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This paper investigates the stabilization problem for a class of discrete-time stochastic non-
affine nonlinear systems based on T-S fuzzy models. Based on the function approximation
capability of a class of stochastic T-S fuzzy models, it is shown that the stabilization problem
of a stochastic non-affine nonlinear system can be solved as a robust stabilization problem of
the stochastic T-S fuzzy system with the approximation errors as the uncertainty term. By using
a class of piecewise dynamic feedback fuzzy controllers and piecewise quadratic Lyapunov
functions, robust semiglobal stabilization condition of the stochastic non-affine nonlinear systems
is formulated in terms of linear matrix inequalities. A simulation example illustrating the
effectiveness of the proposed approach is provided in the end.

1. Introduction

In recent years, Takagi-Sugeno (T-S) type dynamic fuzzy model [1] based control metho-
dologies have attracted great attention from control community. T-S fuzzy models describe
a nonlinear system by the “blending” of a set of local linear dynamic models. This relatively
simple structure facilitates the systematic stability analysis and controller design of T-S fuzzy
control systems in view of the powerful linear systems control theory [2–13]. By using a
common quadratic Lyapunov function and LMI techniques, control design of T-S fuzzy
systems can be formulated in a convex optimization problem, which can be effectively solved
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by various tools. However, common Lyapunov functions (CLFs) tend to be conservative and
even might not exist for many highly complex nonlinear systems [3]. In order to reduce
the conservatism of approaches based on CLFs, some results based on piecewise Lyapunov
functions (PLFs) have been proposed [12, 13]. For the most recent advances on relevant
topics, readers please refer to the book and the survey paper [2, 3] and the references therein
for details.

Control design of nonlinear systems based on T-S fuzzy models can be typically sum-
marized into two steps: (i) for a given nonlinear system, find its approximate T-S fuzzy
model; and (ii) design a controller for the obtained T-S fuzzy model. It has been shown
that T-S fuzzy models are universal function approximators in the sense that they are able
to approximate any smooth nonlinear functions to any degree of accuracy in any convex
compact region [14–16], which provides a theoretical foundation for utilizing the T-S fuzzy
modeling method as an alternative approach to describing complex nonlinear systems
approximately. However, it has been proved in [16] that the commonly used T-S fuzzy
models where the control variables are not included in the premise variables are only able
to approximate affine nonlinear systems to any degree of accuracy on any compact set. This
implies that only the control design of affine nonlinear systems can be solved based on the
commonly used T-S fuzzy models. To deal with more general nonlinear systems, that is, non-
affine nonlinear systems, recently the coauthors proposed a class of generalized T-S fuzzy
models which are universal function approximators of non-affine nonlinear systems [17, 18].

On another fruitful research frontier, stochastic control systems have been extensively
studied because stochastic modeling plays a very important role in many branches of science
and engineering [19–22]. Although many valuable results on stability analysis and controller
synthesis of stochastic linear systems have been reported, most of the existing results on
stochastic nonlinear control systems do not provide any systematic way of control design
due to the difficulty in searching for suitable Lyapunov functions, especially for highly
complex stochastic nonlinear systems. Motivated by the deterministic T-S fuzzy model based
control techniques, the T-S fuzzy models have been extended to the stochastic case, where
the local models are stochastic linear dynamic models instead of deterministic ones [23–
26]. Especially, to deal with stochastic non-affine nonlinear systems (SNNS), the so-called
generalized stochastic T-S fuzzy models were proposed in [26] by the co-authors.

In [26], the stabilization problem of continuous-time SNNS was studied based on the
generalized stochastic T-S fuzzy models. However, it is noted that the approach proposed
in [26] is based on common Lyapunov functions, which is very conservative. In this
paper, we investigate the stabilization problem of discrete-time SNNS based on discrete-
time generalized stochastic T-S fuzzy models. By using a piecewise Lyapunov function
and a class of piecewise dynamic feedback fuzzy controllers, it is shown that the robust
semiglobal stabilization condition of discrete-time SNNS can be formulated in terms of a set
of linear matrix inequalities (LMIs) that are numerically efficient with commercially available
software.

The rest of this paper is structured as follows. Section 2 is devoted tomodel description
and problem formulation. In Section 3, robust controller design result for discrete-time
stochastic non-affine nonlinear systems is presented. Simulation results are provided in
Section 4 to demonstrate the effectiveness of the proposed approach. Conclusions are given
in Section 5.

Notations. The notations used in this paper are fairly standard. The notation � is used
to indicate the terms that can be induced by symmetry. “T ′′ represents vector or matrix
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transpose. In and 0m×n are used to denote the n × n identity matrix and the m × n zero
matrix, respectively. The subscripts n and m × n are omitted when the size is not relevant
or can be determined from the context. P > 0 means that matrix P is real, symmetric, and
positive definite. For a matrix A, λ{A} is the eigenvalue of A. Let E{·} be the mathematical
expectation operator with respect to the given probability measure P, and let (Ω,F,P) be a
complete probability space with a natural filtration {Ft}t≥0.

2. Model Description and Problem Formulation

2.1. T-S Fuzzy Model Description of SNNS

In this paper, we consider the following discrete-time stochastic non-affine nonlinear system:

x(t + 1) = f(x(t), u(t)) + g(x(t), u(t))W(t), (2.1)

where x(t) = [x1(t), . . . , xn(t)]
T ∈ X ⊂ �n, u(t) = [u1(t), . . . , um(t)]

T ∈ U ⊂ �m, X × U is
a compact set on �n × �m containing the origin, and W(t) = [W1(t),W2(t), . . . ,Wq(t)]

T is a
q-dimensional Wiener process defined on a complete probability space (Ω,F,P)with

E{Wi(t)} = 0, E

{
W2

i (t)
}
= 1. (2.2)

Moreover, the noise processesW1(t),W2(t), . . . ,Wq(t), the system state, and the control input
are independent. It is assumed in this paper that the mappings f ∈ C1 and g ∈ C1 both
vanish at zero, that is, f(0, 0) = 0 and g(0, 0) = 0. It is also assumed that f and g satisfy the
usual linear growth and local Lipschitz conditions for existence and uniqueness of solutions
to (2.1).

Our objective is to develop an approach to controlling the SNNS in (2.1) via T-S fuzzy
modeling. In order to approximate the SNNS in (2.1), the following discrete-time generalized
stochastic T-S fuzzy model is employed.

Plant ruleRl

IF x1(t) is Ul
1 AND. . . AND xn(t) is Ul

n; u1(t) is Vl
1 AND. . . AND um(t) is Vl

m; THEN

x(t + 1) = Alx(t) + Blu(t) +
q∑

k=1

(Clkx(t) +Dlku(t))Wk(t), l ∈ L := {1, 2, . . . r}, (2.3)

where Rl denotes the lth rule, r the total number of rules, Ul
i and Vl

j the fuzzy sets, x(t) ∈ �n

the state vector, u(t) ∈ �m the input vector, and [Al, Bl, Clk,Dlk] the matrices of the lth local
model.

Under the center-average defuzzifier, product inference, and singleton fuzzifier, the
T-S fuzzy system in (2.3) can be expressed globally as

x(t + 1) = f̂(x(t), u(t)) + ĝ(x(t), u(t))W(t) (2.4)
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with

f̂(x(t), u(t)) =
r∑
l=1

μl(x, u)[Alx(t) + Blu(t)],

ĝ(x(t), u(t)) =
r∑
l=1

μl(x, u) ×
[
Cl1x(t) +Dl1u(t), . . . , Clqx(t) +Dlqu(t)

]
,

μl(x, u) =

∏n
i=1Ul

i(xi)
∏m

j=1Vl
j

(
uj

)
∑r

l=1
∏n

i=1Ul
i(xi)
∏m

j=1Vl
j

(
uj

) ,

(2.5)

where μl(x, u) are the so-called normalized fuzzy membership functions satisfying∑r
l=1 μl(x, u) = 1 and μl(x, u) ≥ 0.

In the co-authors’ recent work [26], the continuous-time counterpart of the stochastic
T-S fuzzy models in (2.4) has been proved to be the universal function approximator to
continuous-time SNNS. It has been also shown in [26] that the function approximation
capability also holds for the discrete-time case, which is summarized in the following lemma.

Lemma 2.1 (see [26]). For any given SNNS described by (2.1) and any two positive constants ε1
and ε2, there exist a set of fuzzy basis functions μl(x, u) and constant matrices Al, Bl, Clk, and Dlk,
l ∈ {1, . . . , r}, k ∈ {1, . . . , q} such that

f̂(x, u) =
r∑
l=1

μl(x, u)[Alx + Blu] = f(x, u) + εf(x, u),

ĝ(x, u) =
r∑
l=1

μl(x, u)
[
Cl1x +Dl1u, . . . , Clqx +Dlqu

]
= g(x, u) + εg(x, u),

(2.6)

where

εf(x, u) = ΔEf(x, u)x,

εg(x, u) =
[
εg1(x, u), . . . , εgq(x, u)

]
=
[
ΔEg1(x, u)x, . . . ,ΔEgq(x, u)x

]
,

(2.7)

with

∥∥ΔEf(x, u)
∥∥ < ε1,

∥∥ΔEgk(x, u)
∥∥ < ε2, k =

{
1, . . . , q

}
. (2.8)
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From (2.6) in Lemma 2.1, an SNNS described by (2.1) can be exactly expressed in a
compact set by a generalized stochastic T-S fuzzy model in (2.4) with the approximation
errors as some norm-bounded uncertainties as follows:

x(t + 1) =
r∑
l=1

μl(x, u)

{
Alx(t) + Blu(t) + εf(x(t), u(t))

+
q∑

k=1

(
Clkx(t) +Dlku(t) + εgk(x(t), u(t))

)
Wk(t)

}
,

(2.9)

where

εf(x(t), u(t)) = ΔEf(x, u)
[
x(t)
u(t)

]
, εgk(x(t), u(t)) = ΔEgk(x, u)

[
x(t)
u(t)

]
. (2.10)

Therefore, one can easily conclude that the stabilization of an SNNS given in (2.1)
can be actually solved as a robust stabilization problem of its corresponding stochastic
generalized T-S fuzzy model with the approximation errors as the uncertainty terms.

2.2. System Formulation and Dynamic Fuzzy Controllers

It is noted that fuzzy system (2.4) induces a polyhedral partition of the premise space, which
is dependent on both the system state x and control input u. As a result, the global fuzzy
system can be viewed as a number of subsystems in a number of individual regions.

In this paper, the premise space is divided into a set of crisp regions and fuzzy regions.
Denote the partitioned regions as {Si}i∈� with � as the set of region indices and define I(i)
the indices of fired rules in each region Si, then the crisp regions and fuzzy regions can be
defined respectively by

Si :=
{
(x, u) | μm(x, u) = 1, m ∈ I(i)},

Sj :=
{
(x, u) | 0 ≤ μm(x, u) < 1, m ∈ I(j)},

(2.11)

where i, j ∈ �.
Based on such a partition method, the fuzzy model (2.4), or the original SNNS (2.1),

in each region can be rewritten by a blending of m ∈ I(i) subsystems,

x(t + 1) =
∑

m∈I(i)
μm(x(t), u(t))

×
{
Amx(t) + Bmu(t) + εf(x(t), u(t))

+
q∑

k=1

(
Cmkx(t) +Dmku(t) + εgk(x(t), u(t))

)
Wk(t)

}
, (x, u) ∈ Si, i ∈ �.

(2.12)
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In order to stabilize the nonlinear system in (2.12), we employ the following piecewise
dynamic state feedback fuzzy controller:

u(t + 1) =
∑

m∈I(i)
μm(x, u){Fmix(t) +Gmiu(t)}, (x, u) ∈ Si, i ∈ �. (2.13)

Remark 2.2. As it has been argued in [17], because the premise variables of the generalized
stochastic T-S fuzzy system in (2.12) contain the system control input, the commonly used
parallel distributed compensation (PDC) scheme cannot be directly applied. Instead, the
dynamic fuzzy controller in (2.13) is proposed. It is noted that by using the dynamic
state feedback controller in (2.13), the closed-loop control system can be expressed in the
summation of one index which is different from the traditional static state feedback case
where indices are used. This will lead to much less number of LMIs in controller design
which will be shown subsequently.

Remark 2.3. When the local gains of the piecewise dynamic fuzzy controller (PDFC) in (2.13)
are equal, that is, [Fmi, Gmi] = [Fi, Gi], for m ∈ I(i), the fuzzy controller in (2.13) reduces to
the so-called piecewise dynamic crisp controller (PDCC). It will be shown in Section 4 that
the fuzzy controller in (2.13) achieves better performance than the piecewise dynamic state
feedback controller.

Then the closed-loop control system consisting of (2.12) and (2.13) is given by

x(t + 1) =
∑

m∈I(i)
μm(x(t))

×
{(Ami + RΔEf(x(t))

)
x(t)

+
q∑

k=1

(Cmk + RΔEgk(x(t))
)
x(t)Wk(t)

}
, x(t) ∈ Si,

(2.14)

where Ami = Am + BKmi, ΔEf and ΔEgk are defined in (2.10), and

x(t) =
[
x(t)
u(t)

]
, Am =

[
Am Bm

0m×n 0m×m

]
,

B =
[
0n×m
Im

]
, R =

[
In

0m×n

]
,

Kmi =
[
Fmi Gmi

]
, Cmk =

[
Cmk Dmk

0m×n 0m×m

]
.

(2.15)

In addition, we define a new set that represents all possible state transitions among
regions of the closed-loop T-S fuzzy system in (2.15) as follows:

Ω :=
{(

i, j
) | x(t) ∈ Si, x(t + 1) ∈ Sj, i, j ∈ �}. (2.16)
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In the case of (i, j) ∈ Ω and i = j, the state trajectories evolve in the same region Si at
the time t. Otherwise, the state trajectories will transit from the region Si to Sj at that time.

3. Robust Controller Design for SNNS

In this section, an LMI approach will be developed to solve the stabilization problem of the
SNNS in (2.1) based on the generalized stochastic T-S fuzzy models in (2.4).

The following definitions are introduced first.

Definition 3.1. The closed-loop control system in (2.14) is said to be stochastically asymptot-
ically stable in the mean square sense, if for any initial conditions x(0), the solution x(t) of
(2.14) exists for all t ≥ 0 and limt→∞E{‖x(t)‖2} = 0.

Definition 3.2. The closed-loop control system in (2.14) is said to be stochastically exponen-
tially stable in the mean square sense, if there exist a set of positive constants C, 0 < σ < 1
and λ > 0, such that given any initial states x(0), the solution x(t) of (2.14) exists for all t ≥ 0
and E{‖x(t)‖} ≤ C‖x(0)‖σt.

Denote Mm = [(Cm1)
T , . . . , (Cmq)

T ]
T

and ΔEg(x(t)) = [(RΔET
g1(x(t))), . . . ,

(RΔET
gq(x(t)))]

T . For the sake of simplicity, we denote μi(x(t)), ΔEf(x(t)), ΔEgi(x(t)), and
ΔEg(x(t)) as μi, ΔEf , ΔEgi, and ΔEg , respectively.

Suppose that the upper bounds of the uncertainties ΔEf and ΔEg are given by

ΔET
fΔEf ≤ ε21I(m+n), ΔET

gΔEg ≤ ε22I(m+n), (3.1)

respectively.
Then the stochastic stability analysis result for the closed-loop control system (2.14) is

provided in the following theorem.

Theorem 3.3. The closed-loop stochastic fuzzy control system (2.14) is stochastically asymptotically
stable in the mean square sense if there exist a set of positive definite matrices Pi, i ∈ �, two sets of
positive constants ε1i and ε2i, and a positive constant δ such that the following matrix inequalities
hold for all (i, j) ∈ Ω, m ∈ I(i),

⎡
⎢⎢⎢⎢⎢⎢⎣

Ξij +

(
ε21
ε1i

+
ε22
ε2i

)
I � �

RTPjAmi RTPjR − 1
ε1i

I �

Iq ⊗ PjMm 0 Iq ⊗ Pj − 1
ε2i

I

⎤
⎥⎥⎥⎥⎥⎥⎦

< −δI, (3.2)

where

Ξij = AT
miPjAmi +MT

m

(
Iq ⊗ Pj

)Mm − Pi. (3.3)
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Proof. Consider the following piecewise Lyapunov function candidate:

V (x(t)) = xT (t)Pix(t), x(t) ∈ Si. (3.4)

For a given set of given positive definite matrices Pi, from (2.2) one has

E

⎧
⎪⎨
⎪⎩

⎛
⎝ ∑

m∈I(i)
μm

(Ami + RΔEf

)
x(t)

⎞
⎠

T

Pj

⎛
⎝ ∑

m∈I(i)
μm

q∑
k=1

(Cmk + RΔEgk

)
x(t)Wk(t)

⎞
⎠
⎫
⎪⎬
⎪⎭

= E

⎧
⎪⎨
⎪⎩

⎛
⎝ ∑

m∈I(i)
μm

q∑
k=1

(Cmk + RΔEgk

)
x(t)Wk(t)

⎞
⎠

T

Pj

⎛
⎝ ∑

m∈I(i)
μm

(Ami + RΔEf

)
x(t)

⎞
⎠
⎫
⎪⎬
⎪⎭

= 0.
(3.5)

Based on Lemmas A.1 and A.2, one has that

⎧
⎨
⎩
∑

m∈I(i)
μm

(Ami + RΔEf

)
x(t)

⎫
⎬
⎭

T

Pj

⎧
⎨
⎩
∑

m∈I(i)
μm

(Ami + RΔEf

)
x(t)

⎫
⎬
⎭

≤
∑

m∈I(i)
μmx

T (t)
(Ami + RΔEf

)T
Pj

(Ami + RΔEf

)
x(t),

E

⎧
⎪⎨
⎪⎩

⎛
⎝ ∑

m∈I(i)
μm

q∑
k=1

(Cmk + RΔEgk

)
x(t)Wk(t)

⎞
⎠

T

Pj

×
⎛
⎝ ∑

m∈I(i)
μm

q∑
k=1

(Cmk + RΔEgk

)
x(t)Wk(t)

⎞
⎠
⎫
⎬
⎭

≤
∑

m∈I(i)
μmE

⎧
⎨
⎩

(
q∑

k=1

(Cmk + RΔEgk

)
x(t)Wk(t)

)T

Pj ×
(

q∑
k=1

(Cmk + RΔEgk

)
x(t)Wk(t)

)⎫⎬
⎭

=
∑

m∈I(i)
μm

q∑
k=1

xT (t)
(Cmk + RΔEgk

)T
Pj

(Cmk + RΔEgk

)
x(t)

=
∑

m∈I(i)
μmx

T (t)
(Mm + ΔEg

)T(Iq ⊗ Pj

)(Mm + ΔEg

)
x(t).

(3.6)
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Then one has that along the system trajectories of (2.14),

E{V (x(t + 1) | x(t))} − V (x(t))

≤
∑

m∈I(i)
μmx

T (t)
{(Ami + RΔEf

)T
Pj

(Ami + RΔEf

)

+
(Mm + ΔEg

)T(Iq ⊗ Pj

)(Mm + ΔEg

) − Pi

}
x(t).

(3.7)

Therefore one has that E{V (x(t + 1) | x(t))} − V (x(t)) < −δxT (t)x(t) if

(Ami + RΔEf

)T
Pj

(Ami + RΔEf

) − Pi

+
(Mm + ΔEg

)T(Iq ⊗ Pj

)(Mm + ΔEg

)
< −δI.

(3.8)

Denote ζ = [I(m+n),ΔET
f ,ΔET

g ]
T . Then it can be seen that the inequality (3.8) is equi-

valent to

ζT

⎡
⎢⎢⎣

Ξij � �

RTPjAmi RTPjR �

Iq ⊗ PjMm 0 Iq ⊗ Pj

⎤
⎥⎥⎦ζ < −δI, (3.9)

where Ξij is defined in (3.3).
The upper bounds defined in (3.1) can be rewritten, respectively, as

ζT

⎡
⎢⎢⎣
−ε21I(m+n) � �

0 I(m+n) �

0 0 0

⎤
⎥⎥⎦ζ < 0, ζT

⎡
⎢⎢⎣
−ε22I(m+n) � �

0 0 �

0 0 I(m+n)

⎤
⎥⎥⎦ζ < 0. (3.10)

Then by applying Lemma A.3 (S-procedure) in the appendix, one can conclude that
(3.8) holds if there exist two sets of positive constants ε1i and ε2i such that (3.2) holds.

Therefore, if (3.2) holds, one has that

E{V (x(t + 1) | x(t))} − V (x(t)) < −δxT (t)x(t). (3.11)

Taking expectation of both sides of (3.11) yields

E{V (x(t + 1))} − E{V (x(t))} < −δE

{
‖x(t)‖2

}
, (3.12)

which implies

E

{
N∑
t=0

‖x(t)‖2
}

<
1
δ
(E{V (x(0))} − E{V (x(N + 1))}) ≤ 1

δ
E{V (x(0))} < ∞. (3.13)
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Then one has that limt→∞E{‖x(t)‖2} = 0. From Definition 3.1, the closed-loop fuzzy
system (2.14) is stochastically asymptotically stable in the mean square sense. The proof is
thus completed.

Corollary 3.4. Under the conditions of Theorem 3.3, the closed-loop stochastic fuzzy control system
(2.14) is also stochastically exponentially stable in the mean square sense.

Proof. From (3.4) one has that

λ1‖x(t)‖2 ≤ V (x(t)) ≤ λ2‖x(t)‖2, (3.14)

where λ1 = mini λ{Pi} and λ2 = maxi λ{Pi}.
Then from (3.12), one has

E{V (x(t + 1))} <

(
1 − δ

λ2

)
E{V (x(t))}, (3.15)

which implies

λ1E
{
‖x(t)‖2

}
≤ V (x(t)) ≤

(
1 − δ

λ2

)t

E{V (x(0))}. (3.16)

Thus one has that E{‖x(t)‖2} ≤ C‖x(0)‖σt, where C = λ2/λ1 > 0 and 0 < σ = 1−δ/λ2 <
1. From Definition 3.2, one can conclude that the closed-loop fuzzy control system (2.14) is
stochastically exponentially stable in the mean square sense. The proof is thus completed.

Remark 3.5. It is noted that σ = 1 − δ/λ2 represents the convergence rate of the closed-loop
control system.

Based on Theorem 3.3, the following controller design results can be obtained.

Theorem 3.6. The SNNS (2.1) can be semiglobally stochastically asymptotically stabilized in the
mean square sense by the dynamic fuzzy controller in (2.13), if there exist a set of positive definite
matrices Xi, i ∈ �, two sets of positive constants ε1i and ε2i, and a positive constant λ such that the
following matrix inequalities hold for all (i, j) ∈ Ω, m ∈ I(i),

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Xi � � � � �

ε1Xi −ε1iI � � � �

ε2Xi 0 −ε2iI � � �

Xi 0 0 −λI � �

AmXi + BQmi 0 0 0 Xj − ε1iI �

MmXi 0 0 0 0 Iq ⊗Xj − ε2iIq(m+n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (3.17)

Moreover, the controller gain matrices Kmi are given by Kmi = QmiX
−1
i .

Proof. It is noted that the SNNS (2.1) can be expressed by the generalized stochastic T-S fuzzy
model in any compact set. It is also noted that the system (4.2) can be expressed by (2.12)
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in each local region of interest. Thus if the system (2.12) can be stochastically asymptotically
stabilized in themean square sense by the controller (2.13), with the bounded initial condition
on the state x(0) and the control u(0), the original SNNS (2.1) can be shown to be semi-
globally stochastically asymptotically stabilized in the mean square sense.

By using Schur’s complement, (3.2) is equivalent to

AT
miPjAmi −AT

miPjR

(
RTPjR − 1

ε1i
I
)−1

RTPjAmi − Pi +

(
ε21
ε1i

+
ε22
ε2i

)
I

+MT
m

(
Iq ⊗ Pj

)Mm −MT
m

(
Iq ⊗ Pj

)(
Iq ⊗ Pj − 1

ε2i
I
)−1(

Iq ⊗ Pj

)Mm < −δI.
(3.18)

By matrix inverse lemma, (3.18) becomes

AT
mi

(
P−1
j − ε1iI

)−1Ami − Pi +

(
ε21
ε1i

+
ε22
ε2i

)
I +MT

m

((
Iq ⊗ Pj

)−1 − ε2iI
)−1Mm < −δI. (3.19)

Multiplying Xi = P−1
i from both sides to (3.19), one has

XiAT
mi

(
Xj − ε1iI

)−1AmiXi −Xi +

(
ε21
ε1i

+
ε22
ε2i

)
XiXi

+XiMT
m

(
Iq ⊗Xj − ε2iI

)−1MmXi < −δXiXi

(3.20)

which is equivalent to (3.17) by using Schur’s complement with the fact that Qmi = KmiXi

and λ = 1/δ.
Thus it follows from Theorem 3.3 that the closed-loop fuzzy system (2.14) is

stochastically asymptotically stable in the mean square sense. Thus one has shown that
the original SNNS (2.1) can be semi-globally stochastically asymptotically stabilized by the
controller in (2.13). Thus the proof is completed.

Remark 3.7. From (3.19), one can see that the LMIs in (3.17) are not easy to be satisfied if the
upper bounds of the approximation errors, that is, ε1 and ε2, are too large. In order to achieve
better approximation performance one has to use larger number of fuzzy rules, which, based
on Theorems 3.3 and 3.6, leads to much higher computation cost of control design. However,
this problem can be lessened to some extent due to the robustness of the proposed approach.
In other words, the smaller number of fuzzy rules can be chosen since the robustness of the
proposed approach allows larger approximation errors.

Remark 3.8. Theorems 3.3 and 3.6 are based on a piecewise quadratic Lyapunov function.
When the positive definite matricesXi are chosen as common ones, that is,Xi = X, i ∈ �, then
the results of Theorems 3.3 and 3.6 reduce to those based on common Lyapunov functions. It
will be shown in Section 4 that the results based on piecewise Lyapunov functions (FLPs) are
less conservative than those based on common Lyapunov functions (CLFs).
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4. Simulation Studies

In this section, to show the performance of the proposed controller design results, we consider
the balancing problem of an inverted pendulum on a cart. The following discretized inverted
pendulum plant with non-affine mathematical model [26] is used:

x1(t + 1) = x1(t) + Tx2(t),

x2(t + 1) = x2(t) + T

(
f(x(t), v(t)) + [10x1 + 10u, 15x2 − 10u]

[
W1(t)
W2(t)

])
,

(4.1)

where f(x, v) = (g sin(x1) − amlx2
2 sin(2x1)/2 − a cos(x1)v)/(4l/3 − aml cos2(x1)), v(t) =

(arctan(u(t)) + 0.55u(t)) ∗ 102, x1 denotes the angle of pendulum from the vertical, and x2

is the angular velocity. g = 9.8m/s2 is the gravity constant, m is the mass of pendulum, M
is the mass of the cart, a = 1/(M + m), T = 0.01 s is the sampling time in this study, and 2l
is the length of the pendulum. Note that the input force is given by arctan(u) + 0.15u with
an amplifier of gain 1000 connected. In this simulation, we choose m = 2.0 kg, M = 8.0 kg,
and 2l = 1.0m.

We linearize the plant around the following operating points, (x;u) = (0; 0; 0), (0; 0; 3),
(±88◦; 0; 0), and (±88◦; 0;±3), respectively, and consider the approximation errors between
the linearized local model and the original nonlinear models as norm-bounded uncertainties.
Then the following uncertain discrete-time dynamic T-S fuzzy model can be obtained:

x(t + 1) =
4∑
l=1

μl(x, u)

{(
Alx(t) + Blu(t) + εf(x(t), u(t))

)

+
2∑

k=1

(
Clkx(t) +Dlku(t) + εgk(x(t), u(t))

)
Wk(t)

}
,

(4.2)

where the membership functions are shown in Figure 1,

A1 = A2 =
[

0 1
17.2941 0

]
, A3 = A4 =

[
0 1

0.3593 0

]
,

B1 =
[

0
−27.36

]
, B2 =

[
0

−15.56
]
,

B3 =
[

0
−0.81

]
, B4 =

[
0

−0.46
]
,

Cl1 =
[
0 0
10 0

]
, Dl1 =

[
0
10

]
, Cl2 =

[
0 0
0 15

]
,

Dl2 =
[

0
−10
]
, l ∈ L := {1, 2, . . . , 4}.

(4.3)

As it has been defined in Section 2, the indices of fired rules in each local region are
given in Table 1.
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0 π/6 π/4 π/2

|x1|

0

0.5

3

|u|

vLarge(•)
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S1
S2

S3

S4

S5 S6

Figure 1: Membership functions.

Table 1: Indices of rules fired in each local region.

Local region Si Indices of rules fired I(i)
S1 {4}
S2 {2}
S3 {1, 2, 3, 4}
S4 {2, 4}
S5 {1, 2}
S6 {3, 4}

It is noted that the exact or tightest upper bounds of the approximation errors are
difficult to identify. However, one can apply the method shown in [26] to obtain the
approximate upper bounds, which are ε1 = 0.3 and ε2 = 0, respectively. Then by applying
Theorem 3.6, the controller gains with respect to each partitioned regions are obtained as

Region S1: K41 =
[−0.0147 0.0615 0.0191

]
,

Region S2: K22 =
[−0.0147 0.0615 0.0191

]
,

Region S3: K13 =
[−0.3471 0.0333 0.5511

]
,

K23 =
[−0.3437 0.0296 0.3024

]
,

K33 =
[−0.0065 0.0279 0.0152

]
,

K43 =
[−0.0066 0.0279 0.0085

]
,

Region S4: K24 =
[−0.3738 0.0341 0.3357

]
,

K44 =
[−0.0069 0.0300 0.0093

]
,

Region S5: K15 =
[−0.0210 −0.0010 0.0332

]
,

K25 =
[−0.0210 −0.0010 0.0189

]
,

Region S6: K36 =
[−0.0145 0.0611 0.0336

]
,

K46 =
[−0.0145 0.0608 0.0188

]
.

(4.4)
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Table 2: Comparison of the convergence rate for different cases.

Methods The convergence rate σ = 1 − (δ/λ2)

Theorem 3.6 0.8317

Results based on PDCC and PLFs as indicated in Remark 2.3 0.9117

Results based on PDCC and CLFs as indicated in Remark 3.8 0.9991
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Figure 2: State trajectories.
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Figure 3: Control input.

To illustrate the performance of the approach proposed in this paper, the state
trajectories and control input of the closed-loop system under initial condition x(0) = (80◦, 0)
along 10 individual Wiener process paths are shown in Figures 2 and 3, respectively. One can
observe that both the means of the system states and control input converge to zero as time
approaches infinity.

To compare the proposed approach with results based on piecewise dynamic controll-
er and piecewise/common Lyapunov functions, respectively, the convergence rates under
different cases are presented in Table 2. It can be observed from Table 2 that the approaches
based on piecewise quadratic Lyapunov functions are less conservative than those based on
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common Lyapunov functions, and the piecewise dynamic fuzzy controller (PDFC) has better
performance than the piecewise dynamic crisp controller.

5. Conclusion

In this paper, T-S fuzzy model based control design of discrete-time stochastic non-affine
nonlinear systems (SNNS) has been investigated. By using a piecewise Lyapunov function,
it is shown that a discrete-time SNNS can be stochastically asymptotically stabilized in the
mean square sense by solving a set of linear matrix equalities. Simulation results are provided
to demonstrate the effectiveness of the approaches proposed in this paper. Some interesting
future topics include filtering design and fault detection problems for complex discrete-time
SNNS based on piecewise Lyapunov functions.

Appendix

Lemma A.1. Given a set of independent stochastic processesW1(t), . . . ,Wq(t) satisfying

E{Wi(t)} = 0, E

{
W2

i (t)
}
= wi, (A.1)

a set of vectors Xi ∈ �n×1, and a symmetric matrixH ∈ �n×n, one has that

E

⎧
⎨
⎩

(
q∑
i=1

Wi(t)Xi

)T

H

(
q∑
i=1

Wi(t)Xi

)⎫⎬
⎭ =

q∑
i=1

wiX
T
i HXi. (A.2)

Proof. One has

E

⎧
⎨
⎩

(
q∑
i=1

Wi(t)Xi

)T

H

(
q∑
i=1

Wi(t)Xi

)⎫⎬
⎭

= E

{
q∑
i=1

W2
i X

T
i HXi

}
+ E

⎧
⎨
⎩
∑
i /= j

WiWjX
T
i HXj

⎫
⎬
⎭ =

q∑
i=1

wiX
T
i HXi.

(A.3)

Lemma A.2 (see [27]). For any real matrices Xi and P > 0 with compatible dimensions, then

{
r∑
i=1

γiXi

}T

P

{
r∑
i=1

γiXi

}
≤

r∑
i=1

γiX
T
i PXi, (A.4)

where γi, (i = 1, . . . , r), are nonnegative scalars with
∑r

i=1 γi = 1.
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Lemma A.3 (S-procedure [28]). Let T0, . . . , Tp ∈ R
n×n be symmetric matrices. Then the following

condition on T0, . . . , Tp

ξTT0ξ > 0, ∀ξ /= 0, (A.5)

such that

ξTTiξ ≥ 0, i = 1, . . . , p, (A.6)

holds if there exists

τ1 ≥ 0, . . . , τp ≥ 0 such that T0 −
p∑
i=1

τiTi > 0. (A.7)

Acknowledgment

The work described in this paper was supported by the National Natural Science Foundation
of China under Grant 11001005.

References

[1] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and
control,” IEEE Transactions on Systems, Man and Cybernetics B, vol. 15, no. 1, pp. 116–132, 1985.

[2] G. Feng, Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach, CRC Press, Boca
Raton, Fla, USA, 2010.

[3] G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Transactions
on Fuzzy Systems, vol. 14, no. 5, pp. 676–697, 2006.

[4] J. Qiu, G. Feng, and J. Yang, “A new design of delay-dependent robust H∞ filtering for discrete-time
T-S fuzzy systems with time-varying delay,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 5, pp.
1044–1058, 2009.

[5] J. Qiu, G. Feng, and H. Gao, “Fuzzy-model-based piecewise H∞ static-output-feedback controller
design for networked nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 919–
934, 2010.

[6] L.Wu, X. Su, P. Shi, and J. Qiu, “A new approach to stability analysis and stabilization of discrete-time
T-S fuzzy time-varying delay systems,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol.
41, no. 1, pp. 273–286, 2011.

[7] H. R. Karimi, B. Moshiri, and C. Lucas, “Robust fuzzy linear control of a class of stochastic nonlinear
time-delay systems,” Nonlinear Dynamics and Systems Theory, vol. 4, no. 3, pp. 317–332, 2004.

[8] D. Saifia, M. Chadli, S. Labiod, and H. R. Karimi, “H∞ fuzzy control of DC-DC converters with input
constraint,”Mathematical Problems in Engineering, vol. 2012, Article ID 973082, 18 pages, 2012.

[9] M. Chadli and H. R. Karimi, “Robust observer design for unknown inputs Takagi-Sugeno models,”
IEEE Transactions on Fuzzy Systems. In press.

[10] Z. -G.Wu, P. Shi, H. Su, and J. Chu, “ReliableH∞ control for discrete-time fuzzy systemswith infinite-
distributed delay,” IEEE Transactions on Fuzzy Systems, vol. 20, no. 1, pp. 22–31, 2012.

[11] H. Ohtake, K. Tanaka, and H. O. Wang, “Fuzzy model-based servo and model following control for
nonlinear systems,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 39, no. 6, pp. 1634–1639,
2009.

[12] G. Feng, “Stability analysis of discrete-time fuzzy dynamic systems based on piecewise lyapunov
functions,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 1, pp. 22–28, 2004.
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