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1 INTRODUCTION

In recent times, the control of chaos has become more and more important. It is often
desirable in practice that chaos be eliminated and that a system exhibit periodic or near
periodic behaviour [17]. For example, in [7] an experiment was conducted in which a drug
was injected at an approximate moment to restore a periodic beat pattern in a rabbit’s heart.

We will consider only the discrete time case where the corresponding dynamics of a
control system can be described by

Xn :f(xn—l, “n—l)y Xp—1,Xn € X

where X is the phase space of the system and u,_; is a control influence. The set of all
possible control influences U contains the element 0, which corresponds to trivial control,
that is, no control at all. Let x be a periodic motion of the unperturbed chaotic system
X, = f(x,—1, 0) which is considered as an admissible or desired regime of the system. Qur
aim is to synthesize a control u, = u(n, x,) that stabilizes the closed system onto the periodic
motion X.

The process of control is naturally divided into two stages: firstly, bringing the system to
within close vicinity of the desirable periodic motion, and secondly, local stabilization of this
periodic motion. The main methodology of controlling chaos in the second stage has so far
been by means of linear control theory [17, 20]. The mathematical model of chaotic dynamics
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is linearized around the desired fixed point or periodic orbit to enable application of the linear
control theory [18].

The first stage, that is approaching a region where a linearized model works, is a different
problem. At least two factors should be taken into consideration: (A) The control influences
should be rather small, in the sense that u, should be close to zero control 0. This restriction
is categorical in many ecological and biological applications. (B) Some areas of the state
space are less desirable to visit than others and so time spent visiting these areas should be
minimized.

A trivial strategy is to just wait for a trajectory of the unperturbed system x, = f(x,—1, 0) to
be within a suitable vicinity of the desirable motion. The principal success of this strategy for
some systems is guaranteed w.p.1 by ergodic theorems. However the approach is not very
practical, firstly, because the waiting time could be rather long and, secondly, because it does
not take into account the aforementioned restrictions of type (B).

Another natural approach is to consider a rough discretization of a system and try to bring
the discretization to within a neighbourhood of the desired cycle. Technically it means the
following. A reasonably fine lattice E, is chosen in the phase space. Then the multivalued
dynamics of the set E, when the transition from one point to another is allowed if it can be
realized by means of sufficiently small (satisfying restriction (A)) control influences. Finally
the optimal path satisfying the multivalued dynamics and the corresponding control influ-
ences should be chosen. Note that there is a tradeoff when taking into account both factors
(A) and (B). Therefore a kind of multi-criteria Pareto optimization [15] should be used.

This paper is devoted to the analysis of this last approach. The main results are described
in Section 2. The first Subsection 2.1 is devoted to the description of the discretization
procedures. We prove that the procedure is correct and give a two-sided estimate of its
accuracy. In Subsection 2.2 we describe an algorithm to solve the corresponding combina-
torial problems. Theoretical questions concerning the effectiveness of the algorithm are
considered in Subsection 2.3. We show that the algorithm is quasi-polynomial and that there
does not exist a truly polynomial algorithm for the corresponding combinatorial problem. In
Section 3 the approach is applied to some classical systems, such as the tent map and the
Anosov toroidal automorphisms. Results of experimental calculations demonstrate that
the suggested algorithm works quite well. Indeed, discretizations where the number of lattice
points is of the order 10° can be considered in less than one minute of CPU time.

2 MAIN RESULTS

2.1 Discretization Procedure

Suppose that X and U are compact metric spaces with the metrics py and p;. Let
f:X x U—X be a continuous function which describes the dynamics of a control system
under consideration. Let p(#) and g(x) be scalar-valued nonnegative functions which char-
acterize the price of control and the quality of a phase point respectively. Infinity is admitted
for the function p(u); this implies that the corresponding controls are prohibited. The
functions p(u) and q(x) are upper semi-continuous which means that the relations

p)=1lm sup p(v),  ¢(x)=1lim sup gq(y)
&m0, (uv)<e e0, (xy)<e
hold. Suppose that the price of trivial control 0 is equal to zero. Consider the question as to
whether we can reach a particular “target” set S, commencing from a given set Sy with
reasonable accumulated price and, simultaneously, with reasonable accumulated quality. In



COMBINATORIAL PROBLEM ARISING IN CHAOTIC CONTROL 297

the previous setting this area S, can be interpreted as a neighbourhood of periodic motion
that allows the use of local control. Suppose there is a path 7, = x, ..., x, from a given
point xp € Sp to x, € S, with the corresponding control sequence m, = uy, ..., #,—, satis-
fying p(u;) < oo. That is, x; = f(x;—1,ui—1), i=1,...,n. The sequence of pairs © =
(x0, ), - - - , (xn—1, up—1) Will also be called a path. The accumulated price along a path = is
p(n) = Z;’;OI p(u;) and the accumulated quality is g(7) = Z;:ol q(x;). The general quality of
this path can be characterized by the pair (p(n),q(n)) and we denote by
IT = TI(f, So, Sw, P, q) the totality of all possible paths from Sy to S, which have a finite
accumulated price.

Consider the set

K(f, S0, S, 9) = | K(p(m), q(m)) 0]

nell

where the overline denotes closure and K(a, b) = {(a1, b1): a1 > a and by > b}. If the set
I1(f, So, Sw, P, q) is empty then K(f, So, Sw, P, q) is defined to also be the empty set. The set
(1) characterizes the possible outcomes in the following sense: if (a, ) is an interior point of
K(f, S0, S0, p,q) then there exists a path n satisfying both inequalities p(n) <a and
g(n) < b; if on the other hand (a,b) € IR?\K(f, Sy, Sw,p,q) then for each path
n = II(f, So, Sw, P, q) either p(n) > a or g(w) > b holds. These considerations explain why
the following two problems are of interest.

Problem 1 Find the set K(f, Sy, Su, P, 9).

Problem 2 For a given (a, b) belonging to the interior of K(f, Sy, S, p,q) find a path
n € TI(f, So, Sw, P, q) satisfying both p(n) < a and g(n) < b.

Recall that an element (a, b)) € M C IR?, is a Pareto minimal element [15] of the closed set
M if for each (a;, b)) € M, either a; > a or b; > b. The set (1) can also be defined by the
formula K(f, So, Sw, P, 9) = U.pepK(a, b) where P is the totality of the Pareto minimal
elements of the closure of the set {(p(m),q(n)):n € II(f, So, Sw,p,q)}. The set
K(f, So, Sw, p, q) is technically more convenient than the set P itself as it is known to be
more robust to perturbations, in particular, to the discretization procedures considered below.

We now describe how the above problems can be correctly discretized. Consider the case
when the mapping f'(x, u) is a local surjection in u, in the sense that there exists a continuous
Sfunction o(g), € > 0 which satisfies a(0) =0 such that for any (x,u) the set {f(x,v):
py(u,v) < a(e)} contains the ball py(x,y) < e. This condition can be interpreted as local
one-step controllability; see Subsection 2.4 for further discussion of this restriction.

Let E be a certain finite lattice in X which intersects with the sets Sy and S,,. Denote
Ey=ENSyand E, =ENS, and let G = G=z(f, So, Sw, P, q) be a directed graph with the
set of nodes E and set of arcs defined as follows. If £ € E\E,,, n € E\E and the set U(&, 1)
of controls satisfying p(f(¢, u) = 1), p(u) < co is not empty, then we include the arc
o: & 1 in the directed graph Gz(f, So, Sw, p, ¢) with length and weight given by

o) = inf{p(u):u e U, M}, w(®) =q(0). 2

Note that ‘inf” in the definition (2) cannot be swapped with ‘min’ because the price function
p(-) is only supposed to be semi-continuous. The constructed directed graph G=(f, So,
Sos P, q) with corresponding lengths and weights of arcs is a straightforward E-discretization
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of the control system under consideration. Denote by Ilz = II=(f, So, Sw, P, q) the set of all
paths in this graph from E, to E,,.

Denote by Pz(f, So, Sw, P, q) the totality of Pareto minimal elements in the finite set
{(&(n), w(m)): € =}

Problem 1a Find the set P=(f, So, Sw, P, 9)-
Problem 2a For a given (a, b) € Pz(f, So, Sw, p, q) find a path
n € M=(f, So, Sw, P, q) with £(n) = a and w(n) = b.

Problems la and 2a represent correct discretizations of Problems 1 and 2 in the sense that
under natural technical restrictions the set

K=(f S0, s P> q) = U K(a, b)
(a,b)E’p_:_‘,(f,S() ~Sw 'PJ])

converges to K(f, So, S, P, q) as the density of the set = increases. For each (a, b) belonging
to the interior of K(f, So, Sw, P, q) and each sufficiently dense = there exists an element
(a1, by) € P=(f, So, Sw, p, q) satisfying both a; < a and b, < b. Let us formulate a simple
accurate statement in this direction.

Denote by h(E) = sup,y infzez py(&, x) the step size of the lattice Z. Recall also that the
Hausdorff separation of the set 4 €IR> from BCA is the value sep(4,B)=
sup,.4 infpep la — b|.

PROPOSITION | Suppose that the sets Sy and S,, are finite and Sy, S, C E. Then
K=(f, S0: S 2, @) € K(f'+ S0, Sw» P> 9)- (€)
For each € > 0 there exists h(¢) > 0 such that the relation h(Z) < h(g) implies that
seplK(f, S0, Sw, P, @), Kz(f', S0, S, P, 9)] < &. “4)

For each (a, b) belonging to the interior of K(f, So, Sw, p, q) there exists h(a, b) > 0 such
that the set Pz(f,So,Sw,p,q) contains an element (ay, by) with a; < a, by < b when
h(E) < h(a, b).

Proof To prove (3), suppose that there exists a path n; = &y, &y, ..., &1, &, & € E with
&y € By, &, € E along the sequence of arcs ay, ..., o with total length £(p) = Z:‘;l £(e;)
and total weight w(p) = Zle w(o;). We need to show that for each ¢ > 0 there exists a path
n € II(f, So, Sw, p,q) With p(n) =4€(n) and q(n) = w(ng) +¢. It suffices to define
= (&o, wo), (&1, 1), ..., (&, wx) where u; are such that p(u;) < €(o;i—y) + ¢/k. The last
definition is correct by virtue of the first equality of (2). To prove (4), first choose a finite set
P of paths in II(f, So, Sw, p, q) such that

sep l:K(f» SO» S(mp’ Q), U K(P(n), q(”))jl < g

neP

This is possible because K(f', So, Sw, P, q) belongs to the positive quadrant of the real plane. It
remains to show that for each particular path = € P there exists a path 7= in the directed graph
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Gs= with p(n®) < p(r) + £/2, q(z) < q(n) + /2, for all sufficiently small #(Z). Note that the
x-component of a particular path 7 can be approximated with a precision of 2(£) by an auxiliary
path nZ which goes through the lattice Z. If & is small enough, then this path 7= can be treated as
the x-component of a path n= with a price p(n%) < p(n) + €/2 because f(x, v) is a local sur-
jection in v, and p is upper semicontinuous. On the other hand, for sufficiently small 4,
q(n%) < q(m) +¢/2 as q is upper semicontinuous. That is, the path 7= has the necessary
properties to be a path in the directed graph and the proposition is proved. Finally, the existence
of the function A(a, b) follows from (4) which has just been proved. |

The standard examples show that under the assumptions of the above proposition, the sets
P=z(f, So, Sw, P, q) do not necessarily converge to the totality of the Pareto minimal elements
of the closure of the set {( p(n), g(n)): 7 € II(f, So, Sw, P, q)).

It is convenient to be able to estimate the distance

Sep[K(.f, SO» Sw,p’ 4), KE(fv SO, SanP, q)]

explicitly. Let us formulate a simple assertion which is useful in this context. Denote by
c(¢), ¢ > 0 a continuity module of the mapping x > f(x, u), x € X, u € U, that is, c(-) is
continuous, satisfies c¢(0) =0 and the inclusions x,y € X, ue U imply p,(f(x,u),
S, uw) < c(py(x,y)); o(-) is the function from the definition of the local surjection property.

LEMMA 1 Suppose that the sets Sy and S, are finite and Sy, S, C E. Then the inclusions

KE(fv SO’ S(mP; q) g K(f, SO’ Su)!ps q) g KE(f9 S07 S(x)’p*a q*) (5)
K(f’ S0$ Sw,P*, q*) g KE(f9 S()a S(l)sp1 Q) g K(fv S09 Smyp, q) (6)
K(fv SO» Sw»p» q) - KE(f» SO’ Srmp*’ q*) - K(f’ SO* Sw?p*’ q*) (7)

are valid where

u) = inf V), x)= inf ,
p*( ) py,v)<a(h(E)+c(h(E))) p( ) q*( ) px(x.y)<h(E) q(y)
pru) = sup p(v), q'@x)= sup q@).

py(uv)<a(h(E)+c(h(E))) Px(x,y)<h(E)

The proof is straightforward and so is omitted.

The inclusion (5) provides two-sided estimates for the set K(P(f, Sy, S., p, q)) in terms of
the corresponding discretizations. The estimates (6) and (7) and the semi-continuity of
functions p and g guarantee that the aforementioned two-sided estimates converge as the step
size h(Z) approaches zero.

The constructions given in this subsection are of some general interest. Any straightfor-
ward computer model of a dynamical system is a discretization due to finite machine
arithmetic [3]. Some dangerous pathologies ([5] and references therein) can occur in the
course of such implementations. In this context, Lemma 1 shows how such dangerous effects
could be controlled by means of modifying the price and quality functions.

2.2 Algorithm
Let us describe an algorithm for Problem 1a, which we denote by Al.

INPUT:
The directed graph G with the set E of nodes and the set A of arcs;
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The disjoint subsets E¢ and E,, of E;
Non-negative lengths {£(«), « € 4} and weights {w(x), a € 4} of arcs.

OUTPUT:

The totality P of Pareto minimal elements in the set (€(), w(n)) corresponding to all paths
from E to E, in the directed graph G.

During the work of the algorithm, labels will be assigned to the nodes of the graph G and at
each step the set P will also contain labels. The character of the labels and the procedure of
their assignment varies a little from its classical variant [6]. Essentially, the differences are as
follows: firstly, a label is an ordered pair (£, w) with both elements being either a non-
negative number or oo; secondly, every node during the work of the algorithm can have more
than one label at the same time. The meaning of the label (£, w) assigned to some node ¢ € E
after k steps of the algorithm is as follows:

(a) there exists a path 7 from the node &, to the node ¢ with length ¢(n) and weight w(n);

(b) for each k-step path n from Zy to =, there exists a label from P which is coordinate-wise
less then or equal to (£(n), w(n));

(c) for each k-step path & from Z, to another node € E\E,, there exists either a label of
or a label from P which is coordinate-wise less than or equal to (£(r), w(m)).

Before starting the algorithm, the label (0, 0) is assigned to the nodes ¢ € By, the label
(00, 00) is assigned to all other nodes, the auxiliary set E,,, is defined to be equal to Ey and
the set P is defined as the empty set.

WORK OF THE ALGORITHM: At each stage the following four actions are performed.

Action 1
Subaction 1.1 The set E,qs of nodes which are endpoints of arcs commencing at nodes

belonging to E,.w\E¢ are determined.

Subaction 1.2 The set of arcs 4, which end at & € (E( ) Eengs) and start at Zcyy.

Subaction 1.3 For each & € (Eengs\E) the set of arcs A(£) which end at £ and start at =,
are derived.

Action 2 The set E,,, is redefined as the empty set.

Action 3

Subaction 3.1 The set A is arranged to include: (i) elements of the set P; (ii) the set of
pairs (£(a) + €, w(a) + w), where o € 4 and (£, w) belongs to the set of labels of the start
point of a.

Subaction 3.2 The set A is searched for the set P, of all Pareto minimal elements.
Subaction 3.3 The set P is redefined as Ppew.

Action 4 The set E¢ngs\E is ordered in an arbitrary way and for successive elements of this
set the following subactions are performed.



COMBINATORIAL PROBLEM ARISING IN CHAOTIC CONTROL 301

Subaction 4.1 The set A is arranged to include: (i) all labels of the node &; (ii) the set of
pairs (£(«) + £, w(a) + w), where a € A(¢) and (£, w) belongs to the set of labels of the start
point of a.

Subaction 4.2 The set A is searched for the set of all Pareto minimal elements. Those
minimal elements which are coordinate-wise less than at leasi one element of P become the
only labels of the node &. If the node ¢ has at least one new label, then it is included in the

set Zpew-

Stopping Rule The process stops if the set ., becomes empty. After stopping, the set P is
declared to be the output of the algorithm.

THEOREM 1  Algorithm A1 correctly solves Problem la.

Proof The algorithm stops in no more than v + 1 steps where v denotes the cardinality of =.
Correctness of the algorithm follows from the properties (a), (b) and (c) of the labels which
were given in the description of the algorithm. These properties can be easily proved by
induction on the number of steps. |

Al is similar, but different, to the algorithm suggested in [10], which allows negative
weights but is not as efficient as A1 in the case of non-negative weights. Other algorithms
to solve Problem la were also considered. The particular variant given above was chosen as
most suitable for analysis of graphs arising in discretizations of control systems described
in the previous subsection. Algorithm .41 can be modified to solve simultaneously Problem 2a
(see Appendix).

2.3 Complexity Questions

We commence with an analysis of the complexity of Problem la in the Cook-Karp sense.
Recall [9] that combinatorial recognition problems are divided into two quite different
types: problems which are N'P-complete and those which are not. Basically, N"P-complete
problems are defined as problems which are at least as hard to solve in polynomial time as
any other problem of combinatorial optimization [2, 9]. A recognition problem P is said to
be N'P-complete if another recognition problem P;, which has been proved to be NP-
complete, can be polynomially reduced to problem P. Informally, the class of NP-
complete problems consists of “computationally hard” problems for which an effective
algorithm has not been found that solves the corresponding problem in polynomial
time with respect to the minimal length of the complete description of the problem. Note,
that in general the class of N'P-complete problems are more common than polynomially
solvable problems.

A special place in the totality of all combinatorial problems is occupied by the subclass of
problems with numerical parameters; in the case of Problem 1la these are the corresponding
lengths and weights of arcs. For N'P-complete problems of this sort, there are pseudo-
polynomial algorithms (PPT -algorithms) for which the time of its work is bound by the sum
of absolute values of the numerical parameters characterizing the individual problem. (Here
as usual in complexity analysis the numerical parameters £ and w are non-negative integers.)
Pseudo-polynomial algorithms are sufficient in all reasonable situations. Additional specifics
and discussion on this matter can be found in [9].
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THEOREM 2 Algorithm Al is a PPT-algorithm. Problem la is N'P-complete.

Proof The first assertion — that A1 is a PP7T -algorithm. Without loss of generality we can
assume that the directed graph G is complete. Then each of the numerical parameters appearing
in work of the algorithm does not exceed the sum § over all lengths and weights of arcs of the
directed graph G. Therefore the quantity of the labels of each node also does not exceed S. This
implies that the number of operations at each step of the algorithm is bounded from above by
S3. It remains to note that the maximum quantity of steps also does not exceed S.

To prove the second assertion it suffices to polynomially reduce the well-known N/P-
complete problem PARTITION to the following modification of Problem la.

Problem 1b Let G be a directed graph with the set E = {&, .. ., &,} of nodes and with the set
A of arcs. Let £ and w be two integer valued functions defined on 4. Let L and W be integers.
Then, does there exist a path connecting the node vy to the node v, such that the total length of
arcs is less than or equal to L and the total weight of arcs is less than or equal to #?

The problem PARTITION (see [9]) is as follows. Let P = {p;,i € {1,2,...,s} = N;} be a set
of natural numbers. We wish to find whether there is the subset I of the set N; such that

ZP:' = Z pi. ®)

iel ieN,\I

Consider the PARTITION problem with the individual set P. We construct the individual
Problem 1b to which the problem PARTITION can be reduced. For the directed graph G
suppose n = 3s,

A= JiGizs P &ina), iz > &), Eims - E3ip)
i=1

and
&sim3 > C3ig) = w(&sim3 = &3im1) =pi, €N,

All other ¢(a) and w(a), a € A are zero.

We now prove that the answer to the individual Problem 1b with the above graph G and
L=W=1/2%_,pi is positive if and only if there exists a partition of the set
P={p1,...,ps} into two subsets satisfying (8). For every i € N, any path from &, to s,
includes either the pair of arcs {(&3;_3 > &3i_3), (&350 > &3)} or the pair {(&3;_3 —> &3i1),
(&3i_1 > &37)}. Consider some path from &; to &;5. Denote by I a subset of such i from N — s
for which this path contains the first pair of arcs. Then the length and weight of this path are
> icrpi and 3, v\, p; respectively. These values are not more than 1/2 7, p; if and only if
equality (8) holds. That is, the individual PARTITION problem under consideration is reduced
to the constructed individual problem Problem 1. The theorem is proved. n

The assertion about A/P-completeness of Problem 1a can be found without proof in [9].
Authors refer to the unpublished private statement of Megiddo. The existence of a PP7 -
algorithm for solving the PARTITION problem based on the idea of dynamical programming
was also given in [9]. It was this that prompted us to construct a PPT -algorithm for
Problem 1a. Lastly, note that the construction of a polynomial algorithm to solve Problem 1a
is impossible for the following reason: for each positive integer n there exists graphs with »
nodes such that the quantity of Pareto minimal paths connecting the given nodes # and £ is
equal to the overall quantity of all paths connecting these nodes (see [13]).
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2.4 Remarks
2.4.1 Discontinuous Systems

Many important systems with chaotic behaviour have points of discontinuity. For instance the
p-mapping, Belykh mapping [1], etc. All considerations above, including Proposition 1
remain intact provided that the system is generated by a mapping /* with some simple dis-
continuity points in the variable x. In particular, it is sufficient to assume that for any open set
Y C X the preimage f~!(Y) is contained in the closure of its interior.

2.4.2 Generalized Prices

Let each pair (x, u) € X x U has a generalized price p,(x, u) which is an element of a cone K
of non-negative elements in a semi-ordered linear space L supplemented by an infinity
element co. We suppose that the function p, is upper semi-continuous. The generalized price
of a finite path mw = xo, x1, ..., x; is defined in an additive way: p,(n) = 3_' Pe(xi, uy).
Problems 1 and 2 are modified accordingly. For a lattice E which intersects Sy and S we can
introduce the corresponding directed graph Gz with generalized length £,() of its arcs and
denote by Iz the set of possible paths. We arrive at the following modifications of Problems
la and 2a.

Problem 1g Find the Pareto minimal elements in the set {£,(n): 7 € Tz}

Problem 2g For a given Pareto minimal pair find a corresponding path =.

Algorithm A1 works for Problem 1g with the following modification: the labels should be
understand to be elements from K | J oo, which imply the subsequent evident corrections. For
instance the pairs (£(a), w(a)) should be swapped to the generalized lengths £4(a).

2.4.3 Locally Controllable Systems

The set U can be of a lesser dimension than X in which case the mapping f(x, ) itself is not
a local surjection in u. To use the methods described above, it is convenient to consider a
certain iteration of the mapping f. To avoid cumbersome formulas we will illustrate this idea
by a simple example. Let Tor? be the standard d-dimensional torus, that is, the factorization
of IR? by the integer lattice. Each matrix A with integer entries a;, i,j = 1, ..., d defines an
algebraic endomorphism f; of Tor?. If the eigenvalues of this matrix are irrational, then the
mapping is chaotic and each hyperbolic diffeomorphism of Tor? can be in a natural sense
reduced to such a mapping.

Consider a control system of the form x,, = f4(x,—) + bu,_, where u isa scalar, |u| < 1, and
b is an element of IR treated as an element of the group of toroidal shifts. Consider reaching a
periodic orbit S from a certain set Sy with given price and quality functions p(u) and q(x).
Suppose that the vectors b, 4b, ..., A°~!b are linearly independent. An auxiliary control sys-
tem x, = F(x,_1, il,_1) is defined in the following way: for it = (u', ..., u?), |u’| < 1, the set
F(x,u) =ys where yo =x and y; = f(y;_1) + bu',i = 1,...,d. This system has the same
periodic points as the original system and we consider reaching the same set S as before. Finally,
define the generalized price pg(x,u%) by pg(x,u) = Z,”.i:l g+(vi-1) + p(u’)  where
¥i,i=0,...,d — 1 are the same as above and g, (x) = g(x) for x € Tor?\S whereas g, (x) = 0
for x € S. The constructed auxiliary problem is equivalent to the original and the mapping
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F(x, u) is a local surjection: that is, there exists a continuous function a(¢), ¢ > 0, 6(0) = 0,
such that for any x and # the set {F(x, v): p;, (1, V) < ()} covers the ball py(x, y) < ¢ due to the
Kalman controllability criterion [19].

2.4.4 Existence of Paths with Finite Prices

As was mentioned previously, the set of possible controls # € U, constitutes a reasonably
small neighbourhood around the trivial control. For this reason it is convenient to char-
acterize couples (f(x, u), S) such that the set S can be achieved for each p(u). That is, the set
TI(f, So, Se, P, q) and therefore the set K(f, So, Sw, p, q) are non-empty for any upper semi-
continuous p(u) with p(0) = 0. Let X be a smooth manifold and p, be an absolutely con-
tinuous measure. Le. py(X) =0 whenever X has zero Lebesgue measure. Define the
sequence of measures {1} by 1,,,(S) = p,(F~'(S)),n =0,1,2, ... where F(x) =f(x,). A
probability measure u, is said to be attractive if all such sequences {u,} converge Cesaro
weakly to u,. Recall that Cesaro means (uy + u; + - - - + u,_;)/n converge weakly to u, for
all choices of absolutely continuous p, on X. Existence of an attracting measure is proved or
supposed to be true for many classes of chaotic systems.

Let u, be an attractive measure whose support intersects S. It is easy to show that the set
TI(f, So, Sw, P, q) is non-empty for each p(u). Moreover, if the lattice Z intersects So and S
and the set where p(u) takes finite values contains the ball p,,(u, u°) < o[A(E) + c(h(E))]
where o(-) and ¢(-) are the same as in Lemma 1, then the set P=(f, So, S», P, ) is non-empty.
See also Theorem 5, [4].

3 NUMERICAL EXPERIMENTS

3.1 Tent Map
The tent map, or the baker map, is defined (p. 179 [8]) by the formula
Tx)=1—|2x—1|, 0<x<1.

This mapping is the simplest continuous chaotic dynamical system and occupies a special
place in the modern dynamical systems theory (see [16] and references therein). Consider the
case when the corresponding control system is described by the relation
Xn = fr(Xn—1,un-1), 0 < x < 1, |u| < 1 where

Tx)+u, ifO0<THx)+u<l;
frix,u) = 0, if T(x)+u < 0;
1, if T(x)+u> 1.

Jfr(x, u) is the point nearest to 7(x) + u belonging to [0, 1]. Suppose that the price of control is
defined by the formula

) lul, if u] <¢,
p(u,s):{oo’ if Jul > ¢
with ¢ = 0.001, i.e. controls with |u| > ¢ are prohibited. Suppose further, that all points of
[0, 1] have the same quality g(x) = 1. As such, g(n) for a certain path is just the corres-
ponding number of iterations.
The tent map has two equilibriums: 0 and 2/3. We will consider the question of the
“cheapest” transition from the first to the second. That is, we are interested in reaching the set
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= {2/3} from the set Sy = {0}. We will use uniform lattices E, = {0, 1 /v, ..., (v — 1)/v,
1}. The lattice E, contains the point 2/3 if 3 is a divisor of v and we will only consider such
lattices in this subsection. Algorithm A1 was used to find the Pareto sets Pz, (T, So, Sw, P, q)
for different v. The experiments were carried out on a SUN workstation with 2 UltraSPARC
167 MHz processors with 256 MB memory. Typical results are presented in Table I.

The “upper” elements of the Pareto sets are converging to a limit as v increases, which is
in line with Proposition 1. The corresponding sets | J,, HePw) K(a, b) should approximate the
set K(fr, So, Sw, P> ). To estimate rigorously the precision we apply Lemma 1. In this case
h(E,) = 1/2v, 6(¢) = ¢ and c(¢) = 2¢. That is,

U k@b <k(rSo.Sups  |J  K@b

(a,b)eP(v) (a,b)EP(f1,80.80w-Pv-q)
where

pv(u) = pu(uv)<3/(2v)p(v) max{0, p(u) — 3/(2v)}.

The set Pz, (f7, So, Sw, Pv, ) Was calculated analogously to Pz, (fr, So, Sw, P, q) for the case
v = 60,000.

Let us discuss in brief some statistics of the algorithm for the case v = 24,000. The CPU
time was 31 seconds and the overall number of steps was 103. The maximal number of
elements in the set E.,4s was 11,864 and the maximal number of arcs with the same end-node
was 8. Table II presents information about the dynamics of the size R(Eew) of the set Epey.

Two particular things about this table are: (i) the number R(E,.w) increased geometrically
at the first 10 steps, then it decreased drastically in the next two steps to the value 27; (ii) then
it “unexpectedly” became 1 at step 54 and remained equal to 1 for the 50 last steps.
Qualitatively such behaviour is quite typical and can be explained as follows. The first
reduction at steps 10—11 was due to the fact that at step 10 the destination point 2/3 was
reached and from this moment onwards the italicized part of the subaction 4.2 of the
algorithm takes over. The second reduction at step 54 occurs because all of the Pareto ele-
ments have been found and it remains only to check whether the trajectory commecing at the
point 1/v would eventually hit the fixed point at 2/3.

Let us discuss finally which maximal number of steps can be expected. For each positive
integer i denote by (i) the exponent in the maximal divisor of i of the form 2* and denote
odd(i) = i/2*. From [14] it follows that the number of steps in the algorithm is always less
than or equal to k£ 4+ m where k = +,(i) and m denotes the period of the point 2/0dd(v) under
iterations of the tent map; if, additionally, the Riemann hypothesis is true, then the proportion

TABLE I Pareto Sets for the Tent Map with Various v and = 0.001.

v=12,000 v=24,000 v = 36,000 v =48,000 v= 60,000
(10, 1.7E-3) (10, 1.7E-3) (10, 1.7E-3) (10, 1.6E-3) (10, 1.6E-3)
(11, 8.3E—4) (11, 7.1E—4) (11, 7.0E—4) (11, 6.7E—4) (11, 6.7B—4)
(12, 5.0E—4) (12, 4.2E-4) (12, 3.9E—4) (12, 3.5E-4) (12, 3.5E—4)
(13, 3.3E-4) (13, 2.5E—4) (13, 2.2E—4) (13, 2.1E—4) (13, 2.0E—4)
(14, 2.5E—4) (14, 1.7E—4) (14, 1.4E—4) (14, 1.3E—4) (14, 1.2E—4)
(15, 1.7E—4) (15, 1.2E—4) (15, 1.1E—4) (15, 0.8E—4) (15, 0.8E—4)
(58, 8.8E—5) (30, 8.8E—5) (16, 6.3E—5) (16, 6.7E—5)

(107, 5.6E—5) (59, 4.2E-5) (25, 4.5E-5)

(257, 3.3E-5)
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TABLE II The Cardinality of the Set = Agains Step Number for
v=24,000,=0.001.

Step R(E) Step R(E) Step RE) Step R(E)
1 1 15 27 29 16 43 15
2 23 16 24 30 16 44 14
3 68 17 26 31 16 45 15
4 115 18 2 32 15 46 15
5 206 19 21 33 14 47 15
6 390 20 2 34 15 48 15
7 758 21 2 35 14 49 14
8 1494 2 21 36 15 50 15
9 2966 23 19 37 14 51 14

10 5910 24 20 38 15 52 14
11 3623 25 19 39 14 53 15
12 27 26 17 40 15 54 1
13 26 27 15 41 14 55 1
14 28 28 16 Py 15 56 1

Steps from 57 up to 103: R(E) =1

of those v = 3k for which the number of steps in the algorithm is equal to 2v/3 is of
magnitude In(k)™".

3.2 Anosov Algebraic Automorphism

Let Tor? be the standard 2-dimensional torus, that is, the factorization of IR? by the integer

lattice. Each matrix
a b
=(2a)

with integer entries and det4 = %1 defines an algebraic automorphism f;(x) on Tor?. If
b, ¢ # 0 then this mapping is chaotic and each hyperbolic diffeomorphism on Tor? can be in
a natural sense reduced to such mapping (see p. 114 [8]). We consider the corresponding
2-dimensional control system described by

Xn :ﬁ!(xn—l» un—l) :ﬂ(xn—l) + Uy

where x = (x!, %) € Tor? and u = (u', u?), |u'|, |#?| < 1 is a two-dimensional vector to be
understood as an operator on Tor?. We suppose that the price of control is defined by the formula

P §) = lu'| + |u'], if Ju'l, | <,
’ 00, otherwise

with ¢ = 0.01 and all points of [0, 1] have the same quality g(x) = 1. Let, in particular,

2 1
(1)
The mapping f;(x) has a fixed point at (0, 0) and a 2-cycle with elements (1/5, 2/5) and

(3/5, 4.5). We are interested in transition from the set Sy = (0, 0) to the aforementioned
2-cycle, S. We use the uniform lattice

B2 = {(i/v,j/v):i,j=0,1,...,v—1}

where v is divisible by 5 (so as the elements of the two-cycle belong to the lattice).



COMBINATORIAL PROBLEM ARISING IN CHAOTIC CONTROL 307

TABLE III Pareto Sets for the Anosov Mapping for Different v with =0.01.

v=120 v=140 v=160 v=180 V=200
(8, 0.041) (8, 0.050) (8, 0.050) (7, 0.066) (7, 0.084)
(10, 0.033) (9, 0.043) (9, 0.037) (8, 0.039) (8, 0.035)
(12, 0.025) (10, 0.035) (10, 0.031) (9, 0.031) (10, 0.025)
(15, 0.017) (12, 0.021) (11, 0.025) (11, 0.028) (14, 0.020)
(14, 0.022) (19, 0.015)
(18, 0.017) (27, 0.010)

Table III is analogous to Table 1. For v = 200 the algorithm took 67 steps and the maximal
number of elements in E, was 9920 at step 9. In this case, Lemma 1 was too “coarse” to
get good estimates (moreover it shows that the set Z cannot be reached in less than 7
iterations). Nevertheless, using the particular structure of the mapping shows that the pre-
cision of the algorithm is satisfactory.

Analogous experiments were carried out for other chaotic mappings, such as the twisted
horse-shoe mapping, the Belych mapping, etc. [1, 8].

A Few Personal Words

I worked at the Institute tor Control Problems (IPU) for around 20 years (firstly in the
Tsypkin Laboratory No 7 and then in the Krasnoselskii Laboratory No 61). The IPU was
distinguished among Soviet academic institutions in many aspects, such as:

e aconcentration of great scientists and great personalities (certainly, these two sets intersect);
o flow of principal new ideas and approaches, often fusing different scientific strands.

These points may be convincingly justified. The influence on the world science can be
tracked through the citation index. The number of specialists of my and younger generations
who made quite remarkable careers, some times in science, some times in quite different
areas (a time of changes in Russia!) is phenomenal.

I am glad to acknowledge that the itemized above anomalies are nowadays in place in IPU.
I have visited IPU in 2000, when celebrating its 40th anniversary. It was a great conference!

A couple of words about this paper. The first author, Vladimir Bondarenko is, like me, a
pupil of Mark Krasnosel’skii. He has never formally worked in IPU, however all his life was
closely connected with our beloved institute Jamie Mustard is a young Australian mathe-
matician (this paper was to a large extent written when I and Vladimir Bondarenko visited
Australia). Anyway, Jamie was influenced strongly by IPU-people. This is a (probably
incomplete) list of those who visited us in those months: Nikolay Kuznetsov, Boris Polyak,
Alexander Krasnosel’skii, Boris Miller, Victor Kozyakin, Nikolay Bobylev.

We all have very pleasant, longtime memories of our collegues and teachers who have
died. Greetings to all IPU-people who remember me and/or whom I remember. Special
thanks to organizers of this volume, A. Poznyak and V. Utkin.
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APPENDIX

We now describe an algorithm for Problem 2a, which we denote by .A2.

INPUT:
Same as the input for Algorithm A1 plus an element (a, b) € P=(f, So, S, p, q).

OUTPUT:
The path 7y satisfying £(nz) = a, w(ng) = b.
The work of the algorithm consists of two stages.

Stage 1 At this stage, the labels are assigned to the nodes of the graph G which are either
the symbol @ or an ordered sequence of the form = {(0, 0), (¢, wy), ..., (£,, w,)} where n is
a positive integer. The pair (£,, w,) is referred to as the final element of the label. The set of
labels assigned to a node ¢ is denoted by A(&). Before starting the algorithm the label (0, 0) is
assigned to all nodes ¢ € &y and the label ¢} is assigned to other nodes; the auxiliary set Epew
is defined to be equal to E.
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At each step the following three actions are performed (which are analogous to Actions 1,
2 and 4 in Algorithm .A1).

Action 1
Subaction 1.1 The set Eengs of nodes which are endpoints of arcs commencing at nodes
belonging to Epew\Eo are determined.

Subaction 1.2 For each & € Eeygs the set of arcs A(¢) which end at ¢ and start at =,,,, are
derived.

Action 2 The set By, is redefined as the empty set.

Action 3 The set Eepgs is ordered in an arbitrary way and for successive elements of this set
the following subactions are performed.

Subaction 3.1 The set M is arranged which includes: (i) all of the final elements of the
labels of node & which are not @; (ii) the totality of sums (£(ax) + £, w(x) + w), where
o € A(¢) and (¢, w) belongs to the set consisting of all the final elements of the labels of the
starting point of . Denote by Mg the subset of M containing only the elements from (i).

Subaction 3.2 The set M is searched for all Pareto minimal elements. If a Pareto minimal
element (€, w) belongs to the set M4 then the corresponding sequence is included in the set
A(&). If (£, w) does not belong to the set M,y and both £ < a and w < b hold, then it can be
written as (¢, w) = (€, + £(x), w, + w(a)) for some o and (£,, w,) to be the final element of
the label {(0, 0), (€1, w1), ..., (€n, wn)} € A(n) where o goes from # to &. In this case we add
to the set of labels of ¢ the sequence {(0, 0),..., (£,, wy), (£, w)}. If the node ¢ has at least
one new label, then it is included in the set Z,,,.

Stopping Rule for the First Stage  The process stops when at least one node ¢ € E has a
non-empty label.

Stage 2 After the first stage is finished we have a directed graph G with labels. Now we
define a path 7 in the directed graph G. Choose the node ¢ € E which has a non-empty
label. This can be written as {(0,0), ..., (£s—1, Wn—1), (€s, w,)} where £, = a and w, = b.
Define a path n; = &y, &, .. ., &, by induction in the following manner. Let &, = £. Suppose
that £, has been defined. Then choose &;_; such that it has a label {(0, 0), ..., (bx—1, wi—1)}
and there exists an arc o from &,_; to &, satisfying £(o) = £; — €1 and w(ot) = wy — wy_;.
The path 7; is the output of the algorithm.

THEOREM 3 Algorithm A2 correctly solves Problem 2a.

Proof is straightforward, so is omitted.
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