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1 INTRODUCTION

LQG is a useful tool for design of linear controllers. However, it is not applicable to systems
with saturating actuators. In this situation, designers often use an indirect approach, which
consists of selecting the LQG weights that force the resulting controller to operate appro-
priately in the linear region of the actuator and then implementing this controller using anti-
windup [1-4]. This paper proposes a different, i.e., direct approach, according to which the
linear controller is designed explicitly taking into account saturation. This approach is refered
to as SLQG, where S stands for “saturating”. We show subsequently that SLQG controllers
do not require an anti-windup implementation, in the sense that adding any linear anti-
windup cannot reduce the performance index.

Results obtained in this paper are based on the method of stochastic linearization [5-6],
which is a quasi-linearization technique similar to describing functions. According to this
method, the saturating actuator is replaced by a linear gain, which is a function of the
variance of the signal at its input. Although this method is approximate, it is shown in [5-7],
to be sufficiently precise, having errors well within 10% of the exact values of interest (in this
work, the variance of the plant output). Since in practice the SLQG controller would have to
operate with the real (rather than stochastically linearized) actuators, we investigate
the properties of the closed loop system consisting of the plant, SLQG controller and
the saturating actuator and show that this system inherits properties of the stochastically
linearized one.

The outline of this paper is as follows: Section 2 presents the SLQG theory. Section 3
addresses the question of the utility of anti-windup implementation of SLQG controllers and
shows that there is none. In Section 4, the conclusions are formulated. The proofs are out-
lined in the Appendix. More details can be found in [7].

* This work has been supported by NSF Grant No. CMS-0073302.
Corresponding author.

ISSN 1024-123X print; ISSN 1563-5147 online © 2002 Taylor & Francis Ltd



312 Y. EUN et al.
2 SLQG THEORY

2.1 Problem Formulation

Consider the system shown in Figure 2.1, where P(s) is the plant, C(s) is the controller, ¢(u)
is the saturation nonlinearity defined by

o(u) = zxsat(%), oa >0, 2.1
+1, &> +1,

sat(é) ={ & —1<&<+], (2.2)
-1, ¢< -1,

A(s) describes the dynamics of the actuator, F';(s) and F,(s) are coloring filters, and H,(s) and
Hy(s) are weighting filters. Signals u, v, y € R are the commanded control, actual control and
measured output, respectively, w;, w, € R are standard uncorrelated white noise processes,
and zj, z; € R are the controlled outputs.

Assume that the system, excluding the controller, has the state space representation

X = Axg + Byw + B p(u),
z = Cyxg + Dyu, (2.3)
y = Cyxg + Dyw,

where xg =[x} x§ xI xL x[ xL17,w=[w w] and z=[z 2]". Using

the method of stochastic linearization, Eqs. (2.3) can be reduced to the following stochas-
tically linearized form [7]:

);EG = Axg + Byw + B,Nii,
z2= Cixg + D1, (2~4)

y = CiXg + Dyw,

22 w

H2(8 F1(8)
‘ Y
+
0l 0(s) L% ) | Als) [ 2o P(s) ] i (s)} 2

Y 4%17 F2(3)<—w2

FIGURE 2.1 System model.
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where
o
N = eﬁ(fT%), (2.5)
rf L 2)d 2.6
e (6)—ﬁj_é exp(—2)dr, 2.6)

and o is the standard deviation of .
Introduce the performance index as the variance of the controlled output z:

o? = lim E[Z()T3(5)). 2.7
— 00
Finally, assume that the sought controller is of the form:

%c = Mic — L, 28
it = Kxc,

where the dimension of X¢ is the same as the dimension of X¢.
Problem 2.1 Develop a method for synthesis of controller (2.8) (i.e., for selecting matrices

M, L, K) so that performance index (2.7) is minimized along the trajectories of (2.4), i.e.,
develop a method for synthesis of SLQG controllers.

Problem 2.2 Investigate the properties of the closed loop system consisting of (2.1), (2.3)
and the SLQG controller (2.8).

2.2 Synthesis Equations

ASSUMPTION 2.1 (a) (4, By) is stabilizable and (C,, A) is detectable; (b) (A, B,) is stabi-
lizable and (C;,A) is detectable; (c) Di; =[0 ﬁ]r, p>0 and Dy =[0/],
pu>0; (d) D,C; =0 and B\D}, =0; (e) A has no eigenvalues in the open right-half
plane.

With the exception of (e), these assumptions are standard in LQG theory [8].

THEOREM 2.1  Under Assumption 2.1, there exists a unique proper controller (2.8) that
internally stabilizes (2.4) and minimizes 6%. The minimum value of the cost is

N?
P T T
in o3 = tr{Ci(P+R)C|} +p 17 B, OROB,, 2.9)

and the controller is given by

N
K=—-——B"
p+i 2Q7

L= _pcle, (2.10)

M = A+ B,NK + LC,,
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where (P, Q, R, S, N, J) is the unique solution of the following system of equations
p -
(VT/2)(N [exf ™ (V) exp(lerf ™' (N)P) — 1
2

10 +ClC =0,

3

1
AP+ PA” — PC{CZP; +BBT =0,

N2 N2 1
- B B R B B PCIC,P~ =0,
( Y ) Q) + ( Y] 2 Q) +PC, C, p
1
(A - ;ch Cz) S+ S(A - ;PCZT Cz) +

N? a*N?
[50] mronom -~

2.11)

As it follows from (2.11), the SLQG synthesis equations consist of Lyapunov and Riccati
equations augmented by two transcendental relationships that account for the stochastically
linearized gain N and the Lagrange multiplier A associated with the constrained optimization

problem.

THEOREM 2.2  Equations (2.11) can be solved with any desired accuracy in a finite number

of steps by a bisection algorithm.

Theorem 2.1 extends LQG to SLQG. Similarly, LQR can be extended to SLQR.

THEOREM 2.3 Under Assumption 2.1, there exists a unique controller
i = Kxg

that internally stabilizes (2.4) and minimizes o%. The minimum value of the cost is

N2

s 2 T T

min of = tr{C;RC +p B, ORQB,,
K Z { 1 1} ( l)z 2QQ2

and a state feedback gain K that achieves this minimum is
N
=———BT
P +A 2Q

where (Q, R, N, ) is the unique solution of the following system of equations

P _
TR e W) expert WP — 1 "
ATQ + 04 —;)ﬁ'—-QBzB o+clc =0,
N2 N? T
(A -~ mBngQ)R +R(A — mBszT ) +B,B] =0,

N T, N2
[p T 1] P2 OROB: = et TP

2.12)

(2.13)

2.14)

(2.15)

In addition, if R is nonsingular, then the state-feedback gain K given by (2.14) is unique.



LQG DESIGN WITH SATURATING ACTUATORS 315

2.3 Properties of SLQG and SLQR Controllers

THEOREM 2.4 The SLQG and SLQOR controllers lead to saturation activation quantified by
Prob{|t]| > a} =1—N, (2.16)

where N is the solution of (2.11) or (2.15).

Thus, to minimize o3, the actuator should experience saturation to the degree defined by
(2.16). The benefits of saturation activation have also been pointed out in [9].

THEOREM 2.5 Let Assumption 2.1 hold, assume C,(sI — A)™'B, #0, and view p of
Assumption 2.1(c) as a parameter. Denote the first term in the optimal value of the cost
expression (2.13) as y*(p), i.e.,

7*(p) = r{CiR(p)CT}. (2.17)
Then, y*(p) is an increasing function of p and

lim Y (p) =73 > 0. (2.18)
p—0t

Thus, Theorem 2.5 establishes performance limitation of the SLQR disturbance rejection
problem in systems with saturating actuators. Even if the plant is minimum phase, the
disturbance cannot be attenuated to any desired level, and must be consistent with the
bound (2.18).

THEOREM 2.6  Consider the undisturbed version of system (2.3):

xg = Axg + Byo(u), 2.19)
y= sz(;.

(1) Assume LQG controller (2.10) is used. Then,
(@) (xg,xc) = (0,0) is the unique equilibrium point of (2.19), (2.10);
(b) this equilibrium is exponentially stable;
(c) if A and M are Hurwitz, all solutions of the closed loop system (2.19), (2.10) are
bounded.
(ii) Assume LQOR controller (2.14) is used. Then,
(@) xg = 0 is the unique equilibrium point of (2.19), (2.14);
(b) this equilibrium is exponentially stable;
(c) if A is Hurwitz, all solutions of the closed loop system (2.19), (2.14) are bounded,
(d) an estimate of its domain of attraction is given by

_ Ny T 4 }
X = {xG € R™ | x5(eQxg < BGO5 |’ (2.20)
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where n, is the dimension of xg, and

2.21)

2.4 Example

Following [10], consider the problem of roll oscillation suppression of a passenger ship
disturbed by sea wave perturbations. In this problem, the actuator consists of two actively
controlled wings attached to the stern of the ship. The travel of the wings is limited to -18°,
which implies actuator saturation. The goal of control is to ensure that the standard deviation
of the roll angle is below 2.6°.

The data provided in [10] leads to the following plant model:

—1.125 —1.563 0985 0 0 1
, 1 0 0 0 0 0
=L 0 —0286 —o0311 "¢ [" T [
0 0 1 0 0 0
z=[0 0.109 0 O]xg, (2.22)

y=[0 1248 0 O}xc.

The open loop standard deviation of ship roll angle, z;, is 5.55°. Thus, to achieve
0;,< 2.6°, control is necessary.
Reference [10] proposed the controller of the form

s+0.1
s+10°

C(s) =35 (2.23)
With this controller, the closed loop behavior results in ¢, = 2.64° if saturation is ignored
and in g;, = 3.14° in the presence of saturation.

To analyze if the performance specification o, < 2.6° is achievable by any linear controller,
we solved Egs. (2.10), (2.11) for a very small p (specifically, p = 107'%). This resulted in
a3, = 2.30°. Thus, the specification can be satisfied. To obtain a specific controller we choose
p =1.649 x 10~* and u = 10~*. Then, Egs. (2.10), (2.11) result in

(s — 0.089)(s? + 2.14s + 2.43)

=94, '
C(s) = 9460 =0T (s + 2.41)(2 1 7.825 + 34.65)

(2.24)

This controller leads to g3 = 2.53° and simulation of the closed loop system (2.22) with
(2.24) confirms that o,, = 2.56°. Thus, the specification is satisfied.

3 SLQG CONTROLLER AND ANTI-WINDUP IMPLEMENTATION

3.1 Problem Formulation

As it was pointed out above, linear controllers designed without taking into account actuator
saturation often require an anti-windup implementation. A typical structure of such an
implementation is given in Figure 3.1, where C(s) is the anti-windup block.
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22 wn

Hj(s Fi(s)

!

C(s) T o(u) o A(s) = P(s) |—= Hi(s)—=21

— ,: C1(s)—

Y Fy(s) fe— w2

FIGURE 3.1 Feedback control system with anti-windup compensator.

The stochastically linearized version of the system of Figure 3.1 is shown in Figure 3.2.
The problem addressed in this Section is as follows:

Problem 3.1 Consider the system of Figure 3.2 and assume that C(s) is the SLQG
controller (2.10), (2.11). Investigate whether there exists C;(s) that leads to a smaller value
of performance index (2.7) in comparison with that ensured by C(s) alone (i.e., without
anti-windup).

3.2 Solution

THEOREM 3.1  Assume C(s) is the SLQG controller. Then, there exists no Ci(s) that would
yield a lower value of the performance index (2.7) than that ensured by C(s) alone.

Thus, Theorem 3.1 states that anti-windup implementation is not necessary if the
controller C(s) is designed using SLQG.

22 w

H2(8 FI(S)

c(s) & N b A(s) - P(s) | i (s)}5

_ I:Cl(s) ~

3

Fg(s) [ — Wo

FIGURE 3.2 Stochastically linearized version of the system of Figure 3.1.
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TABLE 1 Performances in Example.

o? a2 (6% — 62)/0?) x 100%
C(s) 230.2 217.54 5.83%
C(s) with anti-windup C,(s) 2345 220.28 6.49%

3.3 Example
Consider the system of Figure 3.1 with

1 15
=1, P = . F, = , F = 0. y = s = 1.
A(s) =1 (s) P 1(8) P 2(s) = 0.01, Hi(s) =10, Hy(s)=1
3.1
Consider the SLQG controller
Cs) = 269.67(s + 6.92) G.2)

(5% + 55.42s + 1423.20)°

and choose the anti-windup block Cy(s) = P(s). This choice corresponds to the internal
model based anti-windup suggested in [1]. Then, the two controllers C(s) and C(s) acting
together yield o2 = 234.5, whereas the controller C(s) alone yields 67 = 230.2.

To verify the behavior of the real (rather than stochastically linearized) system with and
without anti-windup, we simulated the system defined by (3.1) with controller C(s) alone and
with C(s) and Cy(s) acting together and evaluated o2 in each case. The results are sum-
marized in Table I along with corresponding o?. These data confirm that the stochastically
lineared system approximates well the original one (with accuracy of 5-7%) and the
inclusion of anti-windup does not reduce the performance index.

4 CONCLUSIONS

An extention of LQG theory to systems with saturating actuators, refered to as SLQG, is
developed. Although results reported here address SISO systems and amplitude saturation,
extentions to MIMO case and rate saturation are readily available [7]. Also, similar
developments for nonlinearities other than saturation can be carried out; some of them are
briefly considered in [7]. It is shown that controllers, designed using the SLQG approach, do
not require anti-windup.
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APPENDIX

Proof of Theorem 2.1 The Lagrange multiplier technique is used. First, the regularity
condition of the constraints is checked. Next, using the Lagrangian, (2.11) is derived. Finally,
it is shown that equations in (2.11) have a unique solution (P, Q, R, S, N, 1) such that (2.4)
with (2.8) is internally stable. Details can be found in [7]. |

Proof of Theorem 2.2 For any desired accuracy ¢, the following algorithm provides the
solution of (2.11). (a) start with Ny = 0 and N, = 1; (b) let N = (N7 + N»)/2; from (2.11),
calculate A; solve Riccati equations for P and Q; solve Lyapunov equations for R and S; (c)
calculate left hand-side of the last equation in (2.11) and call it §; (d) if N; — N} < ¢, then go
to step (f); (e) if & < 0, then let N; = N, else let N, = N, and go to step (b); (f) calculate K,
L, M from (2.10). Convergence result can be found in [7]. n

Proof of Theorem 2.3 Similar to the proof of Theorem 2.1. Details can be found in [7]. B
Proof of Theorem 2.4 Follows directly from (2.5). |

Proof of Theorem 2.5 Evaluating the derivative, it is shown that y3(p) is increasing and
positive. Details can be found in [7]. |

Proof of Theorem 2.6 (i)-(a) Follows from the fact A + B,K and 4 + LC, are shown to be
Hurwitz. (i)-(b) Proved by the Lyapunov’s indirect method. (i)-(c) Proved by applying the
triangle inequality to the solution of (2.19) with (2.10).

The proofs of (ii)-(a), (ii)-(b), (ii)-(c) are similar to those of (i)-(a), (i)-(b), (i)-(c),
respectively. (ii)-(d) Proved by using the Lyapunov function V(xg) = xg(sQ)x(;. See [7] for
details. ]

The following lemma is needed to prove Theorem 3.1.

LEMMA A.1  Under Assumption 2.1, the SLQG controller (2.10), (2.11) is the solution of the
problem

min o2, (A1)

where the minimization is over all controller of the form (2.8) with dim(xc) > dim(x¢).

Proof Let m = dim(c) — dim(%g).
Augmenting (2.4) by

X =A%+ A)xg,
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where 4 is an arbitrary m x m Hurwitz matrix and 4, is an arbitrary m x dim(Xg) matrix
yields

AX + Byw + ByNil,

X=
3= C\x+ D, (A2)
y= szc + Dyyw,

where

- _[#%] 4_[4 o = _[B] =~ _rn~ _
x-[;c], A—[A2 Ax]’ B,_[O], G=[C 0], i=12. (A3

The state space representations (2.4) and (A.2) have identical input—output characteristics
from # and w to Z and . Therefore, they yield the same value of (2.7) with any controller.
However, this augmentation leads to minimization over all stabilizing controllers with
therefore, there exists a umque solution (P, O, R, S, ]V Z) of Eq. (2. ll) with matrices
A, By, B,, Cy, C, used instead of 4, By, By, Cy, C,. Thus, the SLQG controller for (A.2) is
given by

(A4)

(P,Q,R,S,N, A). Then, (P,Q,R,S,N, 2) can be written in terms of (P, Q, R, S, N, 1) as

follows:
] [ ] R [ 2 ] : [ ]
Rz R3 ’ 0 0 ’ (A. 5)

N =N, =4,

-1

where P,, P3, Ry, R3 can be uniquely obtained from

0=AP+PA" i»a;ézin% + BB (A6)

- N2
0= ( N
p+A
Note that, since the matrices in (A.2) satisfy Assumptions 2.1, solutions of the Riccati and

Lyapunov equations (A.6) and (A.7) exist.
Using (A.3) and (A.5), the SLQG controller (A.4) becomes

T N A &
BZBZTQ)R +;PCZTC2P +R(A o

T
ZBZBQQ) L@

_ M 1 0 _ L : _
M= Az_pgcgczﬁ Yt L= "'P;CZE ) K=[K 0]. (A.8)



LQG DESIGN WITH SATURATING ACTUATORS 321

This implies that both (M, L, K) and (M, L, K) result in identical transfer function from 3 to
#. In other words, the optimal controller does not need more than dim(xg) states.
Consequently, this implies that increasing the dimension of the SLQG controller does not
reduce (2.7). |

Proof of Theorem 3.1 Within the framework of stochastic linearization, a linear anti-windup
block Cy(s) and SLQG controller C(s) in Figure 3.2 can be combined into one controller that
uses only measurement feedback. As a result, the dimension of combined controller is larger
than that of the SLQG controller. Thus, it follows from the Lemma A.1 that the performance
of the SLQG controller cannot be improved by anti-windup. |
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