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The dynamic problems of a microactuator with a single edge crack are numerically formulated
using radial basis functions. The microactuator model incorporates the taper ratio, electrode
shapes, and crack length, all of which govern the dynamic behavior of microactuators. To optimize
the design of a microactuator, many characteristics of various shaped cantilevers and curved
electrodes are also investigated.

1. Introduction

Microelectromechanical systems exploit microscale effects to extend the range applications
of actuators, accelerometers, angular rate sensors, and other devices. Elucidation of the
dynamic mechanism of electrostatic microactuators contributes markedly to their design.
Legtenberg et al. [1] investigated the dynamic behavior of active joints for different
electrostatic actuator designs and proposed the idea of using a curved electrode to improve
pull-in performance. Electrostatic actuators are widely applied in microelectromechanical
systems. Electrostatic microactuator devices have a high operating frequency and low
power consumption. Hong et al. [2] studied the influence of the dimensions and stress
of such a device on fatigue endurance when an external force was applied to a normal
microcantilever beam and a notch cantilever beam. They performed analysis simulation
indicating that the stress was maximal at the fixed end. Their results showed that a deep
notch in a specimen concentrate stress and thus promote specimen failure. Mehdaoui
et al. [3] presented the vertical cointegration of AlSi MEMS tunable capacitors and Cu
inductors in tunable LC blocks. Etxeberria and Gracia [4] proposed tunable MEMS volume
capacitors for high-voltage applications. Liu et al. [5] presented actuation by electrostatic
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repulsion established by nonvolatile charge injection. Gallant andWood [6] investigated how
fabrication techniques affect the performance of widely tunable micromachined capacitors.
Borwick III et al. [7] analyzed a high Q microelectromechanical capacitor with large tuning
range for RF filter systems. Harsh et al. [8] studied the design and realization of a flip-chip
integrated microelectromechanical tunable capacitor. Osterberg et al. [9, 10] proposed a one-
dimensional model and a three-dimensional model for analyzing electrostatically deformed
diaphragms. Their results revealed that the electrostatic deformation calculated using the
one-dimensional model is close to that obtained using a three-dimensional model. Gilbert et
al. [11] analyzed the three-dimensional coupled electromechanics of microelectromechanical
systems using a CoSolve-EM simulation algorithm. Elwenspoek et al. [12] studied the
dynamic behavior of active joints for various electrostatic actuator designs. Shi et al.
[13] presented the combination of an exterior boundary element method for analyzing
electrostatics and a finite-element method for analyzing elasticity to evaluate the effect of
coupling between the electrostatic force and the elastic deformation. Gretillat et al. [14]
employed the three-dimensional MEMCAD and finite-element method programs to simulate
the dynamics of a nonlinear actuator, taking into account squeeze-film damping. Hung
and Senturia [15] developed leveraged bending and strain-stiffening methods to increase
the maximum travel distance before the pull-in of electrostatic actuators. Chan et al. [16]
measured the pull-in voltage and capacitance-voltage characteristic and performed two-
dimensional simulations that included the electrical effects of fringing fields and finite-beam
thickness to determine the material properties of electrostatic microactuators. Li and Aluru
[17] developed a mixed-regime approach for combining linear and nonlinear theories to
analyze large microelectromechanical structure deformations at large applied voltages. Their
results demonstrated that electrostatic actuators can undergo large deformation at certain
driving voltages. Chyuan et al. [18–20] established the validity and accuracy of the dual
boundary element method and employed it to elucidate the effect of a variation in gap size on
the levitation of a microelectromechanical comb drive. Qiao et al. [21] presented a suspension
beam called a two beam to realize a parallel-plate actuator with an extended working range,
but without the disadvantages of complex control circuit and high actuation voltage. In this
investigation, radial basis functions are adopted to analyze how cantilever shape, damping,
cracks, and electrode shape affect dynamic behavior in electrostatic actuator systems. The
radial basis function scheme is applied to formulate the electrostatic field problems in matrix
form. The integrity and computational accuracy of radial basis functions are demonstrated
with reference to various case studies. To the author’s knowledge, very few published
investigates have presented a vibration analysis of a cantilever electrostatic microactuator
with an edge crack using radial basis functions.

2. Radial Basis Function

A radial basis function is a real-valued function whose value depends on the distance from
an origin. Kansa [22, 23] studied a given function or partial derivatives of a function with
respect to a coordinate direction which is expressed as a linear weighted sum of all functional
values at all mesh points along the direction that was initiated based on the concept of radial
basis function. In their algorithm, the node distribution was completely unstructured. Wang
and Liu [24] proposed a point interpolation meshless method that was based on radial basis
functions and incorporated the Galerkin weak form for solving partial differential equations.
Elfelsoufi and Azrar [25] investigated the buckling, flutter, and vibration of beams using
radial basis functions. Hon et al. [26] used radial basis functions for function fitting and
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Figure 1: Schematic of a clamped-free curved electrode microactuator with an edge crack.

solving partial differential equations using global nodes and collocation procedures. Liu et
al. [27] constructed shape functions with the delta function property based on radial and
polynomial basis functions. In this study, shape functions are constructed using radial basis
functions. A radial basis function can be expressed as follows [28, 29]:

Bi(x) =
√
(x − xi)2 + c2, (2.1)

where c is a constant. The radial basis function is typically used to develop the functional
approximations of the following form [28, 29]:

v(x, t) =
N∑
i=1

ai(t)Bi(x), (2.2)

where ai is the coefficient to be determined. The microcantilever deflection v(x, t) denotes
a sum of N radial basis functions, each associated with a different center xi. The
domain contains N collocation points. Although this nonlinear equation of the electrostatic
microactuator does not have an analytical solution, numerical approaches can be adopted
to solve it. These nonlinear partial differential equations are obtained numerically using the
radial basis function approach, which does not require a mesh.

3. Dynamic Behavior of Clamped-Free Microactuators

Figure 1 displays the geometry of an electrostatic actuator with an edge crack close to its
fixed end. Variable t0 is the thickness of a microactuator at x = 0, t1 denotes the tip thickness
of a microactuator at x = L, and L is the length of the microbeam. An electrostatic force,
introduced by the difference between the driving voltage of the curved electrode and that
of the cantilever, pulls the cantilever toward the curved electrode. The electrostatic force is
approximately proportional to the inverse of the square of the distance between the curved
electrode and the shaped cantilever. The equation of motion of an electrostatic microactuator
with an edge crack near the fixed end can be derived as [1, 30]

ρA
∂2v

∂t2
+D

∂2

∂x2

(
EI

∂3v

∂x2∂t

)
+

∂2

∂x2

(
EI

∂2v

∂x2

)
=

ε0bV
2
(1 + 0.65((d + S − αxt0/2L − v)/b))

2(d + S − αxt0/2L − v)2
,

(3.1)
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where S represents the shape of the curved electrode, and is given by a polynomial such
that S = (xδ/L)n, δ is the gap between the tip of a curved electrode at x = L and the tip of
a micro cantilever at x = L, α is defined as the ratio (t1 − t0)/t0, and n is the polynomial
order of the shape of the electrode. The electrode shape varies with the value of n. V
is the driving voltage; E is Young’s modulus of the actuator material; ε0 is the dielectric
constant of air, ε0 = 8.85 × 10−12; b is the width of the microactuator; d is the initial gap, as
displayed in Figure 1. The dielectric layer prevents short circuits. The cross-sectional area of a
microactuator is A(x) = bt0(1+αx/L), and I(x) is themoment of inertia of the cross-sectional
area of amicroactuator and is given by I(x) = I0(1 + αx/L)3 and I0 = bt30/12. The Kelvin-Voigt
damping force D(∂2/∂x2)(EI(∂3v/∂t∂x2)) is assumed to model resistance to the actuator
strain velocity. D is the Kelvin-Voigt damping coefficient. To ensure generality, Kelvin-Voigt
damping effects are considered in the formulation of the equations of motion [31, 32].
Equation (3.1) depicts the fringing effects of the electrical field. The dynamic characteristics of
edge-cracked beams are of considerable importance in many designs. The flexibilityG caused
by a crack of depth a can be determined using Broek’s approximation [33] to be

(
1 − μ2)K2

I

E
=

(Pb)2

2b
dG

da
, (3.2)

where KI is the stress intensity factor under mode I loading; μ is Poisson’s ratio; Pb denotes
the bending moment at the crack; G is the flexibility of the micro cantilever. The magnitude
of the stress intensity factor can be determined using Tada’s formula [34], as

KI =
6Pb

bt20

√
πrt0FI(r), (3.3)

where

FI(r) =

√
2
πr

tan
(πr

2

)0.923 + 0.199(1 − sin(πr/2))4

cos(πr/2)
,

r =
a

t0
.

(3.4)

Substituting the stress intensity factor KI into (3.2), yields

G =
6
(
1 − μ2)t0

∫ r
0 πrF

2
I (r)dr

EI0
. (3.5)

Since

kT =
1
G
, (3.6)

the bending stiffness kT of the cracked section of a micro cantilever can be expressed as

kT =
EI0

6
(
1 − μ2

)
t0
∫ r
0 πrF

2
I (r)dr

. (3.7)
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A crack can be represented as a spring of zero length and zero mass. The boundary conditions
associated with (3.1) for a microactuator with an edge crack near its fixed end are given by

v(0, t) = 0,

EI
∂2v(0, t)

∂x2
= kT

∂v(0, t)
∂x

,

EI
∂v2(L, t)

∂x2
= 0,

∂

∂x

(
EI

∂v2(L, t)
∂x2

)
= 0.

(3.8)

This nonlinear equation does not have an analytical solution; however, numerical approaches
can be utilized to solve it. The radial basis function approach is adopted to solve numerically
these nonlinear partial differential equations. In the radial basis function approach, (2.2) is
substituted into (3.1). The equation of motion of a fixed-free microbeam can be rearranged
into a formula based on the radial basis function approach:
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×[a1 a2 · · · aN

]T
for i = 1, 2, . . . ,N.

(3.9)
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Figure 2: Frequencies of the clamped-free curved electrode microactuator obtained using radial basis
function approach at various collocation points.

Based on the radial basis function approach, the boundary conditions of a clamped-free
microactuator with an edge crack can be rearranged into matrix forms as

[
B1(x1) B2(x1) · · · BN(x1)

][
a1 a2 · · · aN

]T
= [0],
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(3.10)

4. Numerical Results

The following figures summarize the results thus obtained. Figure 2 shows the frequencies
of a clamped-free curved electrode microactuator. The material and geometric parameters
of the actuator considered herein are E = 150GPa, δ = 30μm, b = 5μm, t0 = 2μm, r = 0,



Mathematical Problems in Engineering 7

0

100

200

300

400

500

600

0 1 2 3 4 5 6

Mode sequence number

Fr
eq

ue
nc

y
(k

H
z)

r = 0 (exact)
r = 0 (radial basis function approach)
r = 0.4 (radial basis function approach)
r = 0.6 (radial basis function approach)
r = 0.8 (radial basis function approach)
r = 0 (differential quadrature method)
r = 0.4 (differential quadrature method)
r = 0.6 (differential quadrature method)
r = 0.8 (differential quadrature method)

Figure 3: Frequencies of clamped-free curved electrode microactuators for various values of r.

α = 0, and d = 2μm [1, 35]. The figure plots the analytical solutions and the numerical results
obtained using radial basis function approach. Numerical results indicate that the estimated
frequencies remain stable even when only fifteen collocation points are considered. They also
suggest that the frequencies calculated using the radial basis function approach are extremely
close to the exact solutions. Figure 3 shows the frequencies of a clamped-free curved electrode
microactuator for various crack depths. The frequency falls, as the crack depth increases.
The crack depth significantly affects the frequencies of the micro cantilever. Computational
results solved using radial basis function approach are compared with numerical results
obtained using the differential quadraturemethod. Figure 4 compares the tip deflections of an
actuating electrode for various driving voltages and electrode shapes. Changing the electrode
shape in an electrostatic microactuator is an effective technique for varying the electrostatic
force distribution therein. Numerical and measured results suggest that the tip deflections
calculated using the radial basis function approach are in good agreement with published
experimental results [1]. Numerical results demonstrate that the pull-in voltage declines
gradually, as the value of n increases. Figure 5 plots the tip responses of the microactuator
with different α values. The tip deflections of the micro cantilever drop, as α increases. As
α increases, the applied voltage required to cause a particular deflection of the tip of the
micro cantilever increases. The cantilever shapes substantially influence the pull-in behavior
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Figure 4: Comparison of tip deflections of variously shaped actuating electrodes.
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Figure 5: Tip responses of microactuators for different values of α.

of microactuators. Figure 6 plots the tip responses of themicroactuator for various values of r.
Notably, the tip deflection increases with crack depth. The depth of the crack significantly
affects the tip response. Figure 7 shows the variation of the tip responses of the actuator
with D. Because of recent advances in stably responding and high performance actuator
structures, the enhancement of damping has become a very significant issue. The numerical
results in this example show that internal damping can significantly affect the dynamic
behavior of the actuator system. Strong residual vibration occurs in a system with a zero
internal damping coefficient.
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Figure 6: Tip responses of microactuators for various values of r.
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Figure 7: Tip responses of microactuators for various values of D.

5. Conclusions

This work examines the radial basis functions for dynamic problems of an electrostatic
actuator with a crack. The effects of internal damping, electrode shape, edge cracking, and
cantilever shape on the pull-in behavior of electrostatic microstructures are investigated. The
frequency of the microcantilever declines, as the crack depth increases. The value of radial
basis functions that describe the pull-in behavior of a microactuator with an edge crack is
determined.
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