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The paper is intended to be of tutorial value for Schwartz’ distributions theory in nonlinear setting.
Mathematical models are presented for nonlinear systems which admit both standard and impulsive inputs.
These models are governed by differential equations in distributions whose meaning is generalized to
involve nonlinear, non single-valued operating over distributions. The set of generalized solutions of these
differential equations is defined via closure, in a certain topology, of the set of the conventional solutions
corresponding to standard integrable inputs. The theory is exemplified by mechanical systems with
impulsive phenomena, optimal impulsive feedback synthesis, sampled-data filtering of stochastic and
deterministic dynamic systems.
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1 INTRODUCTION

Although the standard Schwartz’ distributions theory is now fully understood, however, in a
number of key applications, such as dynamic systems and optimal control, the theory calls
for further development to admit a nonlinear and, generally speaking, multi-valued impulse
response of a system. A typical example of such an application is an open-loop control
system for re-orientation of spacecrafts with impulsive jets that optimally combines the speed
of response with its precision under integral constraints on the control effort (see, e.g.,
[11, 17, 25]). The integral constraints applied to the impulsive spacecraft jets indicate that the
cumulative power of the jet is limited, whereas the thrust level can attain a very high value
during a very short period of time. This allows one to approximate such a power by an
impulsive J-function whereas the system response remains nonlinear in the instantaneous
power. In addition, mechanical systems with striking (impact) mechanisms and systems with
strong actuation where actuator-induced transients are close to jumps and therefore are much
faster than typical responses, belong to the class of systems with nonlinear impulse responses
(see, e.g., [3, 31D]).

These systems turn out to be highly sensitive to the method of realization of impulsive
inputs, especially if the system has significant nonlinearities. Therefore, practical imple-
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mentation of impulsive inputs requires an adequate estimate of the impulse response of a
nonlinear system. This implies that Schwartz’ distributions, while being modified for the
description of general impulsive systems, must accommodate the details of the realization of
the impulsive inputs in the nonlinear setting.

Until recently, no appropriate analytical technique has been developed due to difficulty of
the rigorous introduction of the impulsive inputs into nonlinear dynamical systems. The
existing methods provide adequate description to only a particular class of nonlinear systems
with impulsive inputs (see, e.g., [18, 20,21} and references quoted therein) and generally
cannot guarantee precision, stability, and robustness for system responses of discontinuous
type. Without touching the entire range of problems associated with the design of impulsive
regulators it should be noted that even fundamental concept of generalized feedback has not
been introduced yet. Thus, the nonlinear setting for the Schwartz’ distributions theory is
continuing to be developed.

The present work develops a consistent modeling methodology which gives rise to
mathematical models of the nonlinear dynamical systems with nonlinear impulse responses.
Modeling accommodates the details of the realization of the impulse input and admits the
impulse response to depend upon the manner in which the impulse is implemented. The
models are subsequently shown to be extremely suited to describe impulsive phenomena
in mechanical systems, to derive filtering equations over sampled-data measurements, to
optimally synthesize generalized, particularly, impulsive controllers.

In this paper, the author summarizes his investigation in the area that was originated in the
Institute of Control Sciences early in the 1980%. The paper is written to be accessible for a
variety of readers. While the adopted style may be a bit awkward for the specialists who plan
to study all the details, it will hopefully enhance the tutorial value of the paper.

The paper has the following structure. The nonlinear distribution formalizm is developed
in Section 2 for nonlinear dynamic systems with impulsive phenomena. The section
consists of two subsections which address deterministic and stochastic systems side by
side. The main result stated here is that although the impulse response of a nonlinear
system is not unique (even for a certain realization of the stochastic process) and depends
upon the impulse implementation, the set of all possible impulse responses may be found
from a certain auxiliary system with integrable inputs. Particularly, necessary and sufficient
conditions are obtained for the impulse response to be independent on the impulse
realization.

In Section 3, Schwartz’ distributions in nonlinear setting are used to formally derive
filtering equations over sampled-data measurements from those over continuous measure-
ments. In fact, we formalize here, with the help of the nonlinear distribution formalizm, an
intuitively clear idea that a sampled-data measurement may be viewed as a time-continuous
measurement made for a short time period, whereas a time-continuous measurement may be
represented as a continuum of sampled-data measurements. This formalizm is successively
applied to Kalman filtering of linear stochastic processes and nonlinear H.-output feedback
control of affine systems affected by external disturbances.

In Section 4, the distribution-based representation of nonlinear dynamic systems is
involved to develop valid models for systems with impulsive feedback control laws and use
these models for feedback control synthesis. This section addresses a singular quadratic
optimization problem for feedback linearizable systems within the framework of what is
further referred to as a generalized control approach in the closed-loop setting. The existing
results [9, 27] on optimal control synthesis under degenerate performance criterion

J= J:o x"()Px(t)dt, P >0, 1)
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depending on the state vector x(¢) only, replace this singular optimization problem by its
regularization through e-approximation of this criterion given by

J= Joo[xT(t)Px(t) +euTRuldt, >0, R>0. )
0

The optimal control law u corresponding to (1) is then obtained as a limit as ¢ — 0 of the
optimal control law u; corresponding to (2). Since only particular approximation is taken
while other approximations are possible as well there is no guarantee that the original per-
formance criterion is minimized by the control law obtained via this procedure.

Unlike the above procedure, the generalized feedback approach developed does not spe-
cify a particular approximation of the singular optimization problem and yields the solution
to the original problem in itself. Another very important feature of the methodology proposed
is its capability to guarantee the asymptotic stability even for higher order distributions in the
control law. To the best of our knowledge there is no equivalence of this feature for the
methodology with ¢-approximation described above.

Section 5 applies the nonlinear distribution formalism to modeling of impact (shock,
collisions) dynamics of mechanical systems. As an illustration of the capabilities of this
modeling, an instantaneous change of the initial velocity is straightforwardly deduced for the
vertical launch of a spacecraft. Finally, Section 6 presents the conclusions.

2 NONLINEAR DIFFERENTIAL EQUATIONS IN DISTRIBUTIONS
2.1 Preliminaries

Some mathematical preliminaries are reviewed to be used subsequently.

A linear continuous functional, mapping the space C¥ of k-time continuously differentiable
functions with compact support into the real line R, is referred to as a kth order distribution.
Thus, the distributions are defined indirectly, by specifying their effect on the test functions.
Recall that the support of a function ¢(f) specified point-wise is the closure of the set
{r: o(r) # O}.

As usual, Dj denotes the dual space of zero order distributions, i.e., those defined on the
space Dy = C{ of continuous functions with compact support. The dual product (1, ¢) of a
distribution wu(f) € Dj and a test function ¢(f) € Dy is denoted by ff‘;o u()(?) dr.
Alternatively, Dj may be viewed as the space of all (Borel) measures du(f) with locally
bounded variation. The dual product is then explicitly defined by the Stieltjes integral
(du, @) = [Zo, (1) (o).

A sequence of distributions u(f) € Dj, k = 1,2, ... converges to u(f) € D in the weak™
topology, i.e.,

* — lim w(f) = u(f)
k—00
iff

Jim J: w(D)p(d) di = j u(t)p(t) dt

—00

for any test function @(¢) € Dy.
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2.2 Multivalued Impulse Response in Nonlinear Deterministic Systems

In this subsection we deal with affine systems, the dynamics of which are described by a
nonlinear differential equation of the form

x(t) =f(x, t) + b(x, Hu, x(0) = xp ?3)

where x(f) € R" is the state vector, xo € R" is the initial state, u(f) € R" is the input, and 7 is
the time variable. Obviously, the smoothness of fand b guarantees locally the existence of a
unique trajectory driven by an integrable input u(#). In turn, unbounded inputs can make
trajectories of system (3) be arbitrary close to discontinuous ones. In order to admit dis-
continuous behavior of the system one should extend the description. If b(x, f) is a state-
invariant continuous function b(f), it appears that one can rigorously introduce discontinuous
solutions into the equation by admitting the input to be a measure-type function (e.g.,
a d-pulse). In general, this way is hampered, however, by the irregularity of a product of the
impulsive input u(f) and the discontinuous (in ¢) function b(x(¢), 7). In order to avoid this
we generalize the meaning of the differential equation according to [21]. Other possible
approaches to description of impulsive control systems can be found, e.g., in [2, 15, 16, 32].

DEFINITION 1 4 sequence {ux(t)} of integrable inputs, the L\-norms of which are uniformly
bounded, is a generalized system input, if the solutions x;(f), k = 1,2, ... of (3), corres-
ponding to the inputs u(t) = u(t), converge to a lefi-continuous function x(t) for all continuity
points t > 0 of x(t). The function x(t) is referred to as a generalized solution of (3).

Relating the generalized control input {u;()} in the above definition to a peaking sequence of
L, inputs, which weakly* converges to a d-pulse, one can define the impulse response of a
nonlinear system as the corresponding generalized solution of (3). Generally speaking, diffe-
rent approximations of the d-pulse result in different generalized solutions. Thus, the impulse
response depends upon the implementation of the impulse. In this work, the symbol xy,,(#) is
used to denote the generalized solution of (3) corresponding to a generalized input {u(7)}.

The goal of this subsection is to describe the set

X(y. t0) = {an(to+)I * = lim uy(0) = 6(t — to)}

of the instantaneous impulse responses X, )(fo+) = lim,_ 4 x(,)(f) of (3) to all possible
realizations {u(f)} of the impulsive input yo(t — %), y € R", t, > 0. We shall prove that
X(y, t) can be specified by means of the reachability set

1

R(J’O, Vs t()) = [”w(y()’ 1: tO): J
0

w(t)dt = y}
of the trajectories #,,( o, £, fp) of the auxiliary dynamical system
1= b, to)w(t), 1n(0) =yo “4)

with integrable inputs w(¢) of fixed integral power f(; w(t) dt = y. Denoting the solution of the
unforced system

y=f(r.0, »0)=xo %)

as y(f), we arrive at the result proven in [21].
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THEOREM 1 Let functions f(x, t), b(x, ) € C! satisfy the linear growth condition in x. Then
X(y, to) = R(¥(to), 7, to). Moreover, let y, belong to R(y(ty), v, to) and let the auxiliary system
(4) be driven from the initial state y(t) to the terminal state y, for t = 1 by the admissible input
w(?), i.e., n,(¥(t), 1, to) = y1. Then the instantaneous impulse response x,,}(to+) = y1 of the
affine system (3) is particularly forced by the generalized input {u;(t)} where

u(t) = kw(k(t — to)) iftG[to,to+%] k=1,2,... ©
0

otherwise,

Remark 1 Let the assumptions of Theorem 1 be in force. Then in analogy to the well-
known interpretation of the Schwartz’ distributions through the sequential approach [1], the
set of all generalized solutions can be viewed as the weak* closure of the set of the
conventional solutions corresponding to the integrable inputs. Furthermore, any sequence of
L, inputs, converging in w,-weak topology, is shown in [28] to be a generalized system input.
Recall that the wy-weak convergence, introduced in [20, p. 18], requires both the weak*
convergence of the L, inputs u(f), k = 1,2, ... and the point-wise convergence of their
variations Vi(f) = jol llux ()|l ds for all £ > 0.

Remark 2 Due to the peaking phenomenon [29], the impulse response of the affine system
(3) with no growth condition on the right-hand side can escape to infinity in infinitesimal time.

It is of interest to note that the Frobenius condition

~0by(x, 1), Obyx,f)
D e by 0 = L= b, ), ™)

k=1 k=1

imposed on the system function b(x, ¢) forall/=1,...,n,i,j=1,...,mand £ € R",t > 0,
ensures the uniqueness of the impulse response.

THEOREM 2  Let the assumptions of Theorem 1 be satisfied and let system (3) be driven by a
generalized input {u;(t)} such that

* — klim w(t) = yo(t —ty), 7y €R", th>0.
—00

Then, the generalized solution x(t) = xy,,)(t) of (3) does not depend upon a choice of the
approximating sequence {uy(l)} if and only if the Frobenius condition (7) holds.

Proof of Theorem 2 can be found in [21].

Thus, the Frobenius condition allows one to replace the peak functions (6) in modeling of
the nonlinear system (3) by the d-pulse d(¢ — #). If the Frobenius condition (7) holds then [4]
the Pfaffian equation

dé_ n m
a—b(f,s), ¢eR', veR", ®)

generated by the matrix function b, is solvable for arbitrary initial conditions £(0) =z € R"
and scalar parameter s, and the equation integrates to the function &(z, v, s) regardless of a
path v(¢) between the initial v(0) = yy and terminal v(1) = y points. Hence, the reachability
set R(yo, 7, to) of (8), written in the parametric form (4) with w(f) = v(¢), consists of the
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unique point &(yo, ¥, ) and according to Theorem 1 the instantaneous impulse response is
uniquely defined as

x(to+) = E(¥(t0), 7, to) )

where y(f) satisfies (5). Summarizing, the following result is shown.

THEOREM 3  Let the assumptions of Theorem 2 be satisfied and let the Frobenius condition
(7) hold. Then the instantaneous impulse response is uniquely determined from the solution
of the Pfaffian system (8) according to (9) with y(t) satisfying (5).

The latter theorem extends the results of [19] in that the system function b(x, £) needs only
be of class C! rather than C2. Particularly, in the case where b(x,f) = b(f) is a state-
independent function and hence the mild solution of (3) is well-defined, the solution &(z, v, s)
of the Pfaffian system is found as &(z, v, s) = z + b(s)v and by Theorem 3 the instantaneous
impulse response x(0+) = y(f) + b(0)y is the same as if the conventional mild solution
would be under consideration. In general, modeling the nonlinear system (3) subjected to
impulsive inputs should follow Theorem 1 to accommodate details of the impulse imple-
mentation and the set of all possible instantaneous impulse responses may be found from the
auxiliary system (4) with integrable inputs.

It worth noting that for the involutive dynamic systems (3) (i.e., those satisfying the Frobenius
condition (7)) the concept of generalized solution is nothing else than that of vibroimpact
solution earlier introduced in [10] and [19] to admit unambiguous nonsmooth and, respectively,
discontinuous solutions (see also closely related work [13]). In the rest of this section, the
concepts of generalized and vibroimpact solutions are extended to stochastic dynamic systems.

2.3 Vibroimpact Solutions of Stochastic Differential Equations

Let (Q, F, P) be a complete probability space with an increasing family of o-algebras F,,
t > 0. The symbol E stands for the mathematical expectation throughout.

An n-vector Ito stochastic process x; in question is associated with the probability space
(Q, F, P) and governed by

dx, = f(x;, ) dt + b(xs, 1) du(?t) + o(x;, )dwy,  x—9 = X0 (10)

where (w;, F,,t>0) is a standard Wiener process with independent components w/,
i=1,...,r du(?) is a Stieltjes measure generated by an m-vector function u(#) of bounded
variation, matrix functions f; b, ¢ are of appropriate dimensions, continuous in all arguments
and satisfying the Lipschitz condition in x for all .

If an F-measurable initial condition x, is fixed a priori and u(f) is absolutely continuous
then [12] there exists a unique strong solution x; of the stochastic Ito differential equation
(10). In general, when u(¢) is a function of bounded variation only, the meaning of (10) is
adopted in the sense of generalized solutions.

DEFINITION 2 4 sequence {u;(t)} of integrable inputs, the Li-norms of which are uniformly
bounded, is a generalized input of the stochastic system (10), if the mean square convergence

lim E(* —x,)* = lim J (* —x)*P(dw) = 0 an
k—o00 k—00 Q



NONLINEAR DISTRIBUTIONS IN CONTROL 373

of the strong solutions xf, k=1,2...0f(10), corresponding to the inputs u(t) = uy(t), holds
with some a.s. (almost sure) left-continuous function x, for all continuity points t > 0 of x;.
The function x, is referred to as a generalized solution of (10).

Vibroimpact solutions of (10) appear when equivalent generalized inputs {u}(f)}, {u3(9)},
i.e. such that the sequence

u}(t), uf(t), ey u,lc(t), ui(t), e

is fundamental in the weak* topology, generate the same generalized solution.

DEFINITION 3 The generalized solution x(t) of (10) is said to be a vibroimpact solution iff it
does not depend upon a choice of a generalized input {u,(t)} among equivalent inputs.

The above results, Theorems 1-3, turn out to be in force for the stochastic processes (10),
too. The proof is rather technical and follows the same line of reasoning as that in the
deterministic case. It is however unreasonably lengthy to be presented here. Instead, the
practical utility and constructive abilities of the generalized, particularly, vibroimpact
solutions are subsequently studied.

3 NONLINEAR DISTRIBUTION FORMALIZM IN FILTERING OVER
SAMPLED-DATA MEASUREMENTS

In this section, we demonstrate how vibroimpact solutions are utilized to formally derive the
filtering equations over sampled-data measurements from those over continuous measure-
ments. Based on such a formalizm two specific problems, filtering of linear stochastic pro-
cesses via sampled-data observations and nonlinear sampled-data measurement H,-control
of uncertain dynamic systems, are successively resolved.

3.1 Vibroimpact Solutions in Kalman Filtering

Let the probability space (Q, F, P) be the same as before and let the partially observed
JF-measurable process (x;, y;) be governed by the linear stochastic differential equations

dx, = F()x, dt + G(Hu(t) dt + O(r) dv, (12)
dy, = H(f)x; dt + R(t) dw, (13)

where x, € R" is the state to be estimated, y, € R” is the measurement vector, the random
initial states xo € R" and y, € R’ are F,-measurable, u(f) € R" is the system input, also
available for measurements, (v;, F;,¢>0) and (w;, F;,t > 0) are independent standard
Wiener processes whose independent components v/,j = 1,...,s,w,,i=1,...,r, coupled
to those of xy and yy, form a Gaussian system, F, G, Q, H, R are a priori known time varying

matrices of appropriate dimensions and the matrix
N() = R(OR" (¢) (14)

is nonsingular for all # > 0.

The filtering problem is typically to construct from measurements of yj = {y, s € [0, 7]}
the minimum variance n-vector estimate m, = arg min E[x, —)"c,]2 where the minimum is
seek over all F)-measurable estimates X, € R" and F7 is the family of o-algebras generated
by y;, and completed by zero probability subsets of F.
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The solution of the problem is well-known and given by the Kalman-Bucy filter
dm, = F()m, dt + G(t)u(t) dt + POHT (ON "' (Oldy, — H()ym,df], mo = E(xo|F}y) (15)
initialized with the conditional expectation E(xo|F%) and coupled to the Riccati equation
P=PF" + FP—PH'N"'HP + QQ", P(0) = E(xo — mo)(xo —mo)  (16)

on the covariance matrix P(t) = E(x; — m,)(x; — m,)T.

Along with the continuous measurement filtering, we shall consider its counterpart over
sampled-data measurements taken at possibly nonuniformly spaced time instants which have
no finite limiting points:

Yy, = H(tl)x,, -+ R(t[)&], = 1, 2, e (17)

where £; € R? is the measurement noise whose independent components, coupled to those of
V1, Xg, form a Gaussian system. Solution of the filtering problem over the sampled-data mea-
surement (17) is also well-known and given by the following differential equations with jumps:

dm, = F()m, dt + G(Ou(?) dt, mg = E(xo|F})
my+ = my, — +P(G-H)H" (N @)y, — H(t)m,~] (18)

P=PFT + FP+QQ", P(0) = E(xo — mo)(xo — mo)”,
P(t+) = P(—)I + H ()N~ ()H@)P(H-)], 1=1,2,... (19)
It is implied, although rigorously unproven, that the solution of the filtering problem over
continuous measurements, made for a short time period, approximate that of the sampled-
data measurement problem. Our goal is to make such a connection between the above
filtering problems transparent by demonstrating that the filtering Eqs. (15) and (16) of the

linear stochastic process (12) over the continuous measurement (13) become identical to
those over the sampled-data measurement (17) if the matrix function (14) is formally set to

o0 -1
N = [Z N(u)3(t — tz)] : (20)
I=1

Although nonlinear operating over Dirac functions in (20) is senseless from the point of view

of the Schwartz’ distributions theory the latter relation, however, has a sense while being

substituted into the filtering Eqgs. (15) and (16). In what follows, the meaning of the equations
dm; = F(t)m, dt + G(t)u(t) dt + P()H (¢)

x | Y N@)o@ — 1) |[dys — H@m A, mo = ExolFp) 3y
I=1 i

P =PF" + FP — PH" iN(tl)(S(t ~4) |HP+QQ",  P(0) = E(xo — mo)(xo — mo)',
I=1 _
(22)

thus obtained, is considered in the sense of vibroimpact solutions. It appears that system (21),
(22) has a unique vibroimpact solution and this vibroimpact solution coincides with the
strong solution of (18), (19).
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THEOREM 4 There exists a unique vibroimpact solution of system (21), (22) and this
vibroimpact solution is identical to the strong solution of the sampled-data measurement
filter Equations (18) and (19) with jumps.

The validity of the above theorem can be established by applying the general theory
developed in the previous section to the Kalman-Bucy filter given in terms of vibroimpact
solutions of Egs. (21) and (22). In order to provide a deeper insight on the vibroimpact
solutions we present here a straightforward proof of the theorem.

Proof of Theorem 4 Let {v()};2, be an arbitrary sequence of measurable functions,
approximating the distribution v(f) = > 72, N(#)d(t — #;) in the weak* topology:

o0
* — lim vi(r) = gzv(n)a(t — ). (23)
Then [12] there exists a unique strong solution {m¥, Py(f)}, of system

dmF = F(tym* dt + G(Ou() dt + PoOHT (O)vi(t)[dy, — H(t)mk di],  mf = my 24)

Py = PoF" + FPy — PLH vi(DHP, + 00", P(0) = P(0), 25

obtained from (21), (22) by substituting v(f) for Y2, N(#,)6(t — t;). Moreover, this solution
is well-defined on [0, 00) and P,(¢) remains positive definite for all # > 0.
Our nearest aim is to demonstrate that

lim E(m* —m)* =0, lim Py(t) = P(?) (26)
k— 00 k— 00
for some a.s. left-continuous functions m,, P(f) and all the continuity points ¢ > 0 of these
functions, regardless of a choice of an approximating sequence {v(#)};>,. The functions m;,
P(t) could then be accepted as the vibroimpact solutions of (21), (22) and the first assertion of

the theorem would be proven.
For this purpose, we introduce the functions

Dy(t) = P70, nf =P (Om, k=1,2,... @7
which in accordance with (24), (25) are strong solutions of the following equations:

dnf = —F" (Onf dt + Du(t)G(t)u(t) dt — D(HQOQ" (D)} dt
+H (i) dyr,  nf = P~ (O)mo (28)

Dy = —~DiF — F'Dy = DiQQ Dy + H' (Yv(DH(D),  Di(0) =P7'(0).  (29)
In turn, by virtue of (23) the strong solutions of (28), (29) converge

lim E(n* —n)® =0,  lim Dy(t) = D(¢) (30)
k— 00 k—o00
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to the strong solution (n,, D(f)) of the system
dn, = —FT(f)n, dt + D(t)G(t)u(t) dt — DE)Q()QT (t)n, dt

+H%>[Z N@)d(t - t»]dy,, no = P~ ()my @31)

I=1

o0

D=—-DF —F'D-DQQ"D + HT(t,)I:
I=1

N(tl)a(t“tl):IH(tl)’ D) =P7'(0) (32)

for all continuity points ¢ > 0 of (n,, D(t)) as k — oco. Indeed, in contrast to (21), (22),
system (31), (32) contains no multiplication of the singular distribution Y _;°, N(#)d(t — ;)
by the discontinuous state (#,, D(f)), and it can therefore be viewed in the conventional sense
as the system

dn, = —FT(t)n, dt + D(t)G(t)u(t) dt — D()Q()Q" (H)n, dt,
no =P 'Omy, nyy =n, +H N@)dy,, [=1,2,..., (33)

D=—-DF —F'D—-DQQ™D, D(0)=P'(0), Dt+)=D(t—)+ H (t)Nt)H(t;)
(34)

of differential equations with jumps. Thus, the solution of (31), (32) is well-defined on [0, co)
and the point-wise convergence (30) is concluded for all the continuity points of (r,, D(f))
due to the sequential interpretation (cf. Remark 1) of the strong solution of (31), (32).

Since D(¢) is the solution of the differential Riccati equation (34) with positive definite
initial conditions and positive definite changes AD(t) = H' (¢t)R(t)R” (t)H(t)) at time
instants #, / = 1,2, ..., it remains positive definite for all ¢ > 0. Coupled to (27), (30), this
results in the limiting relation (26) with

m; =D Y (On,, P(t) = D7'(¥), (35)

regardless of a choice of an approximating sequence {v(f)};,, thereby ensuring the unique
vibroimpact solution of (21), (22) to exist.

To complete the proof it remains to note that by inspection (via substituting (35) into (18),
(19)) the vibroimpact solution (35) becomes identical to the strong solution of the differential
equations with jumps (18), (19). Theorem 4 is thus proven.

Remark 3 By Theorem 4 the sampled-data measurement filter can be interpreted as a
limiting result of the pulse-wise continuous measurement filters. Indeed, Definition 3 of
vibroimpact solutions ensures such an interpretation. This interpretation, in turn, guarantees
robustness of the filter design, regardless either observation model (sampled-data measure-
ments or continuous measurements made for a short time period) is accepted.
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3.2 Vibroimpact Solutions in Nonlinear H,,-Control

The above nonlinear distribution formalizm is subsequently used to derive a solution of the
sampled-data measurement Hy-control problem from that of the continuous measurement
H,-control problem. A time-varying nonlinear system governed by

x(8) = f(x(2), 1) + g1(x(2), OW(2) + g2 (x(2), t)u(r) (36)
2(t) = hi(x(5), ) + kia(x(2), )u(t) (37
yi = h(x(7)), 7)) + ka1 (x(z)), ti)w(t;), j=0,1,... (38)

is under study. Hereinafter, x € R" is the state vector, f € R! is the time variable, u € R™ is the
control input, w € R" is the unknown disturbance, z € R! is the unknown output to be
controlled, y = (39, »1, . . .) is the only available measurement on the system with the discrete
measurements y; € R, j =0, 1, ..., taken at possibly nonuniformly spaced time instants t;,
which have no finite limiting points. The functions f'(x, #), gi1(x, 1), g2(x, 1), h1(x, 1), ha(x, ),
kia(x, 1), ka1 (x, t) are assumed to be continuous in ¢ for all x and twice continuously differ-
entiable in x for all ¢, whereas their first and second order state derivatives are assumed to be
continuous and uniformly bounded in ¢. It is also assumed that £(0, £) = 0, /,(0, f) = 0 and
hy(0,¢) =0 for all ¢.
A causal dynamic feedback compensator

u=x(y, 1), (39)

with internal state £ € RY, is said to be a globally (locally) admissible controller if the closed-
loop system (36)—(39) is globally (uniformly) asymptotically stable when w = 0.

Given a real number y > 0, it is said that system (36)—(39) has L, /L,-gain less than y if the
response z, resulting from w for initial state x(#) = 0, £(z) = 0, satisfies

|l ar < 2| [ wora+ Y e (40)

f fo ri€lto.ti]

for all #; > #; and all continuous functions w(t). The right-hand side in (40) should be viewed
as a mixed L,/l-norm on the uncertain signals affecting the system and the sampled-data
measurements.

The nonlinear H-control problem over sampled-data measurements is to find a globally
admissible controller (39) such that L, /l-gain of the closed-loop system (36)—(39) is less
than y. Since the Hy-norm translated to the continuous and discrete time domains is nothing
else than the L,- and L-induced norms, respectively, the above stated problem is a natural
generalization of the standard H..-control problem. Such a generalization has been
demonstrated in [6] to be eminently suited to time-invariant nonlinear systems with time-
continuous measurements.

In turn, a local solution to the H,.-control problem is defined as follows. A locally
admissible controller (39) is said to be a local solution of the Hy,-control problem if there
exists a neighborhood U of the equilibrium such that inequality (40) is satisfied for all #; > %
and all continuous functions w(¢) for which the state trajectory of the closed-loop system
starting from the initial point (x(#), (%)) = (0, 0) remains in U for all ¢ C [fy, #].
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In the remainder we confine our investigation to seeking a local solution of the nonlinear
H,,-control problem in question. The following assumptions inherited from the standard
H,-control problem are made throughout

ki (x, Dkia(x, 1) = 0,
leZ(x7 t)kIZ(xv t) =1
o (x, gy (x, 1) = 0
kn(x(vy), Tk (o), ) =1, j=0,1,...

1)

Under these assumptions we shall derive a local solution to the H,,-control problem.
Relaxing these assumptions is indeed possible, but it would substantially complicate the
formulas to be worked out. The local solution will be derived from that of a nonlinear
H,.-control problem where continuous measurements are available. For this purpose let us
represent the sampled-data measurement (38) in the form

WD) = ha(x(7), 7) + ka1 (x(2), D)W(2), (42)

similar to what is known to describe continuous measurements. The latter assumption in (41)
should then be replaced with

ka1 (x(z), Dk, (:(x), 7) = v() (43)

with some everywhere positive definite matrix function v(¢) to subsequently be specified.

Certainly, (43) could be normalized with v(f) =1 by adsorbing v(¢) into g(x,¢) and
hy(x, f). However, we prefer not to do so to encompass the sampled-data measurement case
by specifying v(7) as (cf. (20))

S -1
w(t) = [Z 5t — rj)I] . (44)
Jj=0

The corresponding nonlinear H,-control problem over the continuous measurements (42),
(43) with some piece-wise continuous function v(¢) is now fully understood (see, e.g., [6, 30])
and its local solution involves the standard differential Riccati equations

—P, = P,()A() + AT (t)Po(£) + CT()C1(2) + Py(t) [%BIB{‘ ;4 ](t)Ps(t) +el, (45)

. ~ ~ 1
Zy = A0 Z,(1) + Zy(0A; () + B1()B] (1) + Z(1) [V—Z P,B:B; Pg]

X (NZ:(t) — Z()C3 (DC2(DZ:(Ov ™ () + ¢, (46)
where ¢>0, A()=0[(0,1)/0x, Bi(f)=gi0,1), Ci(t)=0h(0,)/0x, i=1,2,
A=A+ 1/ yz)Bl(t)B,T(t)PE(t). The following conditions are introduced to guarantee a
solution of the nonlinear continuous measurement feedback H,,-control problem to exist:

(A1) under ¢ = 0 there exists a bounded positive semidefinite symmetric solution P(¢) of
Eq. (45) such that the system

x =[A — (B,B] —y~*B\B])PI(H)x(r) (47)

is exponentially stable;
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(A2) under ¢ = 0 there exists a bounded, positive semidefinite, symmetric solution Z(f) of
(46) such that the system

% = [4 + 7 ZPB,B] PY(0x(t) — Z(1)C; () Cot)x(t)v™" (1) (48)

is exponentially stable.

If Conditions (A1) and (A2) are satisfied then [23] there exists &y > 0 such that system
(45), (46) has a unique bounded positive definite symmetric solution (Px(t), Z.(?)) for each
¢ € (0, &) and the output feedback

u=—g; (& DP()E (49)
with the external state &(f), governed by

E—fEn+ [y%gl(zf, DET(E 1) — (& DL E, t)]Pe(t)é
+ Z(OCTOINE) — (&, (), (50)

is a local solution of the continuous measurement feedback H,,-control problem. Under an
appropriate assumption [23], Conditions (A1) and (A2) become not only sufficient but also
necessary for a local exponentially stabilizing solution of the problem to exist.

Surprisingly, the same Eqs. (45)-(50) subject to (44) describe a local solution of the
sampled-data measurement feedback H,-control problem. Just in case some equations,
namely, (46), (48), (50) contain the distribution v=!(f) = Zj"_f_o 6(t — 1;)I and these equations
are therefore to be considered in the generalized sense. Since the singular part of the afore-
mentioned distribution is scalar, vibroimpact solutions of (46), (48), (50) are uniquely
defined by Theorem 2 for arbitrary initial conditions. Furthermore, by applying Theorem 3
these solutions satisfy the differential equations

Z, = A,(DZ(0) + Z,(OAT (t) + By(1)BI (1)

2 ZOPAOBAOBIOPOZ0) + o] (51)
% = [4 + y~2ZPB, Bl P](t)x(?) (52)
E—fEn+ [yizgl(é, DET(E. 1) — 22 DEL G, t)]Ps(t)c (53)

for all ¢ but the sampling time moments, whereas their values at ¢ = 1;,j = 0, 1, ... are found
through the relations

Zy(y+) = (1), L) =41, x(y+) = 4(D) (54

by solving the auxiliary differential equations

() = —OCI(HCUIUD,  w(0) = Z(g-), (55)
E) = wOCT @A) — ha GO, 7, §0) = Eg-) (56)
A(®) = = (OCT @A), 4(0) = x(z;-). 67

Since Eqgs. (55) and (57) integrate to

(1) = Zo(t; = + C; (1) Ca(r) Ze(1—) ",
MO = I = Z(y—)I + CF (1)Ca(t)Z(t;—)] "' CL (1)) Ca(x))t}x(1;-),
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relations (54)—(57) result in

Zy(1+) = ZJ(t=)I + C (1) Ca(t) Ze(;—)] ! (58)
x(h) = x(=) = 25l + G () Coe) (=)

x CZT (1) Ca(1))x(7j—) (59)

b =), j=0.1,... (60)

where (;(?) satisfies

L) = Z(g - + Ch (1)) Cat)Ze(1 =)™
x CI(@)ly — a0, 1)), §(0) = E(zj—). (61)

So, the vibroimpact solutions of (46), (50) with the impulsive input (44) coincide with the
corresponding solutions of the differential equations (51), (53) with jumps (58), (60), (61)
and the same initial conditions. In turn, Condition (A2) is reformulated as follows:

(A2’) under ¢ = 0 there exists a bounded, positive semidefinite, symmetric solution Z(f) of
(51), (58) such that system (52) with jumps (59) is exponentially stable.

Thus, the nonlinear distribution formalizm has allowed us to derive a local solution of the
sampled-data measurement H,,-control problem from that of the continuous measurement
H,-control problem. Summarizing, the following result is shown.

THEOREM 5 Let conditions (A1) and (A2') be satisfied. Then there exists &y > 0 such that
system of the differential equations (45), (51) with jumps (58) has a unique, continuous from
the left, bounded, positive definite, symmetric solution (P(t), Z(t)) for each ¢ € (0, &) and
the output feedback (49) with the external state £(t), governed by the differential equation
(53) with jumps (60), (61) is a local solution of the sampled-data measurement feedback
Ho-control problem. Conversely, conditions (A1) and (A2') are satisfied if the problem has a
local exponentially stabilizing solution.

The detailed proof of Theorem 5 can be found in [22]. Remark 3 is valid for the nonlinear
Hy,-controller as well.

4 SINGULAR QUADRATIC OPTIMIZATION OF
AFFINE CONTROL SYSTEMS

In the present section, a generalized feedback approach is developed to address optimal
stabilization of nonlinear systems with no penalty on control inputs. The concept of a
generalized feedback is introduced and then applied to a class of nonlinear systems to attain
perfect stabilization yielding zero value of the degenerated quadratic performance.

4.1 Problem Statement
The problem considered is to optimally stabilize the nonlinear system

i=f(x)+gu, x(0)=x"
¥ = h(x)

with respect to the degenerate cost function

(62)

JOO, u()) = J:o Y (O(1) dt — inf (63)
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where x € R", y, u € R™. Throughout this section, f(x) and columns g;(x), . .., gm(x) of g(x)
are assumed to be vector fields of class C* defined on a simply connected smooth manifold
M; h(x) = (1 (%), . .., hn(x))" is a C* mapping defined on M; Q is a positive-definite matrix.
In most cases, all vector and matrix dimensions are omitted, and all quantities are implied to
have compatible dimensions.

As mentioned in introduction, the minimum possible value of the degenerate criterion (63)
can not be attained via an integrable control function u(f). Therefore, the concept of solution
to the above optimization problem should be modified.

In order to properly state a generalized optimization problem we shall introduce the
generalized feedback concept for nonlinear systems (62), (63) which can be viewed as a
further development of Definition 1.

DEFINITION 4 A sequence of smooth feedback (open-loop) control signals u*(x, t) (uk(¥)),
k= 1,2,...is a generalized feedback (open-loop) control input u(x, £) (u(t)), if for all initial
conditions x° there exists a finite limit

Jim JO&O, k() = J(0, u(-) < oo
—00
of the corresponding criterion values.

DEFINITION 5 A generalized feedback controller u = {uk};“;, of the nonlinear system (62),
(63) is said to be admissible iff system (62) is semiglobally stabilizable to the origin by means
of every subsequence of {u¥}2,.

Recall that a control system X is semiglobally stabilizable to a point p by means of a class
F of smooth feedback control laws [29], if for every bounded subset  of the state space of £
there exists a control law, which belongs to F and makes p an asymptotically stable equi-
librium of the corresponding closed-loop system, with a basin of attraction containing Q (in
terms of [7] X is asymptotically stabilizable on compacta).

DEFINITION 6  If u = {u¥)2, is a generalized ( feedback or open-loop) controller of (62),
(63) such that there exists a weak* limit x(t; x°, u) of the solutions x(t; x°, u*) of (62) under
u =uk, then the distribution x(t;x°,u) is referred to as a generalized solution of (62)
corresponding to the generalized control u.

Remark 4 Generally speaking, the use of a generalized (feedback or open-loop) control u
does not imply the existence of the corresponding generalized solution of the nonlinear
system (62).

Remark 5 For nonlinear systems (62) with open-loop control signals u(f) of measure type
the generalized solution coincides with the vibroimpact solution of the same initial-value
problem whenever the vibroimpact solution exists.

We are now in a position to state the generalized quadratic optimization problem:
it is required to construct an admissible controller u(-) of the nonlinear system (62), (63)
with a minimum possible value of the cost function (63).
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4.2 Generalized Perfect Regulation

By adding some additional conditions to the ones introduced earlier, we shall demonstrate
how to optimally stabilize the system by means of a generalized feedback. In the rest of the
presentation we assume that the following conditions hold:

1. system (62) is globally minimum phase and it has a uniform vector relative degree
ri,...,r)withr=ri+---+r, <n;
2. the vector fields

<ﬂ=a#”g l<j<rn 1<i<m
with
f=f-8 &=@,....8n) =go",
o(x) = {o(®)} = {Lg L]~ hi(x)},
B@) = L @), ..., LFhn(0)), 1<k<m

are complete
3. [X,X)=0foralll <k,i<m, 1 <j<r,1<s<r.

It is well-known [7] that, under Assumptions 2 and 3, system (62) is globally diffeo-
morphic to a system in the normal form

61126121"-76;‘._|:é;'4 é;izvh lflfm,

(64)
i=filzy) y=@,....&)
where
Vv=1.ovm) =F@ 8, L )+ GE G E, (65)
and matrices F(z, &, ..., ¢,) and G(z, £, . .., &,) coincide with the functions
B(x) = (L} m(x)},  A(x) = {LgkL}i—lhi(x)}’ (66)

written through the new coordinates

zZ= (21, e ’Zn—r)T9 5i = (él ey ﬁii)r’ (67)

which are defined by the following relations

=L 'hx), l<j<n l<i<m, .
Lozi(x) =0, 1<l<n—-r, 1<k<m.

The matrix G(z, &y, ..., &,) is invertible for all argument values.

It was shown in [29] that, under the minimum phase assumption | and with no growth
condition on f, system (64) can be globally asymptotically stabilized by restricting the
dependency of fy(z, y) on the state &y, ..., £, of the linear part of the system (which will
be referred to as the “dependence condition”). Moreover, examples given in [26] demon-
strate that the dependence condition (guaranteed in our case by Assumption 3) cannot be
further relaxed unless a growth condition is imposed on f.

The main result of the section is formulated as follows.
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THEOREM 6 A solution to the singular optimization problem (62), (63) is given by the
generalized feedback

wk(x) =AWV (x) - Bx), k=1,..., (69)

where

Vi) = —k" (& () + K- (& (x) + -
+EHE@) + K E @) +-), 1<i<m (70)
v =1, Vj=2Vj..|+l, 2§]§7‘,

The generalized feedback control law (69) provides perfect stabilization of system (62) with
zero value of the performance criterion (69).

Proof of Theorem 6 Introducing new variables
=g g=g+krg, 2<j<n
we rewrite the linear part of Eqs. (64) in terms of the new variables:

i

ql = th - kvxq:’

@, =, — K g K — K

+ kMg — kg + -} (71)
g = —k"q. + k" {g, — kgl + -
+ K gy — k" g} + ). (72)

First of all, using mathematical induction with respect to the system’ relative degree » we
ascertain that the linear closed-loop system (71), (72) is exponentially stable for & sufficiently
large.

Indeed, the proof of exponential stability of (71), (72) for » =1 is straightforward.
Assuming that this is a property of all systems of the form (71), (72) with relative degree
r < r* we note that hierarchy (70) of large coefficients implies the exponential stability of
the closed loop system (71), (72). The slow subsystem (71) is exponentially stable by the
induction assumption, and representing Eq. (72) in the singularly perturbed form

el = —(1+e)g, +e(E " — g+ +eE” — Dgy + " — g (73)

where ¢ = k™" is small, we conclude that according to [9] exponential stability of the sin-
gular perturbed system (71), (73) follows from exponential stability of the slow and fast
subsystems (71) and (73), respectively.

Furthermore, due to the presence of small parameter ¢ = k!, the closed-loop system (71),
(73) contains a fast transient y, exp{—k"it}, y,, = const in the variables ‘Ii,«’ 1 <i<m,and
similarly we establish that absolute values i}(k), 1 <j <r; of real parts of eigenvalues of
(71), (73) tend to infinity as k — oo. By [29, Theorem 3.1], this ensures that the class of
feedback control laws (69) asymptotically stabilizes system (62) on compacta, and the
generalized feedback (69) provides the system stabilization.
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Finally, the performance criterion (63) corresponding to (69) turns out to be equivalent to zero
since the quadratic integration of the fast transients y;exp{—4;(k)t}, y; = const, 1 <i<m,
1 <j < r; of (71), (72) yields infinitesimal values as k — oo. Thus, Theorem 6 is proven.

Remark 6 Generalized feedback (70) is a solution to the optimal stabilization problem (63),
(64). For all initial conditions

EO)={, l<i<m 1<j<r (74)

there exists a generalized solution of (64) corresponding to (70). This generalized solution
coincides with the mild solution of (64), (74) under impulsive input

Jj=1

and is governed by the zero dynamics equation
z =f0(z’ 0)’ éi =0.

In this sense the impulsive feedback (75) solves the optimal stabilization problem (63) for
nonlinear systems in the normal form (64).

Remark 7 The generalized feedback law (69) imposes on the closed-loop system (62)
favorable robustness properties against matched external disturbances.

4.3 Example

To this end, we illustrate with the help of an elementary example some of the features of the
optimal generalized feedback design. Consider singular quadratic problem

J = J &) dt — inf
0

for globally minimum phase system in the normal form

t=y &), & =&, &H=v (76)

where all variables are scalar and  is a smooth function. By Theorem 6 the generalized
feedback

v = =k (& + k&) ()

stabilizes system (76) on compacta and provides perfect regulation J = 0. In accordance with
Remark 6 the generalized feedback (77) can be viewed as that of the impulsive type

v = —&,(0)3(2) — &(0)5(8),

and the corresponding generalized solution of (76) becomes identical to the zero dynamics

2=l//(2,0), ¢|=0, & =0, t>0.
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5 VIBROIMPACT MODELING OF MECHANICAL SYSTEMS

Now we demonstrate how impact dynamics (collisions, percussions, etc.) of mechanical
systems can be treated within the framework of the nonlinear distribution formalizm
developed. The vertical launch of a spacecraft, governed by

h=V, h0)=0

yp—rme—qn”r) ; 90 7). V(0)=0 (78)

m=-L2 m0)=m,
c

serves here as an illustrative example. In the above equations, /(¢), V' (¢), m(¢) are, respectively,
the altitude, the velocity, and the mass of the rocket at the time moment ¢, p is the thrust, g is the
air resistance, g is the gravity acceleration, c is the specific impulse, my is the initial mass.

System (78) implies a continuous change of the mass m(f), whereas a discrete change
m(0+) — myg = Amy < 0, corresponding to an instantaneous fuel combustion in the space-
craft jet, is also possible and it is caused by the impulsive thrust

p(t) = —cAmod(f). (79)

From the physical point of view, the impulsive thrust (79) indicates that the cumulative
power of the jet is limited while attaining a very high value during a very short period of time.
With this in mind, the meaning of (78) subject to (79) has to be treated in the generalized
sense because of the irregularity of the product cAmd(f)m~"'() of the impulsive thrust (79)
and the discontinuous function m~!(¢) that appears in the right-hand side of the second
equation of (78). Since system (78) is driven by the scalar impulsive action (79), the cor-
responding Frobenius condition is therefore satisfied and by Theorem 2 the system has a
unique vibroimpact solution. Apparently, the altitude 4 has no jump whereas the change Amyg
of the mass m(¢) at the initial time moment is straightforwardly computed by integrating the
latter equation of (78) which has no irregular product. In turn, the instantaneous change
AV, = V(0+) of the velocity is found by applying Theorem 3 through the relation

V(0+) = &(1), (80)

where £(v) = (£,(v), &), & (V)T solves the Cauchy problem

Lo, am=0

¢, _cAmo . _

TSR 60=0 @1)
95 _ Amo,  &1(0) = mo.

dv

Since (81) integrates to &;(v) =0, &(v) = —cIn((mg + Amgv)/myg), E3(v) = mg + Amgv,
relation (80) results in the formula
Amo

V(0+) = —c ln(l +—), (82)
mo
for the instantaneous change of the velocity.
Thus, the spacecraft dynamics enforced by the impulsive jet is modeled by vibroimpact
solutions of the nonlinear differential equation (78) with the impulsive input (79). The
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nonlinear distribution formalizm allows one to qualitatively analyze this dynamics. It is
anticipated that the formalizm, while being applied to description of mechanical systems, will
provide a deeper insight on many phenomena with an impulsive nature.

6 CONCLUSIONS

Schwartz’ distributions theory is developed in nonlinear setting. In order to describe complex
dynamic systems with impulsive inputs the meaning of differential equations in distributions
is extended. Generalized solutions for these equations are introduced via closure, in a certain
topology, of the set of the conventional solutions corresponding to standard integrable inputs.
Mathematical models proposed involve nonlinear and, generally speaking, non single-valued
operating over distributions. The instantaneous impulse response of a nonlinear system is
shown to depend on the impulse realization. The complete integrability of a certain auxiliary
system is proven to guarantee the uniqueness of the impulse response. The theory is
demonstrated to be eminently suited to sampled-data measurement filtering of stochastic and
deterministic dynamic systems, optimal impulsive feedback synthesis, analysis of mechanical
systems with impulsive phenomena. Many other problems such as analysis and synthesis of
mechanical systems with unilateral constraints are anticipated to effectively be addressed
within the framework of the nonlinear distribution formalizm developed.
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