝐻) − 𝑎

2
𝑓
1
(𝜉, 𝜏, 0)

− 𝑎
4
𝑒
𝐻
1
𝑡
𝑓
1
(𝜉, 𝜏,𝐻 + 𝐻

1
) + 𝑎
4
𝑒
𝐻
1
𝑡
𝑓
1
(𝜉√𝑎, 𝜏,𝐻

1
)

− 𝑎
1
𝑓
2
(𝜉√𝑎, 𝜏, 𝑑) + 2𝑓

6 (𝜉, 𝑧, 𝜏,𝐻)

+ 2𝑑𝑓
7
(𝜉, 𝑧, 𝜏,𝐻) + 2𝑓

8
(𝜉, 𝑧, 𝜏,𝐻)

− 2𝑓
9
(𝜉, 𝑧, 𝜏,𝐻) − 2𝐻

1
𝑓
10
(𝜉, 𝑧, 𝜏,𝐻)

− 𝑓
11
(𝜉, 𝑧, 𝜏,𝐻) + 2𝑓

12
(𝜉, 𝑧, 𝜏,𝐻)

+ 2𝐻
1
𝑓
13
(𝜉, 𝑧, 𝜏,𝐻) .

(17)

4. Flow due to Uniform Acceleration of
the Plate

For the uniform acceleration of the plate (𝑛 = 1), (12) yields

V
1
(𝜉, 𝑞) =

1

𝑞2
𝑒
−𝜉√𝑞+𝐻

+ 𝑎
1

𝑒
−𝜉√𝑞+𝐻

√𝑞 − 𝑑
+ 𝑎
2

𝑒
−𝜉√𝑞+𝐻

𝑞

+ 𝑎
3

𝑒
−𝜉√𝑞+𝐻

√𝑞
− 𝑎
4

𝑒
−𝜉√𝑞+𝐻

𝑞 − 𝐻
1

− 𝑎
5

√𝑞𝑒
−𝜉√𝑞+𝐻

𝑞 − 𝐻
1

− 𝑎
1

𝑒
−𝜉√𝑞𝑎

√𝑞 − 𝑑

− 𝑎
2

𝑒
−𝜉√𝑞𝑎

𝑞
− 𝑎
3

𝑒
−𝜉√𝑞𝑎

√𝑞
+ 𝑎
4

𝑒
−𝜉√𝑞𝑎

𝑞 − 𝐻
1

+ 𝑎
5

√𝑞𝑒
−𝜉√𝑞𝑎

𝑞 − 𝐻
1

.

(18)

The solution of (18), after taking the Laplace inverse, is given
by

V
1 (𝜉, 𝜏) = 𝑎

2
𝑓
1 (𝜉, 𝜏,𝐻) − 𝑎2𝑓1 (𝜉√𝑎, 𝜏, 0)

− 𝑎
4
𝑒
𝐻
1
𝑡
𝑓
1
(𝜉, 𝜏,𝐻 + 𝐻

1
) + 𝑎
4
𝑒
𝐻
1
𝑡
𝑓
1
(𝜉√𝑎, 𝜏,𝐻

1
)

− 𝑎
1
𝑓
2
(𝜉√𝑎, 𝜏, 𝑑) + 𝑓

3 (𝜉, 𝜏,𝐻) + 2𝑓6 (𝜉, 𝑧, 𝜏,𝐻)

+ 2𝑑𝑓
7
(𝜉, 𝑧, 𝜏,𝐻) + 2𝑓

8
(𝜉, 𝑧, 𝜏,𝐻)

− 2𝑓
9
(𝜉, 𝑧, 𝜏,𝐻) − 2𝐻

1
𝑓
10
(𝜉, 𝑧, 𝜏,𝐻)

− 𝑓
11 (𝜉, 𝑧, 𝜏,𝐻) + 2𝑓12 (𝜉, 𝑧, 𝜏,𝐻)

+ 2𝐻
1
𝑓
13
(𝜉, 𝑧, 𝜏,𝐻) .

(19)

5. Flow due to Nonuniform Acceleration of
the Plate

For the nonuniform acceleration of the plate (𝑛 = 2), (12)
yields

V
2
(𝜉, 𝑞) =

1

𝑞3
𝑒
−𝜉√𝑞+𝐻

+ 𝑎
1

𝑒
−𝜉√𝑞+𝐻

√𝑞 − 𝑑
+ 𝑎
2

𝑒
−𝜉√𝑞+𝐻

𝑞

+ 𝑎
3

𝑒
−𝜉√𝑞+𝐻

√𝑞
− 𝑎
4

𝑒
−𝜉√𝑞+𝐻

𝑞 − 𝐻
1

− 𝑎
5

√𝑞𝑒
−𝜉√𝑞+𝐻

𝑞 − 𝐻
1

− 𝑎
1

𝑒
−𝜉√𝑞𝑎

√𝑞 − 𝑑
− 𝑎
2

𝑒
−𝜉√𝑞𝑎

𝑞
− 𝑎
3

𝑒
−𝜉√𝑞𝑎

√𝑞

+ 𝑎
4

𝑒
−𝜉√𝑞𝑎

𝑞 − 𝐻
1

+ 𝑎
5

√𝑞𝑒
−𝜉√𝑞𝑎

𝑞 − 𝐻
1

.

(20)

The solution of (20), after taking the Laplace inverse, is given
by

V
2 (𝜉, 𝜏) = 𝑎

2
𝑓
1 (𝜉, 𝜏,𝐻) − 𝑎2𝑓1 (𝜉√𝑎, 𝜏, 0)

− 𝑎
4
𝑒
𝐻
1
𝑡
𝑓
1
(𝜉, 𝜏,𝐻 + 𝐻

1
)

+ 𝑎
4
𝑒
𝐻
1
𝑡
𝑓
1
(𝜉√𝑎, 𝜏,𝐻

1
)

− 𝑎
1
𝑓
2
(𝜉√𝑎, 𝜏, 𝑑) + 𝑓

4 (𝜉, 𝜏,𝐻)

+ 2𝑓
6
(𝜉, 𝑧, 𝜏,𝐻) + 2𝑑𝑓

7
(𝜉, 𝑧, 𝜏,𝐻)

+ 2𝑓
8
(𝜉, 𝑧, 𝜏,𝐻) − 2𝑓

9
(𝜉, 𝑧, 𝜏,𝐻)

− 2𝐻
1
𝑓
10 (𝜉, 𝑧, 𝜏,𝐻) − 𝑓11 (𝜉, 𝑧, 𝜏,𝐻)

+ 2𝑓
12
(𝜉, 𝑧, 𝜏,𝐻) + 2𝐻

1
𝑓
13
(𝜉, 𝑧, 𝜏,𝐻) .

(21)

6. Flow due to Highly Nonuniform
Acceleration of the Plate

In this case, 𝑛 = 3 and (12) yields

V
3
(𝜉, 𝑞) =

1

𝑞4
𝑒
−𝜉√𝑞+𝐻

+ 𝑎
1

𝑒
−𝜉√𝑞+𝐻

√𝑞 − 𝑑
+ 𝑎
2

𝑒
−𝜉√𝑞+𝐻

𝑞

+ 𝑎
3

𝑒
−𝜉√𝑞+𝐻

√𝑞
− 𝑎
4

𝑒
−𝜉√𝑞+𝐻

𝑞 − 𝐻
1

− 𝑎
5

√𝑞𝑒
−𝜉√𝑞+𝐻

𝑞 − 𝐻
1

− 𝑎
1

𝑒
−𝜉√𝑞𝑎

√𝑞 − 𝑑
− 𝑎
2

𝑒
−𝜉√𝑞𝑎

𝑞
− 𝑎
3

𝑒
−𝜉√𝑞𝑎

√𝑞

+ 𝑎
4

𝑒
−𝜉√𝑞𝑎

𝑞 − 𝐻
1

+ 𝑎
5

√𝑞𝑒
−𝜉√𝑞𝑎

𝑞 − 𝐻
1

.

(22)
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The solution of (22), after taking the Laplace inverse, is given
by

V
3
(𝜉, 𝜏) = 𝑎

2
𝑓
1
(𝜉, 𝜏,𝐻) − 𝑎

2
𝑓
1
(𝜉√𝑎, 𝜏, 0)

− 𝑎
4
𝑒
𝐻
1
𝑡
𝑓
1
(𝜉, 𝜏,𝐻 + 𝐻

1
) + 𝑎
4
𝑒
𝐻
1
𝑡
𝑓
1
(𝜉√𝑎, 𝜏,𝐻

1
)

− 𝑎
1
𝑓
2
(𝜉√𝑎, 𝜏, 𝑑) + 𝑓

5
(𝜉, 𝜏,𝐻) + 2𝑓

6
(𝜉, 𝑧, 𝜏,𝐻)

+ 2𝑑𝑓
7
(𝜉, 𝑧, 𝜏,𝐻) + 2𝑓

8
(𝜉, 𝑧, 𝜏,𝐻)

− 2𝑓
9 (𝜉, 𝑧, 𝜏,𝐻) − 2𝐻1𝑓10 (𝜉, 𝑧, 𝜏,𝐻)

− 𝑓
11
(𝜉, 𝑧, 𝜏,𝐻) + 2𝑓

12
+ 2𝐻
1
𝑓
13
,

(23)

where

𝑓
1
(𝑦, 𝑡, 𝑤) =

1

2
(𝑒
−𝑦√𝑤 erf 𝑐 [

𝑦

2√𝑡
− √𝑤𝑡]

+𝑒
𝑦√𝑤 erf 𝑐 [

𝑦

2√𝑡
+ √𝑤𝑡]) ,

𝑓
2
(𝑦, 𝑡, 𝑤) =

1

√𝜋𝑡
exp(−

𝑦
2

4𝑡
)

+ 𝑤 exp (−𝑦𝑤+𝑤2𝑡) erf 𝑐 [
𝑦

2√𝑡
− 𝑤√𝑡] ,

𝑓
3
(𝑦, 𝑡, 𝑤) =

1

2
((𝑡 −

𝑦

2√𝑤
) 𝑒
−𝜉√𝑤 erf 𝑐 [

𝑦

2√𝑡
− √𝑤𝑡]

+ (𝑡 +
𝑦

2√𝑤
) 𝑒
𝑦√𝑤

× erf 𝑐 [
𝑦

2√𝑡
+ √𝑤𝑡]) ,

𝑓
4
(𝑦, 𝑡, 𝑤) =

1

4
((𝑡
2
−

𝑦𝑡

√𝑤
+
𝑦
2

4𝑤
+

𝑦

4𝑤√𝑤
)

× 𝑒
−𝑦√𝑤 erf 𝑐 [

𝑦

2√𝑡
− √𝑤𝑡])

+ (𝑡
2
+

𝑦𝑡

√𝑤
+
𝑦
2

4𝑤
−

𝑦

4𝑤√𝑤
)

× 𝑒
𝑦√𝑤 erf 𝑐 [

𝑦

2√𝑡
+ √𝑤𝑡]) ,

𝑓
5
(𝑦, 𝑡, 𝑤) =

1

6
(
3𝑦

4𝑤2
−
𝑦𝑡

𝑤
)√

𝑡

𝑤
exp(

𝑦
2

4𝑡
− 𝑤𝑡)

+ (−
𝑦
2

32𝑤2
−
𝑦
2
𝑡

16𝑤
+
𝑡
3

12
)

× 𝑒
−𝑦√𝑤 erf 𝑐 [

𝑦

2√𝑡
− √𝑤𝑡]

+ 𝑒
𝑦√𝑤 erf 𝑐 [

𝑦

2√𝑡
+ √𝑤𝑡]

× (−
𝑦

32𝑤2√𝑤
−

𝑦
2

96𝑤√𝑤

+
𝑦𝑡

16𝑤√𝑤
−

𝑦𝑡
2

8√𝑤
)

× (𝑒
−𝑦√𝑤 erf 𝑐 [

𝑦

2√𝑡
− √𝑤𝑡]

+𝑒
𝑦√𝑤 erf 𝑐 [

𝑦

2√𝑡
+ √𝑤𝑡]) ,

𝑓
6
(𝜉, 𝑧, 𝜏,𝐻)

=
𝑎
1

𝜋
∫

∞

𝜉/2√𝜏

exp (−𝑧2 − 𝐻(𝜉
2
/4𝑧
2
))

√𝜏 − (𝜉2/4𝑧2)

𝑑𝑧,

𝑓
7
(𝜉, 𝑧, 𝜏,𝐻) =

𝑎
1

√𝜋
∫

∞

(𝜉/2√𝜏)

exp(−𝑧2 − 𝐻 𝜉
2

4𝑧2

+𝑑
2
𝜏 − 𝑑
2 𝜉
2

4𝑧2
) ,

× erf [

[

−𝑑√𝜏 −
𝜉
2

4𝑧2
]

]

𝑑𝑧

𝑓
8
(𝜉, 𝑧, 𝜏,𝐻) =

𝑎
3

𝜋
∫

∞

𝜉/2√𝜏

exp (−𝑧2 − 𝐻(𝜉
2
/4𝑧
2
))

√𝜏 − (𝜉2/4𝑧2)

𝑑𝑧,

𝑓
9 (𝜉, 𝑧, 𝜏,𝐻) =

𝑎
5

𝜋
∫

∞

𝜉/2√𝜏

exp (−𝑧2 − 𝐻(𝜉
2
/4𝑧
2
))

√𝜏 − (𝜉2/4𝑧2)

𝑑𝑧,

𝑓
10
(𝜉, 𝑧, 𝜏,𝐻) =

𝑎
5

√𝜋
∫

∞

𝜉/2√𝜏

exp(−𝑧2 − 𝐻 𝜉
2

4𝑧2

+𝐻
1
𝜏 − 𝐻

1

𝜉
2

4𝑧2
)

× erf [√𝐻
1
(𝜏 −

𝜉
2

4𝑧2
)]𝑑𝑧,

𝑓
11 (𝜉, 𝑧, 𝜏,𝐻) = exp(𝜉

2
𝑎

4𝜏
) ,

𝑓
12 (𝜉, 𝑧, 𝜏,𝐻) =

𝑎
5
√𝑎

𝜋
∫

∞

𝜉/2√𝜏

exp (−𝑧2𝑎)

√𝜏 − (𝜉2/4𝑧2)

𝑑𝑧,

𝑓
13 (𝜉, 𝑧, 𝜏,𝐻) =

𝑎
5
√𝑎

√𝜋
∫

∞

𝜉/2√𝜏

exp( − 𝑧
2
𝑎 + 𝐻

1
𝜏
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−𝐻
1

𝜉
2

4𝑧2
)

× erf [√𝐻
1
(𝜏 −

𝜉
2

4𝑧2
)]𝑑𝑧.

(24)

7. Special Cases

The following solutions from the literature appear as the
limiting cases of our general solutions.

7.1. Absence of Thermal Effects

7.1.1. Case I: Impulsive Motion of the Plate. By eliminating the
convectional term Gr = 0 together with MHD and porosity
effects (𝑀 = 0 and 𝐾 →∞; that is, 𝐻 = 𝛽

0
) in (17), we get

V
0
= 𝑓
1
(𝜉, 𝜏, 𝛽

0
) , (25)

which is in quite agreement with [40, Equation (2.7)]
when ] = 𝑈 = 1. Furthermore by putting 𝛽

0
= 0, (25)

reduces to

V
0𝑁

= 𝑓
1
(𝜉, 𝜏, 0) , (26)

which is the well-known solution of Newtonian fluid [40,
Equation (2.8)] for the impulsivemotion of the plate obtained
by a different technique.

7.1.2. Case II: Accelerated Motion of the Plate. In this case
when convectional term Gr = 0 with 𝑀 = 0 and 𝐾 → ∞,
(19) reduces to

V
1
= 𝑓
3
(𝜉, 𝜏, 𝛽

1
) , (27)

which is in complete agreement with [41, Equation (15)] for
accelerated motion of the plate.

Skin Friction. The expressions for skin fric-
tions 𝜏

0
and 𝜏

1
evaluated from (17) and (19), respectively,

are given by

𝜏
0
= −

𝜕V
0
(𝜉, 𝜏)

𝜕𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=0

= − 𝑔
1
(𝜏,𝐻) − 𝑎

2
𝑔
1
(𝜏,𝐻)

+ 𝑎
2
𝑔
1
(𝜏, 0) + 𝑎

4
𝑒
𝐻
1
𝜏
𝑔
1
(𝜏,𝐻 + 𝐻

1
)

− 𝑎
4
√𝑎𝑒
𝐻
1
𝜏
𝑔
1
(𝜏,𝐻
1
)

+ 𝑎
1
√𝑎𝑔
2
(𝜏, 𝑑) ,

𝜏
1
= −

𝜕V
1 (𝜉, 𝜏)

𝜕𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=0

= − 𝑎
2
𝑔
1
(𝜏,𝐻) + 𝑎

2
𝑔
1
(𝜏, 0)

+ 𝑎
4
𝑒
𝐻
1
𝜏
𝑔
1
(𝜏,𝐻 + 𝐻

1
)

− 𝑎
4
√𝑎𝑒
𝐻
1
𝜏
𝑔
1
(𝜏,𝐻
1
)

+ 𝑎
1
√𝑎𝑔
2
(𝜏, 𝑑) − 𝑔

3
(𝜏,𝐻) ,

(28)

where

𝑔
1 (𝑡, 𝑤) =

𝜕𝑓
1

𝜕𝑦
(𝑦, 𝑡, 𝑤)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0

= −
𝑒
−𝑤𝑡

(1 + 𝑒
𝑤𝑡
√𝑤√𝜋𝑡 erf [√𝑤𝑡])
√𝜋𝑡

,

𝑔
2
(𝑡, 𝑤)

=
𝜕𝑓
2

𝜕𝑦
(𝑦, 𝑡, 𝑤)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0

=

𝑎
1
√𝑎𝑑 (−1 − 2𝑑𝑒

𝑑
2
𝑡√𝜋𝑡 + 𝑑𝑒

𝑑
2
𝑡√𝜋𝑡 erf 𝑐 [𝑑√𝑡])

√𝜋𝑡
,

𝑔
3
(𝑡, 𝑤) =

𝜕𝑓
3

𝜕𝑦
(𝑦, 𝑡, 𝑤)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦=0

= −
𝑒
−𝑤𝑡√𝑡

√𝜋
−
(1 + 2𝑡𝑤) erf [√𝑤𝑡]

2√𝑤
.

(29)

Nusselt Number. The rate of heat transfer evaluated from (15)
is given by

Nu = −
𝜕𝜃 (𝜉, 𝜏)

𝜕𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=0

= 𝛾 [
1

𝜃 (0, 𝜏)
+ 1]

= 𝛾 [
1

𝑒𝑑
2
𝜏 (1 + erf [𝑑√𝜏]) − 1

+ 1] .

(30)

8. Graphical Results and Discussion

In this paper, the influence of thermal radiation on unsteady
free convection flow of MHD Brinkman type fluid past a
vertical plate in a porous medium is studied with New-
tonian heating condition. Four different types of motions
in terms of different boundary conditions on velocity
are discussed. Exact solutions are obtained by means of
Laplace transforms. Straightforward computations show that
the velocities V

0
(𝑦, 𝑡), V

1
(𝑦, 𝑡), V

2
(𝑦, 𝑡), and V

3
(𝑦, 𝑡) given by

(17), (19), (21), and (23) and temperature (15), respectively,
satisfy both the governing equations and all imposed initial
and boundary conditions. As a special case when 𝛽

𝑛
(𝑛 =

0–3) → 0, the solutions that have been established reduce to
the well-known solutions for Newtonian fluids. It is worthy
pointing out that solutions corresponding to hydrodynamic
motion of Brinkman fluid in a nonporous medium can
also be obtained as a limiting case. In order to study the
physical aspects of the problem, the analytical results for
velocities V

0
(𝜉, 𝜏) and V

1
(𝜉, 𝜏) due to impulsive motion and

uniform acceleration as well as for temperature distribution
are plotted graphically in Figures 2–12, whereas the numerical
results of skin friction and Nusselt number for different flow
parameters are shown in Tables 1 and 2. The parameters
entering into the problem are Prandtl number Pr, magnetic



8 Mathematical Problems in Engineering

0 1 2 3 4 5

0.5

1

1.5

Pr = 0.71
Pr = 1.0

Pr = 7.0

𝜉

� 0
(𝜉

,𝜏
)

(a)

0 1 2 3 4

0.5

1

1.5

𝜉

Pr = 0.71
Pr = 1.0

Pr = 7.0

� 1
(𝜉

,𝜏
)

(b)

Figure 2: Velocity profiles for different values of Pr where 𝑀 = 2, 𝐾 = 1, Gr = 0.5, 𝑅 = 1, 𝛾 = 1, 𝛽
0
= 𝛽
1
= 1, and 𝜏 = 1.
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Figure 3: Velocity profiles for different values of 𝑀 where Pr = 0.71, 𝐾 = 1, Gr = 0.5, 𝑅 = 1, 𝛾 = 1, 𝛽
0
= 𝛽
1
= 1, and 𝜏 = 1.

Table 1: Variation in skin friction 𝜏
0
and 𝜏

1
.

Pr 𝑀 𝐾 Gr 𝑅 𝛾 𝛽
0

𝛽
1

𝜏 𝜏
0

𝜏
1

0.71 1 1 0.5 1 0.2 1 1 1 2.029 2.314

1 1 1 0.5 1 0.2 1 1 1 2.035 2.320

0.71 2 1 0.5 1 0.2 1 1 1 2.656 2.860

0.71 1 2 0.5 1 0.2 1 1 1 1.910 2.218

0.71 1 1 1 1 0.2 1 1 1 2.324 2.608

0.71 1 1 0.5 2 0.2 1 1 1 2.025 2.310

0.71 1 1 0.5 1 0.4 1 1 1 2.089 2.373

0.71 1 1 0.5 1 0.2 2 2 1 2.255 2.504

0.71 1 1 0.5 1 0.2 1 1 2 2.038 4.059

The bold values show the comparison (increase or decrease) with the fixed
values (not bold) of the same column for the corresponding parameters given
at the top of the column on the skin frictions (𝜏0 and 𝜏1).

parameter 𝑀, porosity parameter 𝐾, Grashof number Gr,
radiation parameter 𝑅, Newtonian heating parameter 𝛾,
dimensionless time 𝜏, and Brinkman parameter 𝛽

𝑛
(𝑛 =

0, 1).

Table 2: Variation in Nusselt number Nu.

Pr 𝑅 𝛾 𝜏 Nu
0.71 1 0.2 1 0.305

7 1 0.2 1 0.284

0.71 2 0.2 1 0.340

0.71 1 0.4 1 1.040

0.71 1 0.2 2 0.375

The bold values show the comparison (increase or decrease) with the fixed
values (not bold) of the same column for the corresponding parameters given
at the top of the column on Nusselt number (Nu).

Figure 2 is plotted to see the effect of Pr on veloc-
ity in cases of impulsive motion V

0
(𝜉, 𝜏) and uniform

acceleration V
1
(𝜉, 𝜏) of the plate. Three different values of

Pr = 0.71, 1, and 7 are chosen such that physically they
correspond to air, electrolytic solution, and water, respec-
tively. It is clear from this figure that velocity decreases
for both impulsive motion and accelerated motion of the
plate as Pr increases. Physically, it is true due to the fact
that an increase in Prandtl number Pr increases viscosity of
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Figure 4: Velocity profiles for different values of 𝐾 where 𝑀 = 2, Pr = 0.71, Gr = 0.5, 𝑅 = 1, 𝛾 = 1, 𝛽
0
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1
= 1, and 𝜏 = 1.
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Figure 5: Velocity profiles for different values of Gr where 𝑀 = 2, 𝐾 = 1, Pr = 0.71, 𝑅 = 1, 𝛾 = 1, 𝛽
0
= 𝛽
1
= 1, and 𝜏 = 1.

the fluid. Hence, the fluid becomes thick and consequently
velocity decreases. Figure 3 is prepared to see the effects of
the magnetic parameter 𝑀 on velocity profiles for impulsive
and accelerated motions of the plate. It is observed that
velocity in both cases decreases when 𝑀 is increased. This
physical interpretation of the velocity is an indication that
the increasing values of magnetic parameter 𝑀 make the
resistive forces strong enough so that they can oppose the
fluid motion and as a result velocity decreases. This figure
also shows the comparison of hydrodynamic velocity to
hydromagnetic velocity of Brinkman fluid. In the absence
of magnetic effects the velocity is maximum. Furthermore,
it is observed that the momentum boundary layer thickness
for the impulsive motion is greater compared to uniformly
accelerated motion. However, the magnitude of velocity in
case of uniformly accelerated motion is greater than that of
impulsive motion.

Figure 4 is plotted to show the effects of porosity
parameter 𝐾 on the velocities V

0
(𝜉, 𝜏) and V

1
(𝜉, 𝜏). It

appears from this figure that with increasing values of 𝐾,
velocity increases for both impulsive and uniformly
accelerated motions. Physically, it is true because increas-
ing 𝐾 reduces the drag force and causes the velocity
profiles to increase. Thus increasingvalue of the porosity

parameter 𝐾 yields an effect opposite to that of the
magnetic parameter 𝑀. Figure 5 shows the effect of Grashof
number Gr on the velocities for the cases of impulsive
and uniformly accelerated motions. It is observed that an
increase in Grashof number Gr leads to increasing both
types of velocities V

0
(𝜉, 𝜏) and V

1
(𝜉, 𝜏) due to enhancement

in buoyancy force. It is true because thermal Grashof
number signifies the relative effect of thermal buoyancy
force to viscous hydrodynamic force. Increase of Grashof
number Gr means increase of temperature gradient
(𝑇
𝑤

− 𝑇
∞
) due to which the contribution from the

buoyancy near the plate becomes significant and hence
a short rise in the velocity near the plate is observed.
Physically, Gr = 0 corresponds to the absence of free
convection current and Gr > 0 means heating of the fluid or
cooling of the plate by natural convection. For the positive
values of Gr, heat is conducted away from the vertical plate
into the fluid which increases the temperature and thereby
enhances the buoyancy force.

The graphs showing the variations of radiation parame-
ter 𝑅 on the velocities V

0
(𝜉, 𝜏) and V

1
(𝜉, 𝜏) are displayed in

Figure 6. We found that in both cases the velocity increases
as 𝑅 increases. Physically, it is true, as higher radiation oc-
curs when temperature is higher and ultimately velocity
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Figure 6: Velocity profiles for different values of 𝑅 where𝑀 = 2, 𝐾 = 1, Gr = 0.5, Pr = 0.71, 𝛾 = 1, 𝛽
0
= 𝛽
1
= 1, and 𝜏 = 1.

0 1 2 3 4 5

0.5

1

1.5

𝜉

𝛾 = 0.5

𝛾 = 0.8

𝛾 = 1.0

� 0
(𝜉
,𝜏
)

(a)

0 1 2 3 4 5

0.5

1

1.5

𝜉

𝛾 = 0.5

𝛾 = 0.8

𝛾 = 1.0

� 1
(𝜉
,𝜏
)

(b)

Figure 7: Velocity profiles for different values of 𝛾 where𝑀 = 2, 𝐾 = 1, Gr = 0.5, 𝑅 = 1, Pr = 0.71, 𝛽
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Figure 11: Temperature profiles for different values of 𝑅 where Pr =
0.71, 𝛾 = 1, and 𝜏 = 1.

rises. Figure 7 is plotted to show the influence of conjugate
parameter 𝛾 on velocities V

0
(𝜉, 𝜏) and V

1
(𝜉, 𝜏). We observe

that velocity increases in both figures as 𝛾 increases. The
influence of dimensionless time 𝜏 on velocity is shown
in Figure 8. It is seen from this figure that velocity

0 1

1

2

2

3

3

4

5

𝜉

𝛾 = 0.4
𝛾 = 0.7
𝛾 = 1.0

𝜃
(𝜉
,𝜏
)

Figure 12: Temperature profiles for different values of 𝛾 where 𝑅 =

1, Pr = 0.71, and 𝜏 = 1.

increases when 𝜏 increases. Furthermore, both of these
velocities V

0
(𝜉, 𝜏) and V

1
(𝜉, 𝜏) satisfy the given boundary

conditions (see (11)).This proves the accuracy of our obtained
results. The effects of Brinkman parameter 𝛽

𝑛
(𝑛 = 0, 1) on

the flow due to impulsive and uniformly accelerated motions
of the plate are studied in Figure 9. We observe that velocity
decreases as 𝛽 increases. Physically, it is true in the sense that
the Brinkman type fluid can move slowly due to the drag
properties of the fluid.

Figure 10 is sketched to show the effects of Prandtl
number Pr on temperature profiles. Three different values
of Pr = 0.71, 1, and 7 that physically correspond to air,
electrolytic solution, and water are chosen. It is observed that
increasing values of Pr lead to a fall in the temperature. A
similar behavior was also expected due to the fact that at
smaller values of Pr fluids possess high thermal conductivity
and heat diffuses away from the surface faster than at higher
values of Pr. Thus the boundary layer becomes thicker and
consequently temperature decreases when Pr is increased.

Figure 11 is plotted to show the influence of radiation
parameter 𝑅 on the temperature profiles. It is found that
temperature shows an increasing behavior as 𝑅 increases.
Physically, a similar effect was also expected because the
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radiation parameter 𝑅 signifies the relative contribution of
conduction heat transfer to thermal radiation transfer. The
temperature profiles for different values of the Newtonian
heating parameter 𝛾 are plotted in Figure 12. We observe
that temperature profiles increase when 𝛾 increases. It is due
to the fact that, as we increase 𝛾, it results in an increase
in the heat transfer rate from the surface which raises the
temperature.

The numerical results for skin friction and Nusselt are
shown in Tables 1 and 2. Table 1 is prepared to show
the effects of Pr, 𝑀, 𝐾, Gr, 𝑅, 𝛾, 𝛽

0
, 𝛽
1
, and 𝜏 on the skin

frictions 𝜏
0
and 𝜏

1
corresponding to impulsive and uni-

formly accelerated motions of the plate, respectively. It
is observed that both 𝜏

0
and 𝜏

1
increase when the val-

ues of Pr,𝑀, 𝜏, and 𝛽 are increased. However, this behav-
ior is quite opposite for radiation parameter 𝑅, conju-
gate parameter 𝛾, permeability parameter 𝐾, and Grashof
number Gr. Table 2 represents the numerical results for the
rate of heat transfer in terms of Nusselt number Nu for differ-
ent values of Prandtl number Pr, radiation parameter 𝑅,and
conjugate parameter 𝛾. It is found that the rate of heat transfer
decreases with the increasing values of Pr and increases
when 𝑅, 𝛾, and 𝜏 are increased.

9. Conclusions

The exact solutions for the unsteady free MHD convection
flow of an incompressible Brinkman fluid past a vertical plate
in a porous medium with radiation effects and Newtonian
heating condition are obtained using the Laplace transform
technique. For a detailed discussion of the problem, four
important flow situations are discussed. It was observed
from the analytical and graphical results that the obtained
solutions satisfy the imposed initial and boundary conditions
as well as the basic equations of the present problem. The
analytical results of velocity corresponding to the impulsive
and uniformly accelerated motions of the plate together with
temperature are plotted graphically, whereas the numerical
results for skin friction and Nusselt number are provided in
tables. From the present analysis, we observed the following:

(i) The effects of 𝑀 and 𝐾 on the velocities are quite
opposite.

(ii) The magnitude of velocity for uniformly accelerated
motion is greater than the magnitude for the impul-
sive motion of the plate.

(iii) In the absence of free convection velocity shows the
highest amplitude.

(iv) Increasing thermal radiation increases velocity.
(v) Velocities increase for large values of the Newtonian

heating parameter.
(vi) Velocities are increasing functions of time.
(vii) Increasing non-Newtonian fluid parameter 𝛽 de-

creases fluid velocity.
(viii) The temperature increases for large values of 𝑅 and 𝛾.
(ix) The solutions in [40, 41] appear as the limiting cases

of the present solutions.
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