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A designer is a core resource in the fashion industry. Successful designers need to be creative and quick to understand the business
and wider environment in which they are operating. The Designer Platform Service (DPS), which combines the mechanism of
crowdsourcing and group buying on the web, provides a platform for entrant designers to try their abilities in the real market
practice. Freelance designers post design samples or sketches of products on the website of DPS, and consumers may preorder the
products (each at a fixed price) online based on the design information. Once the number of ordering reaches or passes a certain
threshold, that is, the minimum production quantity (MPQ), DPS will arrange for production and delivery according to the orders
received. This novel service boosts the growth of entrant designers and links designing works with real markets directly. We are
interested in how the price and MPQ decisions are made in DPS, with consideration of the entrant designer’s objective, decision
sequences, and customer demand structures. We develop Stackelberg games to model and derive the equilibrium solutions under
individual scenarios. Our findings suggest feasibility of the DPS business model.

1. Introduction

Fashion is among the most important creative industries that
enjoy a great deal of attention these days. Fashion designers
are the core of value creation in the fashion industry, as
they are normally the source of creativity. In the UK alone,
the designer sector produced £700 million income in 2003,
of which £75 million (11 percent) was from license fees to
designers [1].The fashion industry is also a highly competitive
industry, where product life cycles are short, economies
gained by product differentiation are built on brand image,
and product styling can be quickly imitated [2]. Designers
have to play a dual role as creative individuals and as
entrepreneurs in any provided complicated situation.

Entrant designers are an important source of innovation
in the fashion industry. Yet, the professional lives of fashion
entrant designers are particularly hard. It takes time and
resources for advertising and promotion so that a new
designer label can sustain a share in the market, whereas
most new start-up designers are lacking those resources [3].

However, in themarket practice, resources are often allocated
on those established designers, as the market has proved
the attractiveness of their products, so that the resources
allocated could be expected with higher and less risky return.
Without advertising and promotion, most entrant designers
would start their career with a relatively low and uncertain
demand for their design, until they build up their name and
cultivate a market. The low and uncertain demand faced by
entrant designers hinders their design from being carried
to production, as this demand may be far lower than the
minimum production quantity which is commonly applied
in textilemanufacturing. Even if the production can bemade,
the small production quantity and uncertain demand would
lead to high production and inventory cost.

In the past decade, the internet has bred a new approach
called ”crowdsourcing” that help individuals make their
innovative ideas feasible. Named byHowe [4], crowdsourcing
refers to the method that solicits contributions from a large
group of people fromanonline community in order tomake a
certain service, idea or product available or feasible. Howe [4]
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also defined the sponsoring crowd as “the new pool of cheap
labor: everyday people using their spare cycles to create
content, solve problems, and even do corporate R&D.” Many
works have been done recently, on crowdsourcing contests
[5] and noncompetitive crowdsourcing ideation initiatives
[6–8]. For example, the crowdsourcing t-shirt platform,
teespring.com, provides a way for people to create and sell t-
shirts online to raisemoney.Here is how it works: first, people
design a t-shirt and post it on the website, choose a goal, and
set a price to launch a campaign page; second, people send
the campaign page to supporters and let them preorder the t-
shirts towards the campaign goal (preordering is free: buyers
will only be charged if the goal is reached); third, people
can continue to sell shirts past the goal until the campaign
ends. Once it does, the platform handle production and
shipment; people will get a check for the profit. The business
model of teespring.com, which combines the mechanism of
crowdsourcing and group buying on the web, has provided
a platform for entrant designers to try their abilities in the
real market practice. In this business model, there are two
key decisions to make, the price of the product and the target
volume for production (equal to the campaign goal in the case
of teespring.com), which are similar to the widely discussed
problem of “joint pricing-production decisions” in operation
management [9, 10].

To better illustrate how this business model works,
we consider a simplified case, Designer Platform Service
(DPS), which works as a retailer connecting designers with
customers and designers with manufacturers. Similarly, DPS
crowdsources the product design tasks to the entrant designer
community and allows the customers to make purchases
in the way of group buying. First, entrant designers post
design samples or sketches of products on the website of
DPS, and then consumers preorder the product (each at a
fixed price) online based on the product information. The
entrant designer decides the selling price of the product,
while the DPS decides the minimum production quantity
(MPQ). Only when the preorder quantity reaches or passes
the MPQ threshold will DPS arrange for production and
delivery. Preorder customers then make their payment and
get the products delivered. Otherwise, no production will
be arranged, and no one will be charged. This novel service
provides variety to customers, boosts the growth of entrant
designers, and links designing works with real markets. In
the whole process, we are most interested in how the price
and MPQ decisions are made within DPS, with considera-
tion of entrant designer’s objective, decision sequences, and
customer demand structures.

Through the study in the form of Stackelberg games and
by considering various scenarios, we investigate the decisions
in themechanismwith B2C transactions: an entrant designer
utilizes DPS to promote her design to consumer, and we
reveal the price-discovery mechanism in this e-market. We
consider that in our model, the two key players, the entrant
designer and DSP, have very different objectives. Due to the
special stage of an entrant designer in her professional career,
her priority mission is to leverage the creativity with market
acceptance, so that she can later find out a way to boost her
design to profitability. Our findings provide insights on how

the mechanism protects DPS in pricing decision in a highly
versatile and risky market, and how the mechanism provides
a feasible path for entrant designers to test and adjust to
the market with limited loss. Moreover, our findings suggest
feasibility of the DPS business model.

The paper contributes in providing insights of equilib-
rium decisions in the combined business model of crowd-
sourcing and group buying.The paper is new in investigating
a creative business model which could significantly utilize
creativity and reduce cost. The paper is also innovative in
considering business players having nonmonetary objectives.
By investigating the two key decisions in the DSP, we show
how an online platform could raise a business by crowdsourc-
ing designs, arranging manufacturing and selling to group
buying customers. Specifically, we derive optimal decisions
for the twoparties under the different objectives of the entrant
designer, decision sequences, and market demands, through
which we show how an entrant designer could benefit from
DSP. The findings provide guidelines to practitioners in
platform service and designers and help utilize creation with
profit.

The remainder of the paper is organized as follows. In
Section 2, we review the related literature. We construct the
Stackelberg game models in Section 3 and find the best
response decisions in Section 4. In Section 5, we derive the
equilibrium decisions of the games with specific demand
functions. We discuss and conclude in Section 6 with limi-
tations and future research directions.

2. Literature Review

This paper relates to the literature (e.g., [11–13]) in service
platform and group buying business on the web. Web-based
group buying mechanisms are being widely used in both
business-to-business (B2B) and business-to-consumer (B2C)
transactions. Li and Lee [12] show that with the uncertain
peer-produced services quality, a monopolistic platform
provider has no incentive in offering multiple quality classes
of service, while two competing platform providers may offer
identical service contracts but still receive nonnegative profit.
Anand and Aron [14] studied a monopolist offering Web-
based group buying under different kinds of demand uncer-
tainty. They derive the monopolist’s optimal group-buying
schedule under varying conditions of heterogeneity in the
demand regimes and compare its profits with those obtained
under the more conventional posted-price mechanism.

Pricing decision and determination of theminimum pro-
duction quantity with price-dependent demand are the main
focus of the models explored in this paper. In marketing and
operations management literature, there is a huge amount of
related studies under various settings and we review some
of them as follows. For instance, Pasternack [15] studies the
pricing decision and return policy for perishable products.
Cai et al. [16] explore from the game-theoretic perspective
the pricing scheme of a supply chain with dual channels that
compete with one another. The authors show that a simple
price discount contract can achieve channel coordination. In
particular, the pricing issue has aroused the attention ofmany
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researchers when the demand is price-dependent. Petruzzi
and Dada [17] investigate the optimal selling price and
stocking quantity under the newsvendor domain with price-
dependent demand. Yang et al. [18] consider an inventory
system for noninstantaneous deteriorating items with price-
dependent demand and develop an algorithm to solve the
corresponding optimal price and order quantity when partial
backlog is allowed. Chen et al. [19] suggest some coordination
schemes for a supply chain with lead time consideration and
price-dependent demand. Chiu et al. [20] suggest a mecha-
nism for coordinating the pricing and stocking decisions for
a supply chain with price-dependent demand.

To make use of the economy of scale, it is common for
suppliers to impose some minimum quantity requirement
on orders. Such practice is prevalent in the apparel industry,
and Fisher and Raman [21] provide a well-studied example
of minimum order quantity imposition in the industry. The
classical inventory literature studies the minimum quantity
in the form of lot sizing, economic order quantity, and batch
ordering problems (see, e.g., [22]). Recently, Chow et al.
[23] investigate how imposition of minimum order quan-
tity affects a fashion supply chain adopting quick response
strategy. Their findings suggest that the order constraint has
different impacts on different supply chain agents and thus
should be set carefully for the sake of the whole supply chain.

3. Problem Description

We consider the situation that an online retailer (𝑅) provides
a designer platform service (DPS) to an entrant designer (𝐷)
to display one of her (throughout the paper, we employ the
pronoun “she” for the designer and “he” for the retailer for
ease of presentation) own-designed apparel to customers.The
retail price of the product, 𝑝 > 0, is endogenous and decided
by 𝐷. Customers who are willing to buy the product will
preorder at 𝑝 online before a specified deadline of ordering.
The demand of the product, which is reflected by the total
quantity of the preorders placed, is price-dependent and is
given by

𝑦 (𝑝; 𝑥) = 𝑧 (𝑝) 𝑥, (1)

where 0 ≤ 𝑧(𝑝) < +∞ and 𝑑𝑧(𝑝)/𝑑𝑝 := 𝑧
󸀠
(𝑝) < 0 for all

𝑝 ≥ 0, and 𝑥 ≥ 0 is a randomvariable with probability density
function 𝑓(𝑥) and cumulative distribution function 𝐹(𝑥).
Without further notification, we assume that 𝑑𝐹(𝑥)/𝑑𝑥 =

𝑓(𝑥) > 0 for all 𝑥 ≥ 0.
The total production cost with production quantity 𝑞 is

given by

𝐶 (𝑞) = 𝑔 + ℎ𝑞, (2)

where 𝑔 > 0 is the fixed cost and ℎ > 0 is the variable cost of
production. We note that the unit product cost is given by

𝑐 (𝑞) =
𝐶 (𝑞)

𝑞
=

𝑔

𝑞 + ℎ
; (3)

and hence
𝑑𝑐 (𝑞)

𝑑𝑞
= −𝑔𝑞

−2
< 0, ∀𝑞 > 0. (4)

Specifically, 𝑐(𝑞) is strictly decreasing in 𝑞 for all 𝑞 > 0.
To justify the fixed cost of production,𝑅 requires a minimum
production quantity (MPQ) 𝑄 > 0, such that if 𝑦(𝑝; 𝑥) ≥ 𝑄,
then𝑅will proceed to arrange amanufacturer for production
and all the orders placed will be fulfilled, and the customers
pay for the products. Otherwise, the product will not be
produced and customers will not be charged.Mathematically,
the production quantity 𝑞 is given by

𝑞 (𝑝, 𝑄; 𝑥) = {
𝑦 (𝑝; 𝑥) , if 𝑦 (𝑝; 𝑥) ≥ 𝑄,
0, o.w.

(5)

We consider that the profit of selling the product is shared
by𝑅 and𝐷with the former sharing𝛼, whilst the latter sharing
(1 − 𝛼) of the total profit, where 0 ≤ 𝛼 ≤ 1. As a remark,
different ways of profit allocation under DPS project could
result in different optimal solutions of𝑄 and 𝑝. However, the
effects of the allocation schemes are out of the scope of this
paper.

For any given 𝑄 > 0 and 𝑝 > 0, the profit of 𝑅 is given by

𝜋 (𝑄, 𝑝; 𝑥)

=

{

{

{

𝛼 [𝑝𝑦 (𝑝; 𝑥) − 𝐶 (𝑦 (𝑝; 𝑥))] , if 𝑦 (𝑝; 𝑥) ≥ 𝑄,

0, o.w,

= {
𝛼 [(𝑝 − ℎ) 𝑧 (𝑝) 𝑥 − 𝑔] , if 𝑥𝑧 (𝑝) ≥ 𝑄,
0, o.w.

(6)

Taking the expectation of 𝜋(𝑄, 𝑝; 𝑥) on 𝑥, the expected
profit of 𝑅 is given by

𝐸 [𝜋 (𝑄, 𝑝)] = 𝛼∫

∞

𝑄/𝑧(𝑝)

{(𝑝 − ℎ) 𝑧 (𝑝) 𝑥 − 𝑔}𝑓 (𝑥) 𝑑𝑥. (7)

The feasibility of DPS depends on whether the total order
quantity received is greater than the MPQ. We define the
feasibility probability of DPS as the probability of the total
order quantity being greater than the MPQ; that is,

Ψ (𝑝,𝑄) = Pr{𝑥 ≥ 𝑄

𝑧 (𝑝)
} = 1 − 𝐹[

𝑄

𝑧 (𝑝)
] . (8)

The sales volume is given by

𝑞 (𝑝, 𝑄; 𝑥) = {
𝑦 (𝑝; 𝑥) = 𝑥𝑧 (𝑝) , if 𝑥𝑧 (𝑝) ≥ 𝑄,
0, o.w.

(9)

Correspondingly, the expected sales volume is given by

𝐸 [𝑞 (𝑝, 𝑄)] = 𝑧 (𝑝)∫

∞

𝑄/𝑧(𝑝)

𝑥𝑓 (𝑥) 𝑑𝑥. (10)

As a remark, 𝑅 must be profitable in order for him
to participate in DPS. In other words, we need to have
𝜋(𝑄, 𝑝; 𝑥) > 0 for all 𝑥 ≥ 𝑄/𝑧(𝑝), which is equivalent to
𝛼[(𝑝 − ℎ)𝑧(𝑝)𝑥 − 𝑔] > 0 for all 𝑥 ≥ 𝑄/𝑧(𝑝). Simplifying
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Table 1: The list of scenarios being considered in this paper.

Scenario Decision sequence Follower’s problem Leader’s problem
Leader Follower

Project-oriented
R-led Retailer Project-oriented

designer

For any given Q, to find
𝑝
∗
= argmax
𝑝≥0

{Ψ(𝑝, 𝑄)}

s.t. 𝛼𝜋(𝑄, 𝑝) ≥ 0, for all 𝑥 ≥ 0.

Anticipating 𝑝∗, to find
𝑄
∗
= argmax
𝑄≥0

{𝐸[𝜋(𝑄, 𝑝
∗
)]}

Market-oriented
R-led Retailer Market-oriented

designer

For any given Q, to find
𝑝
∗
= argmax
𝑝≥0

{𝐸[𝑞(𝑝, 𝑄)]}

s.t. 𝛼𝜋(𝑄, 𝑝) ≥ 0, for all 𝑥 ≥ 0.

Anticipating 𝑝∗, to find
𝑄
∗
= argmax
𝑄≥0

{𝐸[𝜋(𝑄, 𝑝
∗
)]}

Project-oriented
D-led

Project-oriented
designer Retailer

For any given 𝑝, to find
𝑄
∗
= argmax
𝑄≥0

{𝐸[𝜋(𝑄, 𝑝)]}

Anticipating 𝑄∗, to find
𝑝
∗
= argmax
𝑝≥0

{Ψ(𝑝, 𝑄
∗
)}

s.t. 𝛼𝜋(𝑄∗, 𝑝∗) ≥ 0, for all 𝑥 ≥ 0

Market-oriented
D-led

Market-oriented
designer Retailer

For any given 𝑝, to find
𝑄
∗
= argmax
𝑄≥0

{𝐸[𝜋(𝑄, 𝑝)]}

Anticipating 𝑄∗, to find
𝑝
∗
= argmax
𝑝≥0

{𝐸[𝑞(𝑝, 𝑄
∗
)]}

s.t. 𝛼𝜋(𝑄∗, 𝑝∗) ≥ 0, for all 𝑥 ≥ 0

the above yields (𝑝 − ℎ)𝑧(𝑝)𝑥 ≥ 𝑔 for all 𝑥 ≥ 𝑄/𝑧(𝑝).
By putting 𝑄 = 𝑥𝑧(𝑝), we need to have (𝑝 − ℎ)𝑄 ≥ 𝑔 or
𝑝 ≥ ℎ + 𝑔/𝑄. Moreover, for any given𝑄 and 𝑝, if 𝑥 < 𝑄/𝑧(𝑝)
for all 𝑥 ≥ 0, then both 𝐷 and 𝑅 have zero profit. Therefore,
there should exist some 𝑥 such that 𝑥 ≥ 𝑄/𝑧(𝑝).

For any given pair of (𝑄, 𝑝), the pair of (𝑄, 𝑝) is said to be
feasible if (i) 𝑝 ≥ ℎ + 𝑔/𝑄 and if (ii) there exists some 𝑥 such
that 𝑥 ≥ 𝑄/𝑧(𝑝). The following summarize condition (i) of
(𝑄, 𝑝) being feasible. Let

𝑝
0
(𝑄) = ℎ +

𝑔

𝑄
(11)

(C1): 𝑝 ≥ 𝑝
0
(𝑄) > ℎ for any given 𝑄.

For condition (ii), the specific condition depends on the
exact form of 𝑓(𝑥).

4. The Best Response Decisions of DPS

There are two decision variables under DPS, namely𝑄 and 𝑝.
The optimal values of𝑄 and 𝑝may be different with different
decision sequences. Therefore, in this paper we consider two
scenarios, one with 𝑅 making the decision first, whilst the
other with 𝐷 being the first mover. A game with 𝑅 as the
first mover is referred to as an 𝑅-led (game), whereas the one
with 𝐷 as the first mover is referred to as a 𝐷-led (game).
The objectives of the two parties are also different. 𝑅is to
maximize his expected profit, which must be nonnegative.
For𝐷, whether her product can be sold or not, or how many
customers will buy her product are more important than the
profit she is to earn from selling her product. Therefore, we
consider the following two types of𝐷whose objectives are (1)
maximizing the feasibility probability of DPS project; and (2)
maximizing the expected market size, which is equivalent to
maximizing the expected sales volume.We refer to𝐷, having
the first objective, as “Project-oriented Designer,” whilst the
one with the second objective is “Market-oriented Designer.”
Table 1 summarizes the scenarios that are considered in this
paper.

As 𝐷 and 𝑅 make decisions sequentially, we apply the
Stackelberg game in analyzing the model in which the first
mover acts as the game leader and the late mover acts as
the game follower. Moreover, we apply backward induction
to obtain the optimal solutions of the players in the game.
Propositions 1 to 4 provide the best response solutions to
various scenarios.

Proposition 1. Under the “Project-oriented 𝑅-led” scenario:
(a) for any fixed 𝑄 > 0, the DPS feasibility probability,

Ψ(𝑄, 𝑝), is decreasing in 𝑝 for 𝑝 > 0, and the best
response price that maximizes Ψ(𝑄, 𝑝) is uniquely
given by 𝑝∗

1
(𝑄) = 𝑝

0
(𝑄),

(b) if the best response MPQ that maximizes the expected
profit of R (denoted by𝑄

1

∗) exists and satisfies the first-
order optimality condition, it is given by

𝑄
1

∗
= arg{𝑄 ≥ 0 : 𝑄𝑧(ℎ +

𝑔

𝑄
) + 𝑔𝑧

󸀠
(ℎ +

𝑔

𝑄
) = 0} .

(12)

Proof. All proofs are relegated in the Appendix.

Proposition 2. Under the “Market-oriented 𝑅-led” scenario:
(a) for any fixed 𝑄 > 0, the expected sales volume,

𝐸[𝑞(𝑄, 𝑝)], is decreasing in 𝑝 for 𝑝 > 0, and the best
response price that maximizes the expected market size
is uniquely given by

𝑝
∗

2
(𝑄) = 𝑝

0
(𝑄) , (13)

(b) if the best response MPQ that maximizes the expected
profit of𝑅 (denoted by𝑄

2

∗) exists and satisfies the first-
order optimality condition, it is given by

𝑄
2

∗
= arg{𝑄 > 0 : 𝑄𝑧(ℎ +

𝑔

𝑄
) + 𝑔𝑧

󸀠
(ℎ +

𝑔

𝑄
) = 0} .

(14)
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Propositions 1 and 2 assert that when 𝑅 is the first mover
in DPS, the best response decisions are the same whether𝐷 is
project-oriented or market-oriented. In particular, under the
two 𝑅-led scenarios, it is always optimal for𝐷 to set the retail
price as low as possible [i.e., 𝑝

0
(𝑄)]. Such result is natural as

the objective of 𝐷 is not related to the expected profit she is
to earn from DPS.

Proposition 3. Under the “Project-oriented𝐷-led” scenario:

(a) for any fixed 𝑝 > 𝑝
0

(a-i) 𝐸[𝜋(𝑄, 𝑝)] is strictly concave in 𝑄 if and only if

(𝑝 − ℎ) 𝑧 (𝑝) 𝑓 [
𝑄

𝑧 (𝑝)
] + [(𝑝 − ℎ)𝑄 − 𝑔]𝑓

󸀠
[

𝑄

𝑧 (𝑝)
] > 0,

∀𝑄 > 0;

(15)

(a-ii) a sufficient condition for strict concavity of
𝐸[𝜋(𝑄, 𝑝)] is 𝑓󸀠[𝑄/𝑧(𝑝)] ≥ 0 for all 𝑄 > 0; and

(a-iii) if 𝑓󸀠[𝑄/𝑧(𝑝)] ≥ 0, the best response MPQ that
maximizes the expected profit of 𝑅 is uniquely
given by 𝑄

3

∗
(𝑝) = 𝑔/(𝑝 − ℎ);

(b) if the best response price that maximizes the feasibility
probability of DPS exists and satisfies the first-order
optimality condition, it is given by

𝑝
3

∗
= arg {𝑝 > 𝑝

0
: 𝑧 (𝑝) + (𝑝 − ℎ) 𝑧

󸀠
(𝑝) = 0} . (16)

Proposition 4. Under the “Market-oriented𝐷-led” scenario:

(a) for any fixed 𝑝 > 𝑝
0
,

(a-i) 𝐸[𝜋(𝑄, 𝑝)] is strictly concave in 𝑄 if and only if

(𝑝 − ℎ) 𝑧 (𝑝) 𝑓 [
𝑄

𝑧 (𝑝)
] + [(𝑝 − ℎ)𝑄 − 𝑔]𝑓

󸀠
[

𝑄

𝑧 (𝑝)
] > 0,

∀𝑄 > 0;

(17)

(a-ii) a sufficient condition for strict concavity of
𝐸[𝜋(𝑄, 𝑝)]is 𝑓󸀠[𝑄/𝑧(𝑝)] ≥ 0 for all 𝑄 > 0; and

(a-iii) if 𝑓󸀠[𝑄/𝑧(𝑝)] ≥ 0, the best response MPQ that
maximizes the expected profit of 𝑅 is uniquely
given by

𝑄
4

∗
(𝑝) =

𝑔

𝑝 − ℎ
(18)

(b) if the best response price, that maximizes the expected
sales volume, exists and satisfies the first-order optimal-
ity condition, it is given by

𝑝
4

∗
= arg {𝑝 > 𝑝

0
: 𝜁 (𝑝) = 0} , (19)

where

𝜁 (𝑝) =(𝑝 − ℎ) 𝑧
󸀠
(𝑝) ((𝑝 − ℎ)

2

𝑧
2
(𝑝)∫

∞

𝑔/[(𝑝−ℎ)𝑧(𝑝)]

𝑥𝑓 (𝑥) 𝑑𝑥

+ 𝑔
2
𝑓[

𝑔

(𝑝 − ℎ) 𝑧 (𝑝)
])

+ 𝑔
2
𝑧 (𝑝) 𝑓(

𝑔

(𝑝 − ℎ) 𝑧 (𝑝)
) .

(20)

On the other hand, Propositions 3 and 4 indicate that
when 𝐷 is the first mover in DPS (i.e., the two 𝐷-led
scenarios), if the best response MPQ exists and is positive,
then we have 𝑄

3

∗
(𝑝) = 𝑄

4

∗
(𝑝) = 𝑔/(𝑝 − ℎ).

As a remark, it is the lowest MPQ that promises nonneg-
ative profit. In addition, the smaller the MPQ, the higher the
unit price that𝐷 shouldmeet, whichmeans more profit from
excess order toMPQ.Therefore, regardless of the objective of
𝐷, the best response function of 𝑅 is given by

𝑄
0
(𝑝) =

𝑔

𝑝 − ℎ
. (21)

Notice that𝑔 is the fixed cost for production, whilst (𝑝−ℎ)
can be viewed as the unit “profit margin” for each piece of
apparel under DPS. In other words, the retailer should set the
MPQ in the way that such a corresponding profit can justify
the fixed production cost.

Moreover, we note that the existence of the best response
retail price and the best response MPQ depend on the
functions 𝑧(𝑝) and 𝑓(𝑥); there may be situations where no
optimal solutions exist. There is no general condition to
ensure the existence of them. Propositions 1 to 4 show the
analytical forms of the optimal retail price and the optimal
MPQ in case they exist.

5. Analysis with Specific Demand Functions

Toobtainmore insight, we consider specific forms of 𝑧(𝑝) and
𝐹(𝑥) in this section. Specifically, we consider that 𝑥 follows a
uniform distribution 𝑈[𝑙, 𝑢], where 0 < 𝑙 < 𝑢. For 𝑧(𝑝), we
consider two specific types that are commonly adopted in the
literature (e.g., [17]), namely

(1) additive form:

𝑧
𝐴
(𝑝) =

{

{

{

𝑎 − 𝑏𝑝, for 0 < 𝑝 < 𝑎
𝑏
,

0, for 𝑝 ≥ 𝑎
𝑏
,

(22)

for 𝑎 > 𝑏ℎ > 0 (as 𝑝 > ℎ, if 𝑎 > 𝑏ℎ does not hold, then
𝑝 > 𝑎/𝑏 and 𝑧

𝐴
(𝑝) = 0); and

(2) multiplicative form: 𝑧
𝑀
(𝑝) = 𝑎𝑝

−𝑏 for 𝑎 > 0 and 𝑏 >
0.
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Table 2: Equilibrium decisions with additive form demand function 𝑧
𝐴
(𝑝) = 𝑎 − 𝑏𝑝.

Scenario Condition(s) for existence of the equilibrium Equilibrium 𝑄 Equilibrium 𝑝

Project-oriented R-led
Market-oriented R-led 𝑔 < (𝑎 − 𝑏ℎ)

2

𝑢/4𝑏 2𝑏𝑔/(𝑎 − 𝑏ℎ) (𝑎 + 𝑏ℎ)/2𝑏

Project-oriented D-led
Market-oriented D-led 𝑔 < (𝑎 − 𝑏ℎ)

2

𝑢/4𝑏 and 𝑝
𝐿,4𝐴

< 𝑝
4𝐴
< 𝑝
𝐻,4𝐴

𝑔/(𝑝
4𝐴
− ℎ) Given by 𝑝

4𝐴

Next, we study the equilibriums with two demand forms
separately.

5.1. Additive Form Demand Function. With 𝑧(𝑝) = 𝑧
𝐴
(𝑝) =

𝑎−𝑏𝑝, Propositions 5 to 7 detail the equilibriumdecisions and
the conditions for the existence of the equilibrium decisions
for DPS under different scenarios.

Proposition 5. For the two “𝑅-led” scenarios:

(a) there exists feasible (𝑄, 𝑝) only if 𝑔 < (𝑎 − 𝑏ℎ)
2
𝑢/4𝑏

and 𝑄 > 𝑔𝑏/(𝑎 − 𝑏ℎ),
(b) for 𝑔 < (𝑎 − 𝑏ℎ)

2
𝑢/4𝑏, the expected profit of 𝑅 is

unimodal in 𝑄 for all 𝑄 > 0, and the equilibrium
MPQ is uniquely given by 𝑄

1𝐴

∗
= 2𝑔𝑏/(𝑎 − 𝑏ℎ) >

𝑔𝑏/(𝑎 − 𝑏ℎ). Correspondingly, the equilibrium price is
uniquely given by 𝑝

1𝐴

∗
= (𝑎 + 𝑏ℎ)/2𝑏 > ℎ.

LetΔ = 𝑢[𝑢(𝑎−𝑏ℎ)2−4𝑏𝑔],𝑝
𝐿,3𝐴

= (𝑎+𝑏ℎ)/2𝑏−√Δ/2𝑢𝑏,
and 𝑝

𝐻,3𝐴
= (𝑎 + 𝑏ℎ)/2𝑏 + √Δ/2𝑢𝑏.

Proposition 6. For the “Project-oriented𝐷-led” scenario:

(a) the best response MPQ of 𝑅 is given by𝑄
0
(𝑝) = 𝑔/(𝑝−

ℎ) and the pair (𝑄
0
(𝑝), 𝑝) is feasible only if 𝑔 < 𝑢(𝑎 −

𝑏ℎ)
2
/4𝑏,

(b) for 𝑔 < 𝑢(𝑎 − 𝑏ℎ)2/4𝑏, the DPS feasibility probability
is strictly concave in 𝑝, the equilibrium retail price is
𝑝
3𝐴

∗
= (𝑎 + 𝑏ℎ)/2𝑏 > ℎ, and the equilibrium MPS is

𝑄
3𝐴

∗
= 2𝑏𝑔/(𝑎 − 𝑏ℎ).

Proposition 7. For the “Market-oriented 𝐷-led” scenario, for
𝑔 < 𝑢(𝑎 − 𝑏ℎ)

2
/4𝑏:

(a) the expected sales volume function 𝐸[𝑞(𝑝, 𝑄
0
(𝑝))]

given by (10) is strictly concave in 𝑝,
(b) let𝑝

4𝐴
= arg
𝑝
{𝑔
2
(2𝑎+𝑏ℎ−3𝑏𝑝)−𝑏𝑢

2
(𝑝−ℎ)

3
(𝑎−𝑏𝑝)

2
=

0}. If 𝑝
𝐿,3𝐴

< 𝑝
4𝐴
< 𝑝
𝐻,3𝐴

, then the equilibrium 𝑝 is
𝑝
4𝐴

and the equilibrium MPS is 𝑄
4𝐴

∗
= 𝑔/(𝑝

4𝐴
− ℎ);

otherwise, (𝑄
0
(𝑝), 𝑝) is not feasible for all 𝑝 > 0.

Table 2 summarizes the equilibrium decisions under
various scenarios and the respective conditions required.

With 𝑧(𝑝) = 𝑧
𝐴
(𝑝) = 𝑎 − 𝑏𝑝, we found that 𝑔 − (𝑎 −

𝑏ℎ)
2
𝑢/4𝑏 < 0 is the common condition for the existence

of the equilibrium solutions for all scenarios. As 𝑔 − (𝑎 −
𝑏ℎ)
2
𝑢/4𝑏 < 0 is strictly increasing with 𝑔, ℎ, and 𝑏 and

is strictly decreasing with 𝑎 and 𝑢, the condition 𝑔 − (𝑎 −
𝑏ℎ)
2
𝑢/4𝑏 < 0 implies that the equilibrium decision may

not exist when 𝑔, ℎ, and/or 𝑏 are big, and/or 𝑎 and/or 𝑢 are
small. We argue such results as follows. When 𝑔 and/or ℎ
are big, it is not profitable for 𝑅 under DPS, and hence, 𝑅
will not participate with DPS. When 𝑏 is big, the product
demand is very sensitive to the price such that it is not
possible to set a price to make 𝑞 no less than MPQ and 𝑅
with profitable. When 𝑎 and/or 𝑢 are small, the demand base
is small. Therefore, again, it is not possible to set a price to
make 𝑞 no less than MPQ and 𝑅 profitable.

For the equilibrium decisions, they are the same for the
scenarios Project-oriented𝑅-led,Market-oriented𝑅-led, and
Project-oriented 𝐷-led. However, the equilibrium decisions
of the Market-oriented 𝐷-led scenario are different from the
other three scenarios. Moreover, for the Market-oriented 𝐷-
led scenario, there is an extra condition, 𝑝

𝐿,4𝐴
< 𝑝
4𝐴

<

𝑝
𝐻,4𝐴

for the existence of the equilibrium solutions. This
condition gives an upper bound and a lower bound of the
equilibrium 𝑝. We argue such results as follows. Being an
entrant designer, 𝐷 cares less about maximizing her own
profit. Rather, she aims at either maximizing the expected
sales volume, or the feasibility probability of the DPS. Both
objectives can be fulfilled by maximizing the demand, which
is also favorable to the profit-maximizing 𝑅. In other words,
the objective of 𝐷 is consistent with that of 𝑅; therefore
the effect of decision sequence becomes negligible. Besides,
whether 𝐷 is project- or market-oriented, it is also optimal
for her to set 𝑝 as small as possible to maximize the market
size whilst keeping 𝑅 profitable. From the perspective of 𝑅,
as discussed in the previous section, the optimal MPQ is the
one that barely justifies the fixed production cost.This reflects
that it is always optimal for him to make DPS feasible so
that he can have the opportunity to gain profit. Hence, the
equilibrium decisions are almost the same under different
decision sequences and different objectives of 𝐷 when there
is no limitation on setting 𝑝. However, because of the extra
condition for the equilibrium 𝑝, the equilibrium decisions
for theMarket-oriented𝐷-led scenario are different from the
other three scenarios.

5.2. Multiplicative Form Demand Function. With 𝑧(𝑝) =

𝑧
𝑀
(𝑝) = 𝑎𝑝

−𝑏, Propositions 8 to 10 detail the equilibrium
decisions and the conditions for the existence of the equilib-
rium decisions for DPS under different scenarios.

Proposition 8. For the two “𝑅-led” scenarios

(a) the best response retail price of 𝐷 is given by 𝑝
0
(𝑄) =

ℎ + 𝑔/𝑄;
(b) for 0 < 𝑏 ≤ 1, the expected profit of 𝑅, 𝐸[𝜋

1𝑀
(𝑄)], is

strictly decreasing in 𝑄 and 𝐸[𝜋
1𝑀
(0)] = +∞; and
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Table 3: Equilibrium decisions with multiplicative form demand function 𝑧
𝑀
(𝑝) = 𝑎𝑝

−𝑏.

Scenario Condition(s) for existence of equilibrium Equilibrium 𝑄 Equilibrium 𝑝

Project-oriented R-led
𝑏 > 1 and 𝑔(𝑏 − 1)[ℎ𝑏/(𝑏 − 1)]𝑏/𝑎ℎ < 𝑢

(𝑏 − 1)𝑔/ℎ 𝑏ℎ/(𝑏 − 1)
Market-oriented R-led
Project-oriented D-led

𝑏 > 1 and 𝑙 < 𝑔(𝑏 − 1)[ℎ𝑏/(𝑏 − 1)]𝑏/𝑎ℎ < 𝑢
Market-oriented D-led

(c) for 𝑏 > 1, the expected profit of the retailer is unimodal
in 𝑄 for all 𝑄 > 0;

(c-i) if 𝑔(𝑏 − 1)[ℎ𝑏/(𝑏 − 1)]𝑏/𝑎ℎ ≥ 𝑢, (𝑄, 𝑝
0
(𝑄)) is

infeasible for all 𝑄 > 0; and
(c-ii) otherwise, the equilibriumMPQ and the equilib-

rium 𝑝 are given by 𝑄
1𝑀

∗
= (𝑏 − 1)𝑔/ℎ and

𝑝
1𝑀

∗
= 𝑏ℎ/(𝑏 − 1), respectively.

Let Δ
3𝐴

= 𝑢[𝑢(𝑎 − 𝑏ℎ)
2
− 4𝑏𝑔], 𝑝

𝐿,3𝐴
= (𝑎 + 𝑏ℎ)/2𝑏 −

√Δ
3𝐴
/2𝑢𝑏, and 𝑝

𝐻,3𝐴
= (𝑎 + 𝑏ℎ)/2𝑏 +√Δ

3𝐴
/2𝑢𝑏. Moreover,

let

𝐾
3𝑀
(𝑝) =

𝑔𝑝
𝑏

𝑎 (𝑝 − ℎ)
< 𝑢, (23)

and denote 𝑝
3𝑀𝑙

󸀠, 𝑝
3𝑀𝑢

󸀠, 𝑝
3𝑀𝑢

󸀠󸀠, 𝑝
3𝑀𝑢

󸀠󸀠󸀠, 𝑝
3𝑀𝑙

󸀠󸀠, 𝑝
3𝑀𝑙

󸀠󸀠󸀠,
𝑝
3𝑀𝑙

󸀠, and 𝑝
3𝑀𝑢

󸀠 that satisfy (i) 𝑝
3𝑀𝑙

󸀠
> 𝑝
3𝑀𝑢

󸀠
> ℎ, (ii)

𝐾
3𝑀
(𝑝
3𝑀𝑙

󸀠
) = 𝑙 and (iii) 𝐾

3𝑀
(𝑝
3𝑀𝑢

󸀠
) = 𝑢; and 𝑝

3𝑀𝑢

󸀠󸀠,
𝑝
3𝑀𝑢

󸀠󸀠󸀠, 𝑝
3𝑀𝑙

󸀠󸀠, and 𝑝
3𝑀𝑙

󸀠󸀠󸀠 satisfy (i) ℎ < 𝑝
3𝑀𝑢

󸀠󸀠
< 𝑝
3𝑀𝑙

󸀠󸀠
≤

𝑝
3𝑀𝑙

󸀠󸀠󸀠
< 𝑝
3𝑀𝑢

󸀠󸀠󸀠, (ii) 𝐾
3𝑀
(𝑝
3𝑀𝑢

󸀠󸀠
) = 𝐾

3𝑀
(𝑝
3𝑀𝑢

󸀠󸀠󸀠
) = 𝑢, (iii)

𝐾
3𝑀
(𝑝
3𝑀𝑙

󸀠󸀠
) = 𝐾

3𝑀
(𝑝
3𝑀𝑙

󸀠󸀠󸀠
) = 𝑙, (iv) 𝑙 < 𝐾

3𝑀
(𝑝) < 𝑢 for

all 𝑝
3𝑀𝑢

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠󸀠 or 𝑝
3𝑀𝑙

󸀠󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑢

󸀠󸀠󸀠, and (v)
𝐾
3𝑀
(𝑝) ≤ 𝑙 for all 𝑝

3𝑀𝑙

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠󸀠󸀠.

Proposition 9. For the “Project-oriented𝐷-led” scenario:

(a) the best response MPQ of 𝑅 is 𝑄
0
(𝑝) = 𝑔/(𝑝 − ℎ);

(b) for 𝑏 ≤ 1, the feasibility probability Ψ(𝑝) is strictly
increasing in 𝑝 for all 𝑝

3𝑀𝑢

󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠 and Ψ(𝑙)=
1 for all 𝑝 ≥ 𝑝

3𝑀𝑙

󸀠,
(c) for 𝑏 > 1,

(c-i) if (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))𝑏 ≥ 𝑢, then the pair
(𝑄∗
3𝑀
(𝑝), 𝑝) is infeasible;

(c-ii) if 𝑙 < (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))𝑏 < 𝑢, then Ψ(𝑝)
is unimodal in𝑝 and ismaximized at𝑝 = ℎ𝑏/(𝑏−
1);

(c-iii) if (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))𝑏 < 𝑙, then Ψ(𝑝) is
strictly increasing in 𝑝 for all 𝑝

3𝑀𝑢

󸀠󸀠
< 𝑝 <

𝑝
3𝑀𝑙

󸀠󸀠, is strictly decreasing in p for all 𝑝
3𝑀𝑙

󸀠󸀠󸀠
<

𝑝 < 𝑝
3𝑀𝑢

󸀠󸀠󸀠, andΨ
3𝑀
(𝑝) = 1 for all 𝑝

3𝑀𝑙

󸀠󸀠
< 𝑝 <

𝑝
3𝑀𝑙

󸀠󸀠󸀠.

Proposition 9 asserts that for the Project-oriented 𝐷-led
scenario, the equilibrium decision exists only if 𝑏 > 1 and
𝑙 < (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))

𝑏
< 𝑢, and the equilibrium 𝑄

and equilibrium 𝑝 are given by (𝑏 − 1)𝑔/ℎ and 𝑏ℎ/(𝑏 − 1),
respectively.

Proposition 10. Under the “Market-oriented𝐷-led” scenario:

(a) for 𝑏 ≤ 1, the expected sales volume 𝐸[𝑞(𝑝, 𝑄
0
(𝑝))]

is strictly increasing in 𝑝 for all 𝑝
3𝑀𝑢

󸀠
<𝑝<𝑝

3𝑀𝑙

󸀠, and
𝐸[𝑞(𝑝, 𝑄

0
(𝑝))] = (𝑢 − 𝑙)/2 for all 𝑝 ≥ 𝑝

3𝑀𝑙

󸀠.
(b) for 𝑏 > 1,

(b-i) if 𝑙 < (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))
𝑏

< 𝑢,
then 𝐸[𝑞(𝑝, 𝑄

0
(𝑝))] is unimodal in 𝑝 and is

maximized at 𝑝 = ℎ𝑏/(𝑏 − 1); and
(b-ii) if (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))

𝑏
< 𝑙, then

𝐸[𝑞(𝑝, 𝑄
0
(𝑝))] is strictly increasing in p for all

𝑝
3𝑀𝑢

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠󸀠, is strictly decreasing in p
for all 𝑝

3𝑀𝑙

󸀠󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑢

󸀠󸀠󸀠, andΨ
3𝑀
(𝑝) = 1 for

all 𝑝
3𝑀𝑙

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠󸀠󸀠.

Proposition 10 asserts that for the Market-oriented𝐷-led
scenario, the equilibrium decision exists only if 𝑏 > 1 and
𝑙 < (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))

𝑏
< 𝑢, and the equilibrium 𝑄

and equilibrium 𝑝 are given by (𝑏 − 1)𝑔/ℎ and 𝑏ℎ/(𝑏 − 1),
respectively.

Table 3 summarizes the best response solutions under
various scenarios and the respective conditions required.

With 𝑧(𝑝) = 𝑧
𝑀
(𝑝) = 𝑎𝑝

−𝑏, we found that the optimal
solutions are almost the same whether 𝐷 is project- or
market-oriented. They are also independent of the decision
sequence. Similar to the case with 𝑧(𝑝) = 𝑧

𝐴
(𝑝) = 𝑎 − 𝑏𝑝,

we argue such results as follows. Being an entrant designer,
𝐷 cares less about maximizing her own profit. Rather, she
aims at either maximizing the expected sales volume or the
feasibility probability of the DPS. Both objectives can be
fulfilled by maximizing the demand, which is also favorable
to the profit-maximizing 𝑅. In other words, the objective of
𝐷 is consistent with that of 𝑅; therefore, the effect of decision
sequence becomes negligible. Besides, whether 𝐷 is project-
or market-oriented, it is also optimal for her to set 𝑝 as small
as possible to maximize the market size whilst keeping 𝑅
profitable. Hence, the optimal solutions are almost the same
under different decision sequences and different objectives of
𝐷. From the perspective of 𝑅, as discussed in the previous
section, the optimal MPQ is the one that barely justifies the
fixed production cost.This reflects that it is always optimal for
him tomake DPS feasible so that he can have the opportunity
to gain profit.

The optimality conditions provide some other insights to
the equilibrium decisions. To be specific, 𝑏 > 1 is required
in order to have equilibrium decisions for all four scenarios:
𝑔(𝑏 − 1)[ℎ𝑏/(𝑏 − 1)]

𝑏
/𝑎ℎ < 𝑢 is required for the two 𝑅-led

scenarios and 𝑙 < 𝑔(𝑏 − 1)[ℎ𝑏/(𝑏 − 1)]𝑏/𝑎ℎ < 𝑢 is required for
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the two𝐷-led scenarios. As 𝑙 does not include the equilibrium
𝑄 and the equilibrium𝑝, the value of 𝑙 is irrelevant in deriving
the equilibrium decisions for the two 𝑅-led scenarios, but 𝑙
becomes relevant in deriving the equilibrium decisions for
the two 𝐷-led scenarios. Moreover, it is more probable an
equilibriumdecision could be derived for two𝑅-led scenarios
than for the two𝐷-led scenarios.

6. Discussion

This paper concerns a service platform provided by an online
retailer to an entrant designer. By formulating the problem as
various Stackelberg games, we first explore the best response
retail price of the entrant designer and the best response
MPQ of the retailer, under different designer’s objectives and
decision sequences in a general demand function setting, and
thenwe explore the equilibriumdecisions of the games, under
different designer’s objectives and decision sequences by
considering two specific demand function setting structures.
Essentially, the retailer should set the MPQ that justifies the
fixed production cost, whilst the entrant designer should
set the retail price as low as possible to enlarge the market
demand whilst the retail is still profitable.

The current paper bares several limitations including but
not limited to the below. First, this paper considers the simple
case that the product is sold at a fixed price at all quantities,
whereas there can be various ways in organizing the group
selling; a possible extension is to explore howdifferent pricing
schemes may bring benefits to all parties in the system. For
instance, a pricing scheme with quantity discount, that is,
different levels of discounts at different total order quantities
is a good candidate for future research. Second, this paper
considers the systemwith single designer and single platform.
The literature in crowdsourcing suggests that competition
among source providers, which is commonly observed in
reality, is good for resource allocation. Accordingly, this study
can be extended to explore the effect of competition amongst
multiple designers and/or platforms. For other extensions,
it is interesting to explore the optimal solutions of the DPS
when a well-established designer who cares about profit
maximization is involved.

Appendix

Mathematical Proofs

Note: for brevity, we omit one of the variables 𝑝 or 𝑞 in
𝐸[𝑞(𝑝, 𝑄)], 𝐸[𝜋(𝑄, 𝑝)], and Ψ(𝑝,𝑄) in the proofs.

Proof of Proposition 1. Under the “Project-oriented 𝑅-led”
scenario:

(a) for any given 𝑄 > 0, the DPS feasibility probability is
given by Ψ(𝑝) = 1 − 𝐹[𝑄/𝑧(𝑝)], and we have

𝑑Ψ (𝑝)

𝑑𝑝
= 𝑓[

𝑄

𝑧 (𝑝)
] [

𝑄𝑧
󸀠
(𝑝)

𝑧
2
(𝑝)

] ≤ 0, as 𝑧󸀠 (𝑝) < 0,

𝑓 (𝑥) ≥ 0, ∀𝑥 ≥ 0.

(A.1)

Thus, the optimal retail price that maximizes the
expected sales volume is the smallest possible value
of the retail price, which is equal to 𝑝

0
(𝑄) by (C1).

(b) anticipating that 𝐷 would set the retail price as
𝑝
2

∗
(𝑄) = 𝑝

0
(𝑄), the retailer’s expected profit when

having 𝑄 as the MPQ and the corresponding first
derivative in 𝑄 are given by the below, respectively:

𝐸 [𝜋 (𝑄)] =𝛼∫

∞

𝑄/𝑧[𝑝
2

∗
(𝑄)]

[(
𝑔

𝑄
)𝑧 (𝑝

2

∗

(𝑄)) 𝑥 − 𝑔]𝑓 (𝑥) 𝑑𝑥

= 𝛼𝑔[
𝑧 (ℎ + 𝑔/𝑄)

𝑄
∫

∞

𝑄/𝑧(ℎ+𝑔/𝑄)

𝑥𝑓 (𝑥) 𝑑𝑥

+ 𝐹(
𝑄

𝑧 (ℎ + 𝑔/𝑄)
) − 1] ,

(A.2)

𝑑𝐸
[𝜋 (𝑄)]

𝑑𝑄
= −(

𝛼𝑔

𝑄
3
)[𝑄𝑧(ℎ +

𝑔

𝑄
) + 𝑔𝑧

󸀠
(ℎ +

𝑔

𝑄
)]

× ∫

∞

𝑄/𝑧(ℎ+𝑔/𝑄)

𝑥𝑓 (𝑥) 𝑑𝑥.

(A.3)

By the participation constraint of𝑅, that is, 𝜋(𝑄, 𝑝; 𝑥) > 0, we
have 𝐸[𝜋(𝑄)] > 0.Therefore, ∫∞

𝑄/𝑧(ℎ+𝑔/𝑄)
𝑥𝑓(𝑥)𝑑𝑥 > (𝑄/𝑧(ℎ+

𝑔/𝑄))(1 − 𝐹(𝑄/𝑧(ℎ + 𝑔/𝑄))) > 0. From (A.3), we then have
𝑑𝐸[𝜋(𝑄)]/𝑑𝑄|

𝑄=𝑄
2

∗ = 0 ⇔ 𝑄
2

∗
𝑧(ℎ + 𝑔/𝑄

2

∗
) + 𝑔𝑧

󸀠
(ℎ +

𝑔/𝑄
2

∗
) = 0.

Proof of Proposition 2. Under the “Market-oriented 𝑅-led”
scenario:

(a) for any given 𝑄 > 0, the expected sales volume
is given by 𝐸[𝑞(𝑝)] = 𝑧(𝑝) ∫

∞

𝑄/𝑧(𝑝)
𝑥𝑓(𝑥)𝑑𝑥 and

we have 𝑑𝐸[𝑞(𝑝)]/𝑑𝑝 = 𝑧
󸀠
(𝑝)[∫
∞

𝑄/𝑧(𝑝)
𝑥𝑓(𝑥)𝑑𝑥 +

𝑄
2
𝑓[𝑄/𝑧(𝑝)]/𝑧

2
(𝑝)] ≤ 0, as 𝑧󸀠(𝑝) < 0, and 𝑓(𝑥) ≥

0 for all 𝑥 ≥ 0. Thus, the optimal retail price that
maximizes the expected sales volume is the smallest
possible value of the retail price, which is equal to
𝑝
0
(𝑄) by (C1).

(b) same as Proposition 1(b),

Proof of Proposition 3. (a) For any fixed 𝑝 > 𝑝
0
, the expected

profit of 𝑅 is given by

𝐸 [𝜋 (𝑄)] = 𝛼∫

∞

𝑄/𝑧(𝑝)

[(𝑝 − ℎ) 𝑧 (𝑝) 𝑥 − 𝑔] 𝑓 (𝑥) 𝑑𝑥

= 𝛼((𝑝 − ℎ) 𝑧 (𝑝)∫

∞

𝑄/𝑧(𝑝)

𝑥𝑓 (𝑥) 𝑑𝑥

+𝑔𝐹[
𝑄

𝑧 (𝑝)
] + 𝑔) .

(A.4)
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The first and second derivatives of 𝐸[𝜋(𝑄)] w.r.t. 𝑄 can be
easily derived as follows, respectively:

𝑑𝐸 [𝜋 (𝑄)]

𝑑𝑄
= −

𝛼𝑓 [𝑄/𝑧 (𝑝)] [(𝑝 − ℎ)𝑄 − 𝑔]

𝑧 (𝑝)
, (A.5)

𝑑
2
𝐸 [𝜋 (𝑄)]

𝑑𝑄
2

= −𝛼((𝑝 − ℎ) 𝑧 (𝑝) 𝑓[
𝑄

𝑧 (𝑝)
]

+ [(𝑝 − ℎ)𝑄 − 𝑔]𝑓
󸀠
[

𝑄

𝑧 (𝑝)
]) × (𝑧

2
(𝑝))

−1

.

(A.6)

(a-i) A direct observation from (A.6). (a-ii) If𝑓󸀠[𝑄/𝑧(𝑝)] ≥ 0
for all 𝑄 > 0, then

(𝑝 − ℎ) 𝑧 (𝑝) 𝑓 [
𝑄

𝑧 (𝑝)
] + [(𝑝 − ℎ)𝑄 − 𝑔]𝑓

󸀠
[

𝑄

𝑧 (𝑝)
]

≥ (𝑝 − ℎ) 𝑧 (𝑝) 𝑓 [
𝑄

𝑧 (𝑝)
] > 0.

(A.7)

Noticed that 𝑝 ≥ 𝑝
0
(𝑄) > ℎ and 𝑓(𝑥) > 0. So by (a-

i), 𝐸[𝜋(𝑄)] is strictly concave in 𝑄. (a-iii) A direct result by
solving the first-order condition 𝑑𝐸[𝜋(𝑄)]/𝑑𝑄 = 0 from
(A.5).

(b) Anticipating that the retailer sets the minimum pro-
cessing quantity as 𝑄

3

∗
(𝑝), the probability of DPS feasibility

is given by

Ψ (𝑝) = 1 − 𝐹[
𝑄
3

∗
(𝑝)

𝑧 (𝑝)
] = 1 − 𝐹[

𝑔

(𝑝 − ℎ) 𝑧 (𝑝)
] . (A.8)

The first derivative of Ψ(𝑝) is

𝑑Ψ (𝑝)

𝑑𝑝
= [

𝑔

(𝑝 − ℎ)
2

𝑧
2
(𝑝)

] [𝑧 (𝑝) + (𝑝 − ℎ) 𝑧
󸀠
(𝑝)]

× 𝑓[
𝑔

(𝑝 − ℎ) 𝑧 (𝑝)
] .

(A.9)

The first-order condition 𝑑Ψ(𝑝
3

∗
)/𝑑𝑝 = 0 is equivalent to

𝑧(𝑝
3

∗
) + (𝑝

3

∗
− ℎ)𝑧

󸀠
(𝑝
3

∗
) = 0 by direct observation from

(A.9).

Proof of Proposition 4. (a) Same as the proofs for Proposition
3(a).

(b) Anticipating that the retailer sets the minimum
processing quantity as 𝑄

4

∗
(𝑝), the expected sales volume is

given by 𝐸[𝑞(𝑝)] = 𝑧(𝑝) ∫ ∞
𝑔/[(𝑝−ℎ)𝑧(𝑝)]

𝑥𝑓(𝑥)𝑑𝑥.
It can be easily shown that the first derivative of 𝐸[𝑞(𝑝)]

is in the form:

𝑑𝐸 [𝑞 (𝑝)]

𝑑𝑝
=

𝜁 (𝑝)

[(𝑝 − ℎ)
3

𝑧
2
(𝑝)]

. (A.10)

The optimal price that maximizes the expected sales volume
(denoted by 𝑝

4

∗), if exists, should satisfy the first-order
condition: 𝑑𝐸[𝑞(𝑝

4

∗
)]/𝑑𝑝 = 0, which is equivalent to 𝜁(𝑝) =

0 by direct observation from (A.10).

Proof of Proposition 5. (a) From (C1), we need to have𝑝 ≥ ℎ+
𝑔/𝑄. By the property of 𝑧

𝐴
(𝑝), we also require 0 < 𝑝 < 𝑎/𝑏.

Considering both together we have 𝑄 > 𝑔𝑏/(𝑎 − 𝑏ℎ). Next,
there exists some 𝑥 such that 𝑥 ≥ 𝐾

1𝐴
(𝑄), where 𝐾

1𝐴
(𝑄) =

𝑄/𝑧
𝐴
(𝑝
1𝐴

2
). Since 𝑙 < 𝑥 < 𝑢, we need to have 𝐾

1𝐴
(𝑄) < 𝑢,

which is equivalent to 𝑄2 − (𝑎 − 𝑏ℎ)𝑢𝑄 + 𝑏𝑔𝑢 < 0. We prove
by contradiction that 𝑔 ≤ (𝑎 − 𝑏ℎ)2𝑢/4𝑏. Suppose 𝑔 > (𝑎 −
𝑏ℎ)
2
𝑢/4𝑏. Then

𝑄
2
− (𝑎 − 𝑏ℎ) 𝑢𝑄 + 𝑏𝑔𝑢

> 𝑄
2
− (𝑎 − 𝑏ℎ) 𝑢𝑄 +

(𝑎 − 𝑏ℎ)
2
𝑢
2

4

= [𝑄 −
(𝑎 − 𝑏ℎ) 𝑢

2
]

2

≥ 0.

(A.11)

A contradiction! So we need to have 𝑔 ≤ (𝑎 − 𝑏ℎ)2𝑢/4𝑏.
(b) The profit of the retailer when setting MPQ as 𝑄 is

given by

𝜋
1𝐴
(𝑄)

=

{

{

{

[𝑝
1𝐴

∗
(𝑄) − ℎ] 𝑥𝑧

𝐴
[𝑝
1𝐴

∗
(𝑄)] − 𝑔, for 𝑥 ≥ 𝐾

1𝐴
(𝑄) ,

0, o.w.,
(A.12)

where 𝑝
1𝐴

∗
(𝑄) = 𝑝

0
(𝑄) = ℎ + 𝑔/𝑄 by Propositions 1 and 2.

Taking expectation, we have

𝐸 [𝜋
1𝐴
(𝑄)]

= ∫

𝑢

𝐾
1𝐴
(𝑄)

([𝑝
1𝐴

∗

(𝑄) − ℎ] 𝑥𝑧
𝐴
[𝑝
1𝐴

∗

(𝑄)] − 𝑔) 𝑓 (𝑥) 𝑑𝑥

=
𝑔 [𝑢 − 𝐾

1𝐴
(𝑄)]

(𝑢 − 𝑙)
([
𝑎 − 𝑏ℎ

𝑄
−
𝑏𝑔

𝑄
2
] [

𝑢 + 𝐾
1𝐴
(𝑄)

2
] − 1) .

(A.13)

The first and second derivative of 𝐸[𝜋
1𝐴
(𝑄)] can be easily

derived as follows, respectively:

𝑑𝐸 [𝜋
1𝐴
(𝑄)]

𝑑𝑄
=

𝑔 [𝑢
2
− 𝐾
1𝐴

2
(𝑄)] [− (𝑎 − 𝑏ℎ)𝑄 + 2𝑏𝑔]

2 (𝑢 − 𝑙) 𝑄
3

,

(A.14)

𝑑
2
𝐸 [𝜋
1𝐴
(𝑄)]

𝑑𝑄
2

=

𝑔 [𝑢
2
− 𝐾
1𝐴

2
(𝑄)] [(𝑎 − 𝑏ℎ)𝑄 − 3𝑏𝑔]

(𝑢 − 𝑙) 𝑄
4

.

(A.15)

From (A.15), for 𝑄 > 0, 𝑑2𝐸[𝜋
1𝐴
(𝑄)]/𝑑𝑄

2
< 0 ⇔ 𝑄 <

3𝑏𝑔/(𝑎 − 𝑏ℎ) (as 𝑢2 > 𝐾
1𝐴

2
(𝑄)). Thus, 𝐸[𝜋

1𝐴
(𝑄)] is strictly

concave for 𝑄 in 0 < 𝑄 < 3𝑏𝑔/(𝑎 − 𝑏ℎ) and is convex for
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𝑄 ≥ 3𝑏𝑔/(𝑎 − 𝑏ℎ). From (A.14), 𝑑𝐸[𝜋
1𝐴
(𝑄)]/𝑑𝑄 = 0 ⇔

3𝑏𝑔/(𝑎 − 𝑏ℎ) > 𝑄 = 2𝑏𝑔/(𝑎 − 𝑏ℎ) > 0 (i.e., a unique
𝑄 > 0 satisfying 𝑑𝐸[𝜋

1𝐴
(𝑄)]/𝑑𝑄 = 0). Therefore, 𝐸[𝜋

1𝐴
(𝑄)]

is unimodal in 𝑄 for 𝑄 > 0. Thus, 𝑄
1𝐴

∗
= 2𝑏𝑔/(𝑎 − 𝑏ℎ) is

unique. Then, by direct manipulation, 𝑝
1𝐴

∗
= 𝑝
1𝐴

∗
(𝑄
1𝐴

∗
) =

(𝑎 + 𝑏ℎ)/2𝑏.

Proof of Proposition 6. Under the “Project-oriented 𝐷-led”
scenario with 𝑧(𝑝) = 𝑧

𝐴
(𝑝) = 𝑎 − 𝑏𝑝:

(a) by Proposition 3, the optimal MPQ is𝑄
0
(𝑝) = 𝑔/(𝑝−

ℎ), which satisfies (C1). Since 𝑙 ≤ 𝑥 ≤ 𝑢 and
to ensure (𝑄

0
(𝑝), 𝑝) being feasible, we need to have

𝑄
0
(𝑝)/𝑧
𝐴
(𝑝) < 𝑢, which is equivalent to

𝜂 (𝑝) = 𝑢𝑏𝑝
2
− 𝑢 (𝑎 + 𝑏ℎ) 𝑝 + 𝑢ℎ𝑎 + 𝑔 < 0. (A.16)

(b) Suppose 𝑔 < 𝑢(𝑎−𝑏ℎ)2/4𝑏. For any given 𝑝
𝐿,3𝐴

< 𝑝 <

𝑝
𝐻,3𝐴

, the DPS feasibility probability is given by

Ψ
3
(𝑝) = 1 − 𝐹[

𝑄
3𝐴

∗
(𝑝)

𝑧
𝐴
(𝑝)

]

= −
𝑔

(𝑢 − 𝑙) (𝑝 − ℎ) (𝑎 − 𝑏𝑝)
+ [1 +

𝑢

(𝑢 − 𝑙)
] .

(A.17)

The first and second derivatives of Ψ
3
(𝑝) w.r.t. 𝑝 can be

derived easily as follows:

𝑑Ψ (𝑝)

𝑑𝑝
=

𝑔

(𝑢 − 𝑙) (𝑝 − ℎ)
2

(𝑎 − 𝑏𝑝)
2
(𝑎 + ℎ𝑏 − 2𝑏𝑝) , (A.18)

𝑑
2
Ψ (𝑝)

𝑑𝑝
2

= −
2𝑔

(𝑢 − 𝑙) (𝑝 − ℎ)
3

(𝑎 − 𝑏𝑝)
3

× [𝑏 (𝑝 − ℎ) (𝑎 − 𝑏𝑝) + (𝑎 + ℎ𝑏 − 2𝑏𝑝)
2

] < 0,

(A.19)

for all 𝑝
𝐿,3𝐴

< 𝑝 < 𝑝
𝐻,3𝐴

. So Ψ
3
(𝑝) is strictly concave in 𝑝

for 𝑝
𝐿,3𝐴

< 𝑝 < 𝑝
𝐻,3𝐴

. Solving the first-order condition, from
(A.18), we have the optimal retail price: 𝑝

3𝐴

∗
= (𝑎 + ℎ𝑏)/2𝑏,

which satisfies the constraint as 𝑝
𝐿,3𝐴

< 𝑝
3𝐴

∗
< 𝑝
𝐻,3𝐴

.
Correspondingly, the optimal MPS in this case is: 𝑄

3𝐴

∗
=

𝑄
0
(𝑝
3𝐴

∗
) = 2𝑏𝑔/(𝑎 − 𝑏ℎ).

Proof of Proposition 7. Under the “Market-oriented 𝐷-led”
scenario with 𝑧(𝑝) = 𝑧

𝐴
(𝑝) = 𝑎 − 𝑏𝑝:

(a) For 𝑔 < 𝑢(𝑎 − 𝑏ℎ)
2
/4𝑏, for any given 𝑝

𝐿,3𝐴
< 𝑝 <

𝑝
𝐻,3𝐴

, the expected sales volume is given by

𝐸 [𝑞 (𝑝)] = 𝑧
𝐴
(𝑝) ∫

𝑢

𝑄
0
(𝑝)/𝑧
𝐴
(𝑝)

𝑥𝑓 (𝑥) 𝑑𝑥

= Γ (𝑝)

:=
(𝑎 − 𝑏𝑝) 𝑢

2

2 (𝑢 − 𝑙)
−

𝑔
2

2 (𝑢 − 𝑙) (𝑝 − ℎ)
2

(𝑎 − 𝑏𝑝)

.

(A.20)

The first and second derivatives of 𝐸[𝑞(𝑝)] w.r.t. 𝑝 are given
by the below, respectively:

𝑑Γ (𝑝)

𝑑𝑝
=

[𝑔
2
(2𝑎 + 𝑏ℎ − 3𝑏𝑝) − 𝑏𝑢

2
(𝑝 − ℎ)

3

(𝑎 − 𝑏𝑝)
2

]

2 (𝑢 − 𝑙) (𝑝 − ℎ)
3

(𝑎 − 𝑏𝑝)
2

,

(A.21)

𝑑
2
Γ (𝑝)

𝑑𝑝
2

=
−𝑔
2

3 (𝑢 − 𝑙) (𝑝 − ℎ)
4

(𝑎 − 𝑏𝑝)
3

× [ 18𝑏
2
(𝑝 −

(2𝑎 + 𝑏ℎ)

3𝑏
)

2

+ (𝑎 − 𝑏ℎ)
2
]

< 0 ∀𝑝 > 0.

(A.22)

Therefore, Γ(𝑝) is strictly concave in 𝑝 for all 𝑝 > 0.
Hence, there is a unique maximum of Γ(𝑝). Solving the
first-order condition by (A.21), the unique optimal 𝑝 that
maximizes Γ(𝑝) is given by

𝑝
4𝐴
=arg
𝑝

{𝑔
2
(2𝑎 + 𝑏ℎ − 3𝑏𝑝) − 𝑏𝑢

2
(𝑝 − ℎ)

3

(𝑎 − 𝑏𝑝)
2

= 0}.

(A.23)

If 𝑝
𝐿,3𝐴

< 𝑝
4𝐴
< 𝑝
𝐻,3𝐴

, then 𝑝 = 𝑝
4𝐴

is the optimal solution
of maximizing 𝐸[𝑞(𝑝)], and the corresponding optimalMPQ
is 𝑄
4𝐴

∗
= 𝑄
0
(𝑝
4
) = 𝑔/(𝑝

4
− ℎ).

Next, from the proof of Proposition 7,
lim
𝑝→𝑝

𝐻,3𝐴

𝑄
0
(𝑝)/𝑧
𝐴
(𝑝) = lim

𝑝→𝑝
𝐿,3𝐴

𝑄
0
(𝑝)/𝑧
𝐴
(𝑝) = 𝑢,

or equivalently, lim
𝑝→𝑝

𝐻,3𝐴

𝜂(𝑝) = lim
𝑝→𝑝

𝐿,3𝐴

𝜂(𝑝) = 0

(𝜂(𝑝) is given by (A.16)). Therefore, lim
𝑝→𝑝

𝐻,3𝐴

𝐸[𝑞(𝑝)] =

lim
𝑝→𝑝

𝐿,3𝐴

𝐸[𝑞(𝑝)] = 0. If 𝑝
4𝐴

≤ 𝑝
𝐿,3𝐴

or 𝑝
4𝐴

≥ 𝑝
𝐻,3𝐴

,
then by the strict concavity of Γ(𝑝), Γ(𝑝) < 0 for all
𝑝
𝐿,3𝐴

< 𝑝 < 𝑝
𝐻,3𝐴

. By definition, 𝐸[𝑞(𝑝)] ≥ 0. Therefore,
𝐸[𝑞(𝑝)] ̸= Γ(𝑝) and (𝑄

0
(𝑝), 𝑝) are not feasible for all 𝑝 > 0 in

this case.

Proof of Proposition 8. Let 𝐾
1𝑀
(𝑄) = 𝑄[ℎ + 𝑔/𝑄]

𝑏
/𝑎.

(a) From Propositions 1 and 2, for any𝑄 > 0, the designer
will set the retail price as 𝑝

1𝑀

∗
(𝑄) = 𝑝

0
(𝑄) = ℎ + 𝑔/𝑄.

Next, for (𝑄, 𝑝
0
(𝑄)) being feasible, as 𝑙 < 𝑥 < 𝑢, we need

to have 𝐾
1𝑀
(𝑄) < 𝑢. Moreover, we have 𝑑𝐾

1𝑀
(𝑄)/𝑑𝑄 =

[ℎ + 𝑔/𝑄]
𝑏−1
{ℎ + 𝑔(1 − 𝑏)/𝑄}/𝑎.

(b) The expected profit of the retailer is given by

𝐸 [𝜋
1𝑀
(𝑄)]

= ∫

𝑢

𝐾
1𝑀
(𝑄)

([𝑝
1𝑀

∗

(𝑄) − ℎ] 𝑥𝑧
𝑀
[𝑝
1𝑀

∗

(𝑄)] − 𝑔) 𝑓 (𝑥) 𝑑𝑥

=
𝑔 [𝑢 − 𝐾

1𝑀
(𝑄)]

(𝑢 − 𝑙)
[
𝑎

𝑄
(
𝑔

𝑄
+ ℎ)

−𝑏

(
𝑢 + 𝐾

1𝑀
(𝑄)

2
) − 1] .

(A.24)
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The first derivative of 𝐸[𝜋
1𝑀
(𝑄)] is

𝑑𝐸 [𝜋
1𝑀
(𝑄)]

𝑑𝑄

= −𝑎𝑔𝑄
−3
[ℎ +

𝑔

𝑄
]

−𝑏−1

[𝑢
2
− 𝐾
1𝑚

2

(𝑄)]
ℎ𝑄 − (𝑏 − 1) 𝑔

2 (𝑢 − 𝑙)
.

(A.25)

For 0 < 𝑏 ≤ 1, we have ℎ𝑄 − (𝑏 − 1)𝑔 ≥ ℎ𝑄 > 0; so
𝑑𝐸[𝜋
1𝑀
(𝑄)]/𝑑𝑄 < 0 for all 𝑄. Therefore, 𝐸[𝜋

1𝑀
(𝑄)] is

strictly decreasing in 𝑄 and the optimal MPS should be the
smallest possible value of 𝑄. For 𝑄 = 0, 𝐾

1𝑀
(0) = 0 (as

𝐾
1𝑀
(𝑄) = {𝑄

1/𝑏
ℎ + 𝑔𝑄

1/𝑏−1
]}
𝑏
/𝑎 and 0 < 𝑏 ≤ 1), and hence

𝐸[𝜋
1𝑀
(0)] = +∞.

(c) For 𝑏 > 1, 𝑑𝐸[𝜋
1𝑀
(𝑄)]/𝑑𝑄 > 0 for 𝑄 < (𝑏 −

1)𝑔/ℎ, 𝑑𝐸[𝜋
1𝑀
(𝑄)]/𝑑𝑄 = 0 for 𝑄 = (𝑏 − 1)𝑔/ℎ, and

𝑑𝐸[𝜋
1𝑀
(𝑄)]/𝑑𝑄 < 0 for 𝑄 > (𝑏 − 1)𝑔/ℎ. Therefore,

𝐸[𝜋
1𝑀
(𝑄)] is unimodal for 𝑄 > 0.

(c-i) 𝑑𝐾
1𝑀
(𝑄)/𝑑𝑄 < 0 for all 𝑄 < 𝑔(𝑏 − 1)/ℎ;

𝑑𝐾
1𝑀
(𝑄)/𝑑𝑄 = 0 for all𝑄 = 𝑔(𝑏−1)/ℎ; and 𝑑𝐾

1𝑀
(𝑄)/𝑑𝑄 >

0 for all 𝑄 > 𝑔(𝑏 − 1)/ℎ. Therefore, 𝐾
1𝑀
(𝑄) is minimized at

𝑄 = 𝑔(𝑏−1)/ℎ. As𝐾
1𝑀
(𝑔(𝑏−1)/ℎ) = 𝑔(𝑏−1)[ℎ𝑏/(𝑏−1)]

𝑏
/𝑎ℎ,

if𝑔(𝑏−1)[ℎ𝑏/(𝑏−1)]𝑏/𝑎ℎ ≥ 𝑢, then theRetailer’s participation
constraint is not satisfied for any 𝑄 > 0; that is, 𝐾

1𝑀
(𝑄) > 𝑢

for all 𝑄 > 0.
(c-ii) If 𝑔(𝑏 − 1)[ℎ𝑏/(𝑏 − 1)]𝑏/𝑎ℎ < 𝑢, the optimal MPQ

is uniquely given by 𝑄
1𝑀

∗
= (𝑏 − 1)𝑔/ℎ, and by direct

manipulation, the optimal retail price is uniquely given by
𝑝
1𝑀

∗
= 𝑝
1𝑀

∗
(𝑄
1𝑀

∗
) = 𝑏ℎ/(𝑏 − 1).

Proof of Proposition 9. (a) Under the “Project-oriented 𝐷-
led” scenario with 𝑧(𝑝) = 𝑧

𝑀
(𝑝) = 𝑎𝑝

−𝑏, by Proposition 3,
the optimal MPQ is 𝑄

0
(𝑝) = 𝑔/(𝑝 − ℎ), which satisfies (C1).

Since 𝑙 ≤ 𝑥 ≤ 𝑢, to ensure (𝑄
3𝑀

∗
(𝑝), 𝑝) being feasible, we

need to have 𝑄
0
(𝑝)/𝑧
𝑀
(𝑝) < 𝑢, which is equivalent to

𝐾
3𝑀
(𝑝) :=

𝑔𝑝
𝑏

𝑎 (𝑝 − ℎ)
< 𝑢. (A.26)

(b) and (c)We have 𝑑𝐾
3𝑀
(𝑝)/𝑑𝑝 = (𝑔𝑝

𝑏
/𝑎(𝑝−ℎ)

2
)[(𝑏−1)𝑝−

𝑏ℎ]. Next, anticipating 𝑄
0
(𝑝), the DPS feasibility probability

is given by

Ψ
3𝑀
(𝑝) = 1 − 𝐹[

𝑄
0
(𝑝)

𝑧
𝑀
(𝑝)

] . (A.27)

If 𝑙 < 𝐾
3𝑀
(𝑝) < 𝑢,

Ψ
3𝑀
(𝑝) = −

𝑔

𝑎 (𝑢 − 𝑙)
(

𝑝
𝑏

𝑝 − ℎ
) + (1 +

𝑙

𝑢 − 𝑙
) ; (A.28)

and the first derivative of Ψ
3𝑀
(𝑝) w.r.t. 𝑝 is

𝑑Ψ
3𝑀
(𝑝)

𝑑𝑝
= −

𝑔𝑝
𝑏−1

𝑎 (𝑢 − 𝑙) (𝑝 − ℎ)
2
[(𝑏 − 1) 𝑝 − ℎ𝑏] . (A.29)

If 𝑙 ≥ 𝐾
3𝑀
(𝑝), Ψ

3𝑀
(𝑝)= 1; and if 𝑢 ≤ 𝐾

3𝑀
(𝑝), Ψ

3𝑀
(𝑝) = 0

(note that (𝑄
3𝑀

∗
(𝑝), 𝑝) is not feasible in this case, so it can

be ignored in the rest of the proof).

For 𝑏 ≤ 1, as 𝑑𝐾
3𝑀
(𝑝)/𝑑𝑝 < 0 for all 𝑝 > 0, there exist

unique𝑝
3𝑀𝑙

󸀠 and unique𝑝
3𝑀𝑢

󸀠, such that (i)𝑝
3𝑀𝑙

󸀠
> 𝑝
3𝑀𝑢

󸀠
>

ℎ, (ii) 𝐾
3𝑀
(𝑝
3𝑀𝑙

󸀠
) = 𝑙, and (iii) 𝐾

3𝑀
(𝑝
3𝑀𝑢

󸀠
) = 𝑢. Observed

from (A.29) that 𝑑Ψ
3𝑀
(𝑝)/𝑑𝑝 > 0 for all 𝑝 > 0 satisfying

𝑙 < 𝐾
3𝑀
(𝑝) < 𝑢. Therefore, Ψ

3𝑀
(𝑝) is strictly increasing in 𝑝

for all 𝑝
3𝑀𝑢

󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠, and Ψ
3𝑀
(𝑙) = 1 for all 𝑝 ≥ 𝑝

3𝑀𝑙

󸀠

((𝑄
0
(𝑝), 𝑝) is not feasible for any 𝑝 < 𝑝

3𝑀𝑢

󸀠).
For 𝑏 > 1, 𝑑𝐾

3𝑀
(𝑝)/𝑑𝑝 < 0 for all ℎ < 𝑝 < ℎ𝑏/(𝑏 − 1);

𝑑𝐾
3𝑀
(𝑝)/𝑑𝑝 = 0 for 𝑝 = ℎ𝑏/(𝑏−1); and 𝑑𝐾

3𝑀
(𝑝)/𝑑𝑝 > 0 for

all 𝑝 > ℎ𝑏/(𝑏− 1). Thus, −𝐾
3𝑀
(𝑝) is unimodal in 𝑝 for 𝑝 > ℎ,

and is maximized at 𝑝 = 𝑝
3𝑀

:= ℎ𝑏/(𝑏 − 1). As 𝐾
3𝑀
(𝑝
3𝑀
) =

(𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))
𝑏, if (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))𝑏 ≥ 𝑢,

then 𝐾
3𝑀
(𝑝) ≥ 𝑢 for all 𝑝 > ℎ. Therefore, the pair (𝑄

0
(𝑝), 𝑝)

is feasible if and only if (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))𝑏 < 𝑢.
For 𝑏 > 1 and (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))

𝑏
< 𝑢, as

𝐾
3𝑀
(ℎ) = +∞, there exist 𝑝

3𝑀𝑢

󸀠󸀠 and 𝑝
3𝑀𝑢

󸀠󸀠󸀠 such that (i)
ℎ < 𝑝

3𝑀𝑢

󸀠󸀠
< 𝑝
3𝑀𝑢

󸀠󸀠󸀠, (ii) 𝐾
3𝑀
(𝑝
3𝑀𝑢

󸀠󸀠
) = 𝐾

3𝑀
(𝑝
3𝑀𝑢

󸀠󸀠󸀠
) = 𝑢,

and (iii) 𝐾
3𝑀
(𝑝) < 𝑢 for all 𝑝

3𝑀𝑢

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑢

󸀠󸀠󸀠. If
(𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))

𝑏
> 𝑙, then 𝑙 < 𝐾

3𝑀
(𝑝) < 𝑢 for

all 𝑝
3𝑀𝑢

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑢

󸀠󸀠󸀠. Otherwise, there exist 𝑝
3𝑀𝑙

󸀠󸀠 and
𝑝
3𝑀𝑙

󸀠󸀠󸀠, such that (i) 𝑝
3𝑀𝑢

󸀠󸀠
< 𝑝
3𝑀𝑙

󸀠󸀠
≤ 𝑝
3𝑀𝑙

󸀠󸀠󸀠
< 𝑝
3𝑀𝑢

󸀠󸀠󸀠,
(ii) 𝐾

3𝑀
(𝑝
3𝑀𝑙

󸀠󸀠
) = 𝐾

3𝑀
(𝑝
3𝑀𝑙

󸀠󸀠󸀠
) = 𝑙, (iii) 𝑙 < 𝐾

3𝑀
(𝑝) < 𝑢

for all 𝑝
3𝑀𝑢

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠󸀠 or 𝑝
3𝑀𝑙

󸀠󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑢

󸀠󸀠󸀠, and
(iv)𝐾
3𝑀
(𝑝) ≤ 𝑙 for all 𝑝

3𝑀𝑙

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠󸀠󸀠.
Next, for 𝑏 > 1 and 𝑙 < 𝐾

3𝑀
(𝑝) < 𝑢, 𝑑Ψ

3𝑀
(𝑝)/𝑑𝑝 > 0 for

all ℎ < 𝑝 < ℎ𝑏/(𝑏 − 1); 𝑑Ψ
3𝑀
(𝑝)/𝑑𝑝 = 0 for 𝑝 = ℎ𝑏/(𝑏 − 1);

and 𝑑Ψ
3𝑀
(𝑝)/𝑑𝑝 < 0 for all 𝑝 > ℎ𝑏/(𝑏 − 1).

Combining the above findings, for 𝑏 > 1 and (𝑔(𝑏 −
1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))

𝑏
< 𝑢, if (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))𝑏 > 𝑙,

then Ψ
3𝑀
(𝑝) is unimodal in 𝑝 and is maximized at 𝑝 =

ℎ𝑏/(𝑏−1). Otherwise,Ψ
3𝑀
(𝑝) is strictly increasing in 𝑝 for all

𝑝
3𝑀𝑢

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠󸀠, is strictly decreasing in𝑝 for all𝑝
3𝑀𝑙

󸀠󸀠󸀠
<

𝑝 < 𝑝
3𝑀𝑢

󸀠󸀠󸀠, and Ψ
3𝑀
(𝑝) = 1 for all 𝑝

3𝑀𝑙

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠󸀠󸀠.

Proof of Proposition 10. By Proposition 3(a), anticipating
𝑄
0
(𝑝) = 𝑔/(𝑝 − ℎ), the expected sales volume is given by

𝐸 [𝑞
4𝑀
(𝑝)] = Γ

1
(𝑝) := ∫

𝑢

𝐾
3𝑀
(𝑝)

𝑥𝑓 (𝑥) 𝑑𝑥

=
𝑢
2

2 (𝑢 − 𝑙)
−

𝑔
2
𝑝
2𝑏

2𝑎
2
(𝑢 − 𝑙) (𝑝 − ℎ)

2
,

(A.30)

for 𝑙 < 𝐾
3𝑀
(𝑝) < 𝑢, where𝐾

3𝑀
(𝑝) is given by (23),

𝐸 [𝑞
4𝑀
(𝑝)] =

𝑢 − 𝑙

2
, for 𝐾

3𝑀
(𝑝) ≤ 𝑙,

𝐸 [𝑞
4𝑀
(𝑝)] = 0, for 𝐾

3𝑀
(𝑝) ≥ 𝑢.

(A.31)

The first and second derivatives of Γ
1
(𝑝) wr.t. 𝑝 are derived

below, respectively:

𝑑Γ
1
(𝑝)

𝑑𝑝
= −

𝑔
2
𝑝
2𝑏−1

𝑎
2
(𝑢 − 𝑙) (𝑝 − ℎ)

3
[(𝑏 − 1) 𝑝 − 𝑏ℎ] . (A.32)

For 𝑏 ≤ 1, observing from (A.32), 𝑑Γ
1
(𝑝)/𝑑𝑝 > 0 for

all 𝑝 > 0. Therefore, 𝐸[𝑞
4𝑀
(𝑝)] is strictly increasing in 𝑝

for all 𝑙 < 𝐾
3𝑀
(𝑝) < 𝑢. From the proof of Proposition 8,
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𝑑𝐾
3𝑀
(𝑝)/𝑑𝑝 < 0 for all 𝑝 > 0, for 𝑏 ≤ 1. Thus, 𝑙 < 𝐾

3𝑀
(𝑝) <

𝑢 implies 𝑝
3𝑀𝑢

󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠, and 𝐾
3𝑀
(𝑝) ≤ 𝑙 implies 𝑝 ≥

𝑝
3𝑀𝑙

󸀠, where 𝐾
3𝑀
(𝑝
3𝑀𝑙

󸀠
) = 𝑙 and 𝐾

3𝑀
(𝑝
3𝑀𝑢

󸀠
) = 𝑢 (see the

proof of Proposition 8 for details). Moreover, 𝐸[𝑞
4𝑀
(𝑝)] <

𝐸[𝑞
4𝑀
(𝑝
3𝑀𝑙

󸀠
)] = (𝑢 − 𝑙)/2 for all 𝑝

3𝑀𝑢

󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠, and
𝐸[𝑞
4𝑀
(𝑝)] = (𝑢 − 𝑙)/2 for all 𝑝 ≥ 𝑝

3𝑀𝑙

󸀠.
For 𝑏 > 1 and 𝑙 < 𝐾

3𝑀
(𝑝) < 𝑢, 𝑑Γ

1
(𝑝)/𝑑𝑝 > 0 for all

ℎ < 𝑝 < ℎ𝑏/(𝑏 − 1); 𝑑Γ
1
(𝑝)/𝑑𝑝 = 0 for 𝑝 = ℎ𝑏/(𝑏 − 1); and

𝑑Γ
1
(𝑝)/𝑑𝑝 < 0 for all 𝑝 > ℎ𝑏/(𝑏 − 1). Next, from the proof of

Proposition 8:
(i) for 𝑏 > 1, the pair (𝑄∗

0
(𝑝), 𝑝) is feasible if and only if

(𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))
𝑏
< 𝑢;

(ii) for 𝑏 > 1 and (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))
𝑏
< 𝑢,

𝐾
3𝑀
(𝑝) < 𝑢 for all 𝑝

3𝑀𝑢

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑢

󸀠󸀠󸀠;
(iii) for 𝑏 > 1 and 𝑙 < (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))

𝑏
< 𝑢,

𝑙 < 𝐾
3𝑀
(𝑝) < 𝑢 for all 𝑝

3𝑀𝑢

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑢

󸀠󸀠󸀠 and
(iv) for 𝑏 > 1 and (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))𝑏 ≤ 𝑙, 𝑙 <

𝐾
3𝑀
(𝑝) < 𝑢 for all 𝑝

3𝑀𝑢

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠󸀠 or 𝑝
3𝑀𝑙

󸀠󸀠󸀠
<

𝑝 < 𝑝
3𝑀𝑢

󸀠󸀠󸀠, and 𝐾
3𝑀
(𝑝) ≤ 𝑙 for all 𝑝

3𝑀𝑙

󸀠󸀠
< 𝑝 <

𝑝
3𝑀𝑙

󸀠󸀠󸀠.
Combining the above findings, for 𝑏 > 1 and (𝑔(𝑏 −

1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))
𝑏
< 𝑢, if (𝑔(𝑏 − 1)/𝑎ℎ)(ℎ𝑏/(𝑏 − 1))𝑏 > 𝑙,

then 𝐸[𝑞
4𝑀
(𝑝)] is unimodal in 𝑝 and is maximized at 𝑝 =

ℎ𝑏/(𝑏 − 1). Otherwise, 𝐸[𝑞
4𝑀
(𝑝)] is strictly increasing in 𝑝

for all 𝑝
3𝑀𝑢

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠󸀠, is strictly decreasing in 𝑝 for
all 𝑝
3𝑀𝑙

󸀠󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑢

󸀠󸀠󸀠, and 𝐸[𝑞
4𝑀
(𝑝)] = (𝑢 − 𝑙)/2 for all

𝑝
3𝑀𝑙

󸀠󸀠
< 𝑝 < 𝑝

3𝑀𝑙

󸀠󸀠󸀠.
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