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We propose necessary and sufficient observability conditions for linear time-varying systems with
coefficients being time polynomials. These conditions are deduced from the Gabrielov—Khovansky
theorem on multiplicity of a zero of a Noetherian function and the Wei—Norman formula for the
representation of a solution of a linear time-varying system as a product of matrix exponentials. We define
a Noetherian chain consisted of some finite number of usual exponentials corresponding to this system.
Our results are formulated in terms of a Noetherian chain generated by these exponential functions and an
upper bound of multiplicity of zero of one locally analytic function which is defined with help of the
Wei—Norman formula. Relations with observability conditions of bilinear systems are discussed. The case
of two-dimensional systems is examined.
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1 INTRODUCTION

Observability is one of principal qualitative properties characterizing a control system. It has
an significant theoretical impact in elaborating of control and systems theory. Besides, there
are various important applications of observability theory in engineering sciences due to
related concepts of an observer, a feedback etc. In this paper we shall deal with linear systems

of a type
50 = 40x = Y w40,y = Cx0) m
s=1

where A,,...,A, are linear independent constant (n x n)-matrices; C is a constant
(p x n)-matrix; x € R*;y € R”. Below a vector-function u(t) = (ui(¢),...,u,(t)) is
assumed to be analytic in some neighborhood of zero and is referred to as an input. We
shall consider the system (1) as a bilinear system or as a linear time-varying system with
specified functions u(f); s = 1, ..., m. In accordance with this point of view we remind
one classical definition.
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DEFINITION 1 The system (1) is called observable if for any x # 0 one can find an input u(t)
such that for the corresponding solution ®(u, t) x of (1) we have that C®(u, t) x is a nonzero
time function. The system (1) with a specified input u(t) = u*(¢) is called u*-observable if for
any x # 0 we have that CO(u*, t) x is a nonzero time function.

Observability conditions for linear time varying systems and bilinear systems and related
controllability conditions for linear time-varying systems were described in many papers:
Bittanti, Colaneri and Guardabassi [1], D’Alessandro, Isidori and Ruberti [3], Funahashi,
Adachi and Inagaki [4], Kratz and Liebscher, [6], Leiva and Lehman [7], Leiva and
Zambrano [8], Silverman and Meadows [9], Szigeti [12].

Computational complexity of observability algorithms for linear time-varying systems is
not an well-studied topic up to nowadays, see Starkov and Garnica [10]. Another related
reference is Starkov [11] where complexity questions were considered for polynomial control
systems. Following to Szigeti [12] we apply the Wei—Norman formula, see Wei and Norman
[13], for the solution of the system (1). The differential-algebraic treatment of the Szigeti’s
paper leads to observability conditions given in terms of differential-algebraic independence
of some finite number of functions arisen as a result of the application of the Wei—Norman
formula. Results obtained on this way seem difficult for practical computations. Instead of
this, we use the pure algebraic approach. The principal theorem of this paper is deduced from
the Gabrielov theorem on multiplicities of zeros of polynomials on trajectories of polynomial
vector fields, see the refined version due to Gabrielov and Khovansky [5]. Our main con-
tribution is to present necessary and sufficient u*-observability conditions which are for-
mulated in terms of observability property of a corresponding bilinear system and, besides,
are described with help of the computation of a multiplicity bound of a zero for some
Noetherian function denoted below by °w at 0. Ways for computing this multiplicity bound
concern computational complexity of observability tests and are discussed in this paper. As
compared with the short conference paper Starkov and Garnica [10], the case of a
n-dimensional system (1) is examined in this paper. We provide the refined multiplicity
bound of a zero of ‘w expressed only in terms of the dimension of the matrix Lie algebra
generated by A(f), the dimension of the system and degrees of functions uy(t),s =1, ..., m.
This bound is obtained without any additional assumptions respecting to the system (1).

2 PRELIMINARIES

By o(B) we denote the spectrum of the constant (n x n)-matrix B. Let Lie(4,, ..., 4,) be the
matrix Lie algebra generated by matrices Ay, ..., 4. LetA, ..., Apy ..., Ae,m <€ < n*, bea
basisof Lie(4,, . .., An). Observability analysis in case £ = 1 isclear. Indeed, let A(f) = u(¢)4 for
some constant (n X n)-matrix 4; u is a nonzero input. Then we have that (A(¢), C) is u-observable
& (4, O) is observable < (A(¢), C) is observable. Here the first equivalence is followed from
the use of the appropriate time transformation combined with a small time shift. The second
equivalence is due to results of D’Alessandro, Isidori and Ruberti [3]. We remark here that
controllability property for this class of systems was studied in Leiva and Zambrano [8], see also
Szigeti [12]. Below everywhere in this paper we suppose that £ > 1. We introduce the notation

m
D udy =4y, ..., 4,
s=1

with @ = (u1, ..., 4m 0, ...,0)" € RE Let [X, Y] be the Lie bracket of (n x n)-matrices X
and Y. Suppose that the multiplication table for (adX)Y = [X, Y] is given by formulae
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[4i, 4] = Zk_, y,jAk Now by use of results of Wei and Norman [13], the fundamental
matrix ®(u, t) for (1) can be given locally in time around zero as

O(u, ) = exp(4181(?)) - - - exp(Aege(?)) 2
where g = (g1, ...,g¢)" is satisfied the equation
g&=_E(gu, g0)=0. 3

Here in (3) E (0) is nonsingular;
i—1 ¢
l—lexp(gjadAj)Ai = Zski(t)Ak, i=1,...,¢ @)
J=1 k=1

and E(g) = (S(g))"l,S(g) = [Isi@ll; i,/ =1,..., £ Also, let p(g) = detZ(g).

3 ONE FORMULA FOR THE OUTPUT OF THE
LINEAR TIME-VARYING SYSTEM

In this section we describe one formula for the output of the system (1). It is deduced from
formulae for matrix exponentials borrowed from the paper Cheng and Yau [2]. Assume that 4
has distinct eigenvalues Ay, ..., A5, 8 = 1, ..., £, and its minimal polynomial has the form

mp 4, (x) (x - '11 )mlI . (X - Ar(s)s)mr(m;
Mis + oo+ M)y = m(s) < n.
We also can write

m(s)—1

exp(g;()ds) = Y fi(g:(t)4",

k=0
with

r (5 ) mjs —

=) Z P & . exp(/lht)

Js=1 iz=0

Numbers P; ;;, are calculated according with formulae from Cheng and Yau [2]. By sub-
stitution of these formulae into (2) we have:

¢ m(s)—1 r(s) mj—

Cou, x=C[] ) 4* }: Z Py 22 : exp(/l,vgs(t))x

s=1 k=0  j=1 i=0

- ZCA’IH .. .A’tft Z(Piljlkl N N IR ) ®)
91 92

[4
x g1'(1)- - g () exp (Z A-.cgs(t))x;
s=1

O, ={k=0,....,m@s)—L;s=1,...,¢}
®2={ts=0,...,mjs—l;jS=1,...,r(s);s=l,...,€}

The formula (5) is valid in some neighborhood of the point ¢ = 0.
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4 u*-OBSERVABILITY VERSUS OBSERVABILITY

By Q, we denote a set of vector-rows of matrices CAY --- 4% in the formula (5). Let
i, ..., &y € Q be a basis in a vector space spanned by ;. Then (5) is reduced up to

CO(u, )x = || Gy(g(@; DI - 1sqllx 6

i=1,...,pij=1...,ms=1,...,n59=1,...,n In the formula (6) |||l = ||§|T---
é; I Gy are analytic functions defined in some neighborhood of ¢ = 0. Now we come to

PROPOSITION 2 The system (1) is u*-observable if and only if
N = n; rank||yll =n
and there is &€ > 0 such that
Ker G(g(u*; 1)) = {0} for 0 < |t] <&, ©)

with G(g(@; 1)) := || Gy(g(t; ).

If we have a single-output system then we take the last condition in the form of the linear
independence of functions

Gi(g(; ) == Gyj(g(; 1)), j=1,...,n.

Proof The proof is followed from one of inequalities for a rank of a multiplication of two
rectangular matrices. n

We introduce the set Q, of vector-rows of matrices

k(1) k(n—1),
CAa(l)' 'Aa(n——l)’
k(1);...;k(n—1) € {0; 1};a(l);...;a(n—1) e {1;...;m}.
PROPOSITION 3 If rank Q) = n then 1) rank Qy = n; 2) the system (1) is observable.

Proof. Assume that there is a nonzero vector x € R® such that Q,x =0. Then
CAx=0;s=1,...,m;CAidix =0;i,j=1,...,m. As a result, Cl4;,4x=0; i,j=
1,...,m. By iteration of this argument, we get that CLie(4,,...,A4,)x = 0 and we come to
the contradiction with our condition. So (1) is proved. It remains to remind that the system
(1) is observable if and only if rankQ, = n. It follows from Funahashi, Adachi and
Inagaki [4]. |

Remark 1 The set {u is analytic locally around zero |Ker G(g(u; t)) = {0}} defines a class of
analytic inputs u for which the system (1) is u-observable provided rank |||l = n.
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Let d € N. We introduce the linear space Inp (d) of polynomial vector functions
u:R' — R™, with deg :1,(f) <d;s =1, ..., m. Let j%u(0) be the jet of the order d of u(f)
at zero. Consider the following (pn x n)-matrix

di
M:[F,:(,G(g(a;t))]; i=0,1,...,n—1 ®

Iterated derivatives in (8) are calculated with help of the vector field in (3), but for arbitrary
initial condition g(0) = g in some neighborhood of g = 0. Taking into account of (3) with
the initial condition g(0) =0 we obtain that £ |._, G(g(#; 1)) depends on j*u(0) in a
polynomial way.

5 NOETHERIAN CHAINS, NOETHERIAN FUNCTIONS AND
ONE THEOREM RELATED TO THESE CONCEPTS

We note that Proposition 2 does not provide any effective algorithm for checking the con-
dition (7). We discuss this circumstance on an example of single-output systems (1). Since
functions Gj,j =1, ..., n, are locally analytic we check their linear independence property
with help of considering an overdetermined system of linear homogeneous equations arisen
from the application of the method of indefinite coefficients. Coefficients in this linear
system of equations are multiple time derivatives of Gj,j = 1, ..., n, taken at ¢t = 0. A priori
it is not clear up to what order we have to compute these time derivatives in order to establish
linear independence of functions Gj,j =1,...,n. That is why computational complexity
aspect is important in the process of the application of Proposition 2. In Sections 7, 8 and 9
we answer this question in an explicit way and present results of computations respecting to
the condition (7).

In what follows in this section we remind some necessary matter taken from Gabrielov and
Khovansky [5]. We formulate

DEFINITION 4 A Noetherian chain of order m and degree « is a system
[ =i, ... ,fn(x)) of germs of analytic functions at the origin 0 of C" or R", satisfying
Pfaffian equations

of; ; .
ai= i 1), ), i=1,.,m; j=1,..,n
Xj

where g; are polynomials with respect to x; f of degree <o; a>1. A function
d(x) = P(x, fi(x), . .., fm(X)), where P is a polynomial in x and f of degree < f is called a
Noetherian function of degree B with the Noetherian chain fi, . .., f.

As it was noted in Gabrielov and Khovansky [5], these definitions can be formulated in
terms of a ring K of Noetherian functions defined in an open domain U C C” or R". Recall
here that K consists of analytic functions on U such that (1) K contains the polynomial ring
Clxy, ..., x,] (R[xq,...,x,] appropriately) and is finitely generated over the ring
Clxy, ..., x,] R[xq,...,x4]). (2) K is closed under differentiation. Qur main tool is the
following theorem presented in Gabrielov and Khovansky [5].
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THEOREM 5 Let & be a time-varying vector field on C" x C(R" x R), with coefficients
¢ depending on time and Noetherian of degree n for the Noetherian chain
f=UiR), ..., m(x)) of degree o. Let \y be a Noetherian function of degree 3, with the same
Noetherian chain. Suppose that £(0) # 0 and if y is a solution of & through the origin then
the restriction Y|, # 0. Under these conditions the multiplicity of the zero of Y|, at 0 does not
exceed

m+n

1
F(m, n,o,n, B) = 52[23 + 2k(1’] + o — 1)]2m+2n+2
k=0

6 THE NOETHERIAN CHAIN OF A LINEAR TIME-VARYING SYSTEM

The goal of this section is to show that there is a natural Noetherian chain corresponding to
the system (1).

Let k = (3¢ — 6)/2 + 2 provided £ is even and x = (3¢ — 3)/2 provided ¢ is odd. We
formulate

PROPOSITION 6 We state that either (1) S(g) = P(g), where elements Pj; of the matrix P are
polynomials of degree < k with respect to g, or (2) there are r < 2{ exponential functions
vi(g), ..., v(g) such that (2a) S(g) = P(g,vi(g), ..., v:(g)), where elements P; of the
matrix P are polynomials of degree <k with respect to g, vi,...,v,; (2b) functions
vi(g), ..., v(g)) form a Noetherian chain of degree 1 and order r.

Proof Firstly, we remark that for different choices of the basis in the Lie algebra
Lie(Ay,...,An) we obtain expressions (2) with different matrices S(g) and vectors i.
However, the germ at zero of a solution of the system (3) with the initial condition g(0) = 0,
generated by any of these expressions is the same. It follows from the uniqueness theorem of
the solution of the differential equation. Therefore we can take the basis with the simplest

multiplication table. It is some subset of {f;;;i, j = 1,...,n}, where [; is a matrix containing
the only one unit on the (i, j)-position; other elements are zeroes. Now we write a list of
useful formulae for matrices {I;;i,j=1,...,n}:

exp(gad Iy)l; = I + gy — Iy) — &Iy, i #J;
exp(gad Il = I + gly, i#j, i#k;
exp(gad Ij)ly = Inexpg, i#k;
exp(gad Il = L — gly, i #j; j#k )
exp(gad Ii)li = Liexp(—g), i #k;
exp(gad Ii)q(lx = Inq(g)expg, i#k;
exp(gad I;)q(g)lk = luq(g) exp(—g), i#k;

for any analytic function ¢(g). By substitution of these formulae into (4) we obtain that each
function s(g) is expressed in the form

]
Y ba(@)exp (Z asgs>; (10)
o s=1
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here o = (o4, ..., a;); each o, € {+1;0}; all b, are polynomials with respect to g. Since
{exp(£gs); s = 1,..., £} forms a Noetherian chain of degree 1 we deduce that either (1) there
isaninteger 1 <r <2fandvy,..., v, € {exp(£g;); s = 1,..., £} with desirable properties,
or (2) a quasiexponential in the formula (10) is reduced to a polynomial for any s4(g).
It remains to estimate the degree of P; with respect to {g, exp(+g;); s = 1,..., £}. We note
that if s4;(g) has a maximal possible degree with respect to {g, exp(+g;); s = 1, ..., £} then it
is contained in (4) with i = /. Now we rename {g; s = 1, ..., £} such that J; corresponds to
gjj for each (4, j). Then it follows from (9) that the expression

exp(guad L) exp(grad I;) exp(gyad I)lji, (11

with i #j; k #1i and j # k, contains the term gjzkgkigg.ljk of maximal degree among all
possible products (11) with 3 exp operators. Now we can see that if we separate successively
the right-side of (4) with i = £ by groups with 2 exp operators then we derive from (9) that
degs;i(g) < k. |

7 MAIN RESULTS: THE CASE OF SINGLE-OUTPUT SYSTEMS

In this section we examine the case of single-output systems and concern the relation
between u-observability and observability described in terms of the multiplicity of a zero of
some Noetherian function at 0. Below we shall consider that matrices 4, in (1) are chosen
from the set {f;i, j=1,...,n}. By fixing some input u*(f) € Inp(d) we shall write
M(g, j*u*(0)) as M,(g). We define a function w(g) = detM,(g) being analytic in some
neighborhood of zero.

Remark 2 We note that columns of the matrix M, (g) are linear independent if and only if
the vector field in (3) is tangent with the finite order of tangency to the surface w = 0 at
g = 0. This remark allows us to apply Theorem 5 to the solution of our problem.

We introduce the following objects:

(1) the set ' = {exp(Agg)) | A € 0(4;) — {0};j=1,...,¢}%

(2) if we have the second case of Proposition 6 then by R we denote a ring of Noetherian
functions generated by vy, ..., v, over the ring Clgy, ..., g¢;

(3) the ring R, which is a ring of Noetherian functions generated by some subset I'y C T’
over the ring C[gy, ..., g¢] such that ' C R;;

(4) if we have the first case of Proposition 6 then let R = R, and q = card I'y, otherwise let
R=Ri+R, be a ring of Noetherian functions generated by some set
{hi, ..., hy} Clexp(£gj) |j=1,..., ¢} and g is the minimal integer with this property.

The main result of this paper is the following.

THEOREM 7  Let { be a complexified solution of the system (3) with u = u* passing att = 0
through 0. We establish that the system (1) is u*-observable if and only if (1) is observable
and the multiplicity of the zero of the complexified polynomial ® restricted on the solution
{ at zero does not exceed the number

F(q+17£9£l(+271|912), (12)

withq <2611 =C—Dk+d+ 1,15 =n*l+n(n— 1) - Dk +d+1)/2.
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Proof Necessity. Let (1) be u*-observable. Then by Proposition 2, rank Q; = n. By Pro-
position 3, (1) is observable. By Remark 2, it is sufficient to demonstrate that the number (12)
gives the upper bound for the multiplicity of the zero of the complexified polynomial ‘@
restricted on the solution { at zero.

Since the set I" C {exp(+g)) | j =1, ..., £} we obtain that g < 2¢. We note that there is an
analytic function /A4, of £ variables defined in some neighborhood of zero such that (1)
E(g) =0(g, m(g), ..., hgt1(8)); 2) M1, ..., hgy1 form a Noetherian chain of degree £, 42
and order g+ 1; (3) O = [Qyll; Q; are polynomials of degree which does not exceed
€ —-Dr+1.

Indeed, let /1541(g) = p(g). Then hyyi(g) is analytic in some neighborhood of zero and,
also, the matrix Q in the prescribed form is existed because of the nonsingularity of the
matrix S(0). Also, we have

0

g—hq.;,] =—h 0 detS, i::l,...,f. (13)
8gi

e
Therefore by use of Proposition 6 the degree of the right-side in (13) is less or equal to
2 + €maxdegs; < fic + 2.
Then again by use of Proposition 6 we obtain the estimate
deg Oy < (£ — 1)maxdegs; +1 < (£ — 1+ 1.

Because of its definition,  is a Noetherian function with respect to the Noetherian chain

hi, ..., hgy1. We estimate its degree: deg w < max deg Gj, Gi, - - G,("'” where the maximum

is taken with respect to all permutations (iy,...,i,) of the vector (1,...,n). Since
deg G;, <nt, i; € {1,...,n} we have that for j > 1
deg GJ/™" < nf + (j — (€ — D + 1 +d).
Hence,
degw < n*l +n(n — 1)((£ — D + 1 +d)/2.

Sufficiency. As it was reminded in Proposition 3, rank Q, = n. We define the set

k(1) LON
CAa(l) o 'Aa(e)’ ]

g3=[
k(1);...; k(@) € {0; 1};a(1);...;a(0) € {1;...; £).

Now we will show that span Q; = span Q3. Indeed, for some integer k a vector-row

crin || i)

n Tk Jk

is equal to Cly;, for n(i,j)=1, s=1,....,k—=1; ni,jr) >1 and j; =i =ji;
J1=1,jo=13,... k1 =i, or it is equal to CI; , for n(is,j;)=1,s=1,...,k, and

J1 =12, =1i3,...,Jk—1 = i, otherwise it is equal to the zero vector-row.
Since €, C 3 we get that rank Q; = n. Now by Remark 2, the bound (12) computed for
the input »* and Proposition 2, the system (1) is «*-observable. n

Below we discuss two improvements of the bound (12).
1. Firstly, we note that the reason to use the basis chosen from the set {;;;i,j =1, ..., n},
is due to availability of estimates of Proposition 6 and a simple relation between Q; and ;.
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However, sometimes other bases can lead to better results. In order to see this, we assume that
the basis 4y, ..., A, can be taken in the form: I (the identity matrix) and some subset 7 of
{Ij;i,j =1, ..., n}. Then, by use of considerations of Theorem 3 from Wei and Norman [13],
we give the better bound. Namely, we have

COROLLARY 8 The assertion of Theorem 7 is valid if ¢+ 1 is replaced by q and € is
replaced by € — 1 everywhere in the bound (12).

Proof Let A(t) = D(t) + a(#)] in (1) where 4, :=1I; D(t) is generated by J. Then the
corresponding fundamental matrix () = ¥ (t) exp( Jy a(9)d9I), with

V =D@)V. (14)

We can show exactly in the same way as above that rank Q; = n if and only if rank Q; = n.
Since zeroes of C®(f)x and CV(f)x are the same the result of this Corollary proceeds from
Theorem 7 applied to the vector analog of the system (14) with y = Cx. ]

Another important case is occured when p € R. Here we have

COROLLARY 9 Let degp < 0+ 1 with respect to the Noetherian chain (hy, ..., hg). Then
the bound (12) can be replaced by F(q,¢,1,73,14), with 13 = — Dk +d +0+ 1 and
14 = n?l 4+ n(n — 1)((€ — Dk +d + 0)/2.

Proof The proof is followed from the estimate deg Q;; < (£ — 1) degs;; + degp. ]

In Section 9 we demonstrate that it is possible to obtain a better bound for two-dimensional
systems.

8 THE CASE OF MULTIOUTPUT SYSTEMS

It follows from computations of Section 6 that elements of the matrix Z(g) and the function
o are real functions. Let {w;,s =1,..., (”n”)} be a set of minors corresponding to all ( - n)-
submatrices of the matrix (8). Let

()

— 2
w = E wy.
s=1

Since the solution of the complexified system (3) with the initial condition g(0) = 0 is real
we come to the following assertion. We have that there is &> 0 such that
Ker G(g(u*, 1)) = {0} for 0 < |¢] < ¢ if and only if the vector field (3) is tangent with the
finite order of tangency to the surface @ = 0 at the point 0. After this we repeat arguments of
Section 7 and obtain the bound (12) with 7, replaced by 21,.

Also, results of Corollary 8 and Corollary 9 remain valid for the multioutput case. Here 7,
from the bound of Corollary 8 is replaced by 27, and t4 from the bound of Corollary 9 is
replaced by 214.
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9 EXAMPLE: THE TWO-DIMENSIONAL CASE

We present results of computations for two-dimensional systems, with y = Cx = xy,
borrowed from the paper Starkov and Garnica [10]. We shall not use the bound (12). Instead
of this, we fulfill direct computations for the basis 4} = I}y — Ipy; Ay = 1) — In; A3 = 112,
A4 = I11 + b; of the matrix Lie algebra generated by (1). This basis is taken from Theorem 3,
see the paper Wei and Norman [13]. Then our problem is reduced to the same problem for

3
M) =) us(OAsx(D).
s=1

By computation of the matrix ZE(g) for the new system, we obtain that Z(g) has the form

1 — sin(2gy) (1 —cos(2g1))/2
0 cos(2g1) —sin(2g1)/2
0 2exp(—2gy)sin(2g;) exp(—2g>)cos(2gi)

In this matrix g; is corresponded to 4, s = 1, 2, 3. We note that

exp(ig1), exp(ig1), exp g2, exp(—g2)

form the Noetherian chain which generates the ring R in notations of Section 7. By direct
calculations, w is a Noetherian function of degree d + 7. Hence, we have the following
bound: F(4,3,1,d +4,d + 7). Since this bound is better than general bounds given above
we can obtain better results for some special classes of systems (1), e.g., for block-triangular
matrices A(f) with only one- or two-dimensional blocks on the main diagonal.

Results on observability of three-dimensional systems (1) are presented briefly in Starkov
and Garnica [10]. Details of cumbersome computations for this class of systems can be found
in the master thesis of Garnica (CITEDI-IPN, Tijuana, Mexico, 2000).

10 CONCLUSIONS AND FUTURE DIRECTIONS

The main contribution of this paper consists in necessary and sufficient u*-observability
conditions of linear time-varying systems with a polynomial vector function »*. Conditions
obtained are connected with observability property of bilinear systems and also they are
formulated in terms of the estimate of multiplicity of a zero of one analytic function which is
arisen from the application of the Wei—Norman formula concerning the representation of a
solution of a linear time-varying system as a product of matrix exponentials. This multiplicity
is computed with help of the Gabrielov—Khovansky theorem. Then the main result is
improved in two special cases and, also, we concern the multioutput system case. By use of
direct computations, we give the better multiplicity bound for two-dimensional systems. As it
can be seen from the matter of Sections 7;9, sharpness of bounds computed is a difficult
problem opened for future investigations. In essence, this important topic is depended on
sharpness of the Cabrielov—Khovansky bound and, to the best of the author’s knowledge, this
problem has not been examined yet. A possible continuation of this work consists in con-
sidering of the system (1) with the analytic time-varying observation law y = C(f)x and, also,
in efforts to improve general multiplicity bounds for more specific classes of (1) of small
dimensions. It would be also interesting to apply one of formal algebra packages for a
continuation of this work towards applications. Finally, we remark that due to duality between
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controllability and observability the similar multiplicity bound is elaborated in case of studies
of controllability property of (1).
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