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This paper develops a version of Robust Stochastic Maximum Principle (RSMP) applied to the Minimax
Mayer Problem formulated for stochastic differential equations with the control-dependent diffusion term.
The parametric families of first and second order adjoint stochastic processes are introduced to construct
the corresponding Hamiltonian formalism. The Hamiltonian function used for the construction of the
robust optimal control is shown to be equal to the Lebesque integral over a parametric set of the standard
stochastic Hamiltonians corresponding to a fixed value of the uncertain parameter. The paper deals with a
cost function given at finite horizon and containing the mathematical expectation of a terminal term. A
terminal condition, covered by a vector function, is also considered. The optimal control strategies,
adapted for available information, for the wide class of uncertain systems given by an stochastic
differential equation with unknown parameters from a given compact set, are constructed. This problem
belongs to the class of minimax stochastic optimization problems. The proof is based on the recent results
obtained for Minimax Mayer Problem with a finite uncertainty set [14,43-45] as well as on the variation
results of [53] derived for Stochastic Maximum Principle for nonlinear stochastic systems under complete
information. The corresponding discussion of the obtain results concludes this study.
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1 INTRODUCTION

During the last decades, the minimax control problem, dealing with different classes of
nonlinear systems, has received much attention from many researchers because of its
theoretical and practical importance. Basically, the results of this area are based on two
classical approaches: Maximum Principle (MP) [41] and Dynamic Programming method
(DP) [3]. In the case of a complete model description, both of them can be directly applied to
construct the optimal control.

Various forms of the Stochastic Maximum Principle have been published in the literature
[8, 9,28, 30, 37]. All of these publications have usually dealt with the systems whose diffusion
coefficients did not contain control variables and the control region was assumed to be convex.
In [4] the case of the diffusion coefficients that depend smoothly on a control variable, was
considered. Later this approach was extended to the class of partially observable systems
[5,31], where the optimal control consists of two basic components: state estimation and
control via the obtained estimates. In the nonlinear case, the so called, “the innovation based
technique” [32] and the Duncan—Mortensen—Zakai approach [25, 57] where the stochastic
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partial differential equation for the normalized conditional density function of the state to be
estimated were used. The most advanced results concerning the maximum principle for non-
linear stochastic differential equations with controlled diffusion term were obtained by the
Fudan University group, led by X. Li (see Ref. [53, 56] and bibliography within).

Since MP, mostly considered in this paper, and DP are believed to be two “equivalent”
approaches to study the optimal control problems, several publications dealing with DP
should be mentioned. There has been significant development due to the notion of “viscosity
solution” introduced by Lions in [20] (see also Ref. [40]). Beside this, some different
approaches to DP are known. Among those we can cite the elegant work of Krylov [35]
(stochastic case) and of Clarke—Vinter [18, 19, 51] (deterministic case) within the framework
of “generalized gradient”.

Faced with some uncertainties (parametric type, unmodelled dynamics, external pertur-
bations etc.) these results cannot be applied. There are two ways to overcome the uncertainty
problems:

— the first is to apply the adaptive approach [26] to identify the uncertainty on-line and then
use these estimates to construct a control [27];

— the second one, which will be considered in this paper, is to obtain a solution suitable for a
class of given models by formulating a corresponding minimax control problem, where the
maximization is taken over a set of possible uncertainties and the minimization is taken
over all of the control strategies within a given set.

Several approaches for deterministic systems are effective in this situation. One of the
important components of Minimax Control Theory is the game-theoretic approach [1]. In
terms of game theory, the control and the model uncertainty are strategies employed by
opposing players in a game: control is chosen to minimize a cost function and the uncertainty
is chosen to maximize it. In such an interpretation, the uncertainty should be time varying to
present the worst situation for the controller. To the best of our knowledge, the earliest papers
in this direction are [23] and [34]. Later, in [36], the Lagrange Multipliers Approach was
applied to the problems of control and observations with incomplete information. They were
formulated as the corresponding minimax problems. This technique, as it is mentioned
above, effectively works only for the systems where the uncertainties can be varied in time,
and, consequently, can “play” against an applied control strategy. Starting from the
pioneering work of [55], which dealt with frequency domain methods to minimize the norm
of the transfer function between the disturbance inputs and the performance output, the
minimax controller design is formulated as an H*-optimization problem. As it was shown in
[1] this specific problem can be successfully solved in the time domain, leading to a
reapproachment with dynamic game theory and to the establishment of a relation with risk-
sensitive quadratic (stochastic) control [24, 29,33, 39]. The paper [38] presents a control
design method for continuous-time plants whose uncertain parameters in the output matrix
are known to lie within an ellipsoidal set only. An algorithm for minimax control which at
every iteration minimizes approximately the defined Hamiltonian is described in [46]. In [22]
“the cost-to-come” method is used. The authors show the equivalence between the original
problem with the incomplete information and the problem with the complete information but
of a higher dimension. Recently, robust MP was derived in [14] for a deterministic Mayer
problem for systems that contain an unknown parameter from a given finite set and it was
generalized in [15] for Bolza and Lagrange problems. A comprehensive survey of different
parameter space methods for robust control design oriented to deterministic systems can be
found in [47].

For stochastic uncertain systems, a minimax control of a class of dynamic systems with
mixed uncertainties was investigated in [2]. A continuous deterministic uncertainty which
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affects the system dynamics, and a discrete stochastic uncertainty leading to jumps in the
system structure at random times were studied. The solution presents a finite dimensional
compensator using two finite sets of partial differential equations. Robust (non optimal)
controller for linear time-varying systems given by stochastic differential equation was
studied in [42, 48] where the solution is based on the stochastic Lyapunov analysis with the
martingale technique implementation. Other problems dealing with discrete time models of
deterministic and/or simplest stochastic nature and their corresponding solutions are dis-
cussed in [6,7,17,21,52]. In [50] finite horizon Minimax Optimal Control problem of
nonlinear continuous time systems with stochastic uncertainty is considered. The original
problem was converted into an unconstrained stochastic game problem and a stochastic
version of the S-procedure has been designed to obtained a solution.

The purpose of this paper is to explore the possibilities of the MP approach for a class of
minimax control problems for uncertain systems given by a system of stochastic differential
equations with a controlled diffusion term and unknown parameters within a given measured
compact set. First, for simplicity, the minimax problem belongs to the class of optimization
problems on a fixed finite horizon where the cost function contains only a terminal term
(without an integral part). The proof is based on the recent results obtained for Minimax
Mayer Problem with a finite uncertainty set [14, 43—45] as well as on the results of [53]
derived for Stochastic Maximum Principle for nonlinear stochastic systems under complete
information. The Tent Method [10-13] is used to formulate the necessary conditions of
optimality in Hamiltonian form.

2 PROBLEM SETTING

2.1 Stochastic Uncertain System
Let (Q, F, {F:};>0, P) be a given filtered probability space, that is,

— the probability space (Q, F, P) is complete,
— the sigma-algebra F, contains all the P-null sets in F,
— the filtration {F/},5¢ is right continuous: F,,: = Ng Fy = F,.1

On this probability space an m-dimensional standard Brownian motion is defined, i.e.,
(w(t),t = 0) (with W(0) = 0) is an {F},»o-adapted R"-valued process such that

EW@t)—W(s) | Fs) =0 (@ —a.s.)
E{W(t) — W)W — W1 | Fs) = —s)I (P—as.)
Ploe QW (0)=0}=1

Consider the stochastic nonlinear controlled continuous-time system with the dynamics x(¢)
given by

t t

b*(s, x(s), u(s)) dt + J (s, x(s), u(s)) dW (s) )

=0

x(£) = x(0) + J

s=0

or, in the abstract (symbolic) form,

{ dx(¢) = b*(¢t, x(¢), u(t)) dt + o*(t, x(t), u(t)) AW (¢) @
x(0) =x9, tel0,TAT > 0)
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The first integral in (1) is an stochastic ordinary integral and the second one is an Ito integral.
In the above u(f) € U is a control at time ¢ and

[0, TIxR*"x U - R”

[0, T] x R" x U —» R™"
The parameter o is supposed to be a priori unknown and running a given parametric set A

from a space with a countable additive measure m.
For any o € A denote

b(t, x, u) := (B(t, x, u), ..., b%(t, x, u))"

o*(t, x, u) = (6'%(t, x, u), . .., 6"(t, x, u))

ot x, u) == (a{a(t, X, ), ..., 0%t x,u)"
It is assumed that
Al: {F};»0 is the natural filtration generated by (W(f), t > 0) and augmented by the P-null
sets from F.

A2: (U, d) is a separable metric space with a metric d.
The following definition is used subsequently.

DEFINITION 1 The function f:[0, T] x R"* x U — R"™" is said to be an Ls(C?)-mapping if

1. It is Borel measurable;

2. Itis C?>inx forany t € [0,T) and any u € U

3. There exist a constant L and a modulus of continuity ¢:[0, 0o) — [0, 00) such that for
any t € [0, T] and for any x,u, %, u € R" x U x R" x U

£t x, u) — £, X, DI < Lix — Xl + $(d(u, i)
I/ 0,wll <L
£t x, ) — fu(8, X, D) < Llix — 2| + ¢(d(u, i)
Il fuc(t, x, u) = fuxt, X, )N < B(llx — XU + d(u, @)
(here f,(-, x, -) and f,5(-, x, -) are the partial derivatives of the first and the second order).
In view of this definition, it is also assumed that
A3: for any o € A both b*(¢, x, u) and o*(¢, x, u) are L4(C?)-mappings.
Let 49 C A be measurable subsets with a finite measure, that is, m(Ag) < o0o.
The following assumption concerning the right-hand side of (2) will be in force
throughout:
A4: All components b*(¢, x, u), 6*(¢, x, u) are measurable with respect to o, that is, for any
i=1,...,n,j=1,....mceR,xeR",ucUandte[0,T]
{:b(t,x,u) <c}e A
{oc: 0]’:“(t, xu)<cle A

Moreover, every considered function of a is assume to be measurable with respect to o.
The only sources of uncertainty in this system description are

— the system random noise W(¢),
— the priori unknown parameter « € A.

It is assumed that the past information is available for the controller.
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To emphasize the dependence of the random trajectories on the parameter « € A the Eq. (2)
is rewritten as

{ de(t) = b(t, X(0), u(®)) dt + a*(t, x*(¢), u(t)) AW (£) .

x*(0) =x, tel0,TIT > 0)

2.2 A Terminal Condition, A Feasible and Admissible Control
The following definitions will be used throughout this paper.

DEFINITION 2 A stochastic control u(-) is called a feasible in the stochastic sense
(or, s-feasible) for the system (3) if

1. u(-) e U[0, T] := {u:[0, T]1 x Q — U | u(") is {F,};o-adapted)
2. x*(t) is the unique solution of (3) in the sense that for any x*(t) and X*(¢), satisfying (3),
P{w € Q:x*() =x*(¢)} = 1

The set of all s-feasible controls is denoted by Uz, [0, T). The pair (x*(t); u(-)), where x*(f)
is the solution of (3) corresponding to this u(-), is called an s-feasible pair.

The assumptions A1-A4 guarantee that any u(-) from U[0, T] is s-feasible.
In addition, it is required that the following terminal state constraints are satisfied:

E(W* M)} =0 (G=1,...,]) )

where 4/: R" — R are given functions.
AS: Forj=1,...,I the functions h/ are Ly(C?)-mappings.

DEFINITION 3 The control u(-) and the pair (x*(¢); u(-)) are called an s-admissible control
or realizing the terminal condition (4) and an s-admissible pair, respectively, if

1. u(-) € Ug,, [0, T]

feas
2. x*(t) is the solution of (3), corresponding to this u(-), such that the inequalities (4) are
satisfied.

The set of all s-admissible controls is denoted by U, [0, T]

adm

2.3 Highest Cost Function and Robust Optimal Control

DEFINITION 4 For any scalar-valued function ¢(o) bounded on A define the m-truth
(or m-essential) maximum of p(o) on A as follows:

m- vrai max (o) := max ¢
acA

such that

mi{e e A:p(@) > T} =0
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It can be easily shown (see, for example, [54]) that the following integral presentation for
the truth maximum holds:

m-vrai max @(o) :=
acA

———j () dm 5)
Ay

sup
AgCA: m(Ag)>0 m(AO)

where the Lebesgue—Stilties integral is taken over all subsets 4y C A with positive
measure m(Ay).
Consider the cost function A* containing a terminal term, that is,

h* = E(h° (7)) (©)

Here hy(x) is a positive, bounded and smooth cost function defined on R”". The end time-point
T is assumed to be finite and x*(f) € R".

If an admissible control is applied, for every a € A we deal with the cost value
h* = E{ho(x*(T))} calculated at the terminal point x*(T') € R”". Since the realized value of a
is a priori unknown, define the worst (highest) cost

F = —I—J E{h°(*(T))} dm = m- vrai max h* )
Ay aeA

sup
Ay A: m(Ag)>0M(Ao)
The function F depends only on the considered admissible control u(f), fp <t < #.

DEFINITION 5 The control u(t),0 <t < T is said to be robust optimal if

(i) it satisfies the terminal condition, that is, it is admissible;
(ii) it achieves the minimal worst (highest) cost F® (among all admissible controls satisfying
the terminal condition).

If the dynamics x*(t) corresponds to this robust optimal control u(t) then (x*(-), u(-)) is

called an o-robust optimal pair which does not exist.

Thus the Robust Optimization Problem consists of finding an admissible control action
u(f), 0 <t < T which provides

FO .= F = minm- vrai max h*
u(t) aeAd

— 07,0
= minmax .LGA H@E(R(T))) dm(w) @®)

where the minimum is taken over all admissible control strategies and the maximum over all
functions A(a) within, so-called, the set of “distribution densities” A defined by

A= {ﬂ. = MNa) = /.t(ot)(J

€A

-1
(o) dm(oc)) >0, [ Ao) dm(a) = 1} )
JaeA

This is the Stochastic Minimax Bolza Problem.
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3 ROBUST STOCHASTIC MAXIMUM PRINCIPLE

3.1 First and Second Order Adjoint Processes

The adjoint equations and the associated Hamiltonian function are introduced in this section to
present the necessary conditions of the robust optimality for the considered class of partially
unknown stochastic systems which is called the Robust Stochastic Maximum Principle
(RSMP). If in the deterministic case [14] the adjoint equations are backward ordinary
differential equations and represent, in some sense, the same forward equation but in reverse
time, in the stochastic case such interpretation is not applicable because any time reversal may
destroy the non-anticipativeness of the stochastic solutions, that is, any obtained robust control
should not depend on the future. To avoid these problems the approach given in [56] is used that
takes into account the adjoint equations introduced for any fixed value of the parameter « and,
hence, some of the results from [56] may be applied directly without any changes. So, following
[56], for any « € A and any admissible control u(-) € U, [0, T] consider

adm

— the 1st order vector adjoint equations:

dy*() = — [b;‘é(t, xX(2), u(®) Y1) + i oy (t, x*(0), u(t))Tq}‘(t)] dr
f=

(10)
+4*(1) AW (1)
V() =c*, tel0,T]
— the 2nd order matrix adjoint equations:
d¥*() = — [b“(t, x*(t), u(t)) "PH(E) + W)L, x*(2), u(?))
+ 2 ¥ (t, x*(8), u(®)) " P (Do (t, X(0), u(?))
j_
+ 30200, u0) GO + GO FOM)
Jj=

HH (8, x*(0), u(0), Y*(0), q“(t))] dr

+ Z Qr(t)dwi(2)
P(T) = e, te [0, 7]

Here ¢* € L2 T(Q R") is a square integrable Fr-measurable R"-valued random vector,
i) e L: (Q R™) is a square integrable {F},»¢-adapted R"-valued vector random process
and ¢*(r) € L% (Q, R"™™) is a square integrable {F,},»,-adapted R"*"-valued matrix random
process. Slmllarly, C* el (Q,R™") is a square integrable Fr-measurable R"*"-valued
random matrix, ¥*(¢) € L2 (Q R™") is a square integrable {F}o-adapted R""-valued
matrix random process Q“(t) € L§_— (Q,R™™) is a square integrable {F,},»o-adapted R""-
valued matrix random process. b(t, x*, u) and H%(t,x*, u, y*, ¢*) is the first and, corres-
pondingly, the second derivatives of these functlons by x* The function H*(t, x, u, ¥, q) is
defined as

H(t, %, u, ¥, q) := b*(t, x, u) Y + tr[g" %] 12)

As it is seen from (11), if C* = C*T then for any ¢ € [0, T] the random matrix W*(¢) is
symmetric (but not necessarily positive or negative definite). In (10) and (11), which are the
backward stochastic differential equations with the {F,},>¢-adapted solutions, the unknown
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variables to be selected are the pair of terminal conditions ¢, C* and the collection
(¢%, o (= 1,...,D) of {F,},>-adapted stochastic matrices. Note that the Egs. (3) and (10)
can be rewritten in Hamiltonian form as

de*(r) = Hy(t, (), u(t)) Y1), ¢*()) dt + 0°(2, x*(2), (1)) AW (1)
x0) =x9, tel0,7]

{ (1) = —H2(t, (0, ) W0, @) di + 470 AW () 14)
YiT) =¢*, te€l0,T]

(13)

3.2 Main Result

Now the main result of this paper can be formulated.

THEOREM 6  (Robust Stochastic Maximum Principle) Let A1-A5 be fulfilled and (x*(-), u(-))
be the a-robust optimal pairs (o € A). The parametric uncertainty set A is a space with
countable additive measure m(a) which assumed to be given. Then for every ¢ > O there exist
collections of terminal conditions ¢*®, C*®) {F ). -adapted stochastic matrices

@, GG =1,....0)

in (10) and (11), and nonnegative constants y{") and v(r)( j=1,...,10) such that the following
conditions are fulfilled.:
1 (Complementary slackness condition): For any o € A

(i) the inequality |E{h°(x*(T))} — max,e4 E{R°GXT))}| < ¢ holds or u® = 0;
(i) moreover, either the inequality |E{h/(x**(T))}| < & holds or Vo o 0G=1,...,0;

2 (Transversality condition). For any o € A the inequality

@ 4 O (T)) + Z VOnEM)| <o (P-as) (16)

c@® + H(F) o (55“(]“)) + Z v(P)h )_C“(T))

Jj=1

<e¢ (P—a.s.) 17

hold,
3 (Nontriviality condition). There exists a set Ay C A with positive measure m(Ap) > 0
such that for every o€ Ay either ¢*®@#£0 or, at least, one of the numbers
§eo v("") (=1,...,1) is distinct from 0, that is, with probability one

Ve Age A |c™@) 4+ u® + Zv(‘) >0 (18)
)
4 (Maximality condition): the robust optimal control u(-) for almost all t € [0, T] max-
imizes the generalized Hamiltonian function

H(t, 7 (), u, §O (1), ¥O(8), ¢ (1))
= j HE, 3(1), w, ¥ O@), PO 1), ¢ () dm(a) (19)
A
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where
H (e, 20, u, YO @), ¥ O0), ()
= B30, 0,000, 4400) — 5 615 T O 03]
(0" X0, 1) — ) PO 1), 1) — 5] 0)
the function H*(t, ¥(t), u, y*® (), ¢»O(0)) is given by (12),

a* = a®(t, x*(), u(r)) @1

X =GETO, L), YOO = O,y O e)T
>0 := (¢"9@), ..., ¢ @), YO0 =P O),..., ¥V @)

and Y O (f), ¥O(r) verify (10) and (11) with the terminal conditions ¢*® and C*®,
respectively, i.e., for almost all t € [0, T]

() = argmax H(t, X°(1), u, v O, YO0, ) (22)

4 PROOF OF THEOREM 1 (RSMP)

4.1 Formalism

Consider the random vector space R® with the coordinates x™/ € L% (Q, R)(x € A,
i=1,...,n). For each fixed « € A we may consider

X = (xaz.l, e, xa,ni)T

as an element of a Hilbert (and, hence, self-conjugate) space R* with the usual scalar product

given by
n
(", %) 1= ‘/ZE{x%"cavf}, 151 = v/ (", x7)
i=1

However, in the whole space R® introduce the norm of the element x° = (x*) in another way:

n 1 n
N i mevraimar |S™E((iy) — | S Eeirdn (23
W = m-vraimax ; {(e)?) P AO)JP ; (i) (23)

Consider the set R® of all functions from L}_-T (Q, R) for any fixed o € .A, measurable on A
and with values in R", identifying every two functions which coincide almost everywhere.
With the norm (23), R® is a Banach space. Now we describe its conjugate space R,,. Consider
the set of all measurable functions a(x) € L%.-T(Q, R) defined on A with values in R". It
consists of all covariant random vectors a, = (a4 )(® € A,i=1,..., n) with the norm

laoll := m-vraimax /;E«aa,f} (24)
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The set of all such functions a(«) is a linear normal space. In general, this normed space is
not complete. The following example illustrates this fact.

Example 7 Consider the case when 4 is the segment [0, 1] C R with usual Lebesgue
measure. Let ¢, () is the function on [0, 1] that it is equal to 0 for « > (1/k) and is equal to £
for 0 < a < (1/k). Then fA (@) dox =1, and the sequence ¢ (a)k = 1,2, ... is a funda-
mental one in the norm (24). But their limit function lims_, o @ () does not exists among
measurable and summable functions. Such a limit is the Dirak function ¢@(a) that is equal to
0 for every a > 0 and is equal to infinity at o = 0 (with the normalization agreement that

J1 Q@) da = 1).
This example shows that the linear normed space of all measurable, summable functions
with the norm (24) is, in general, incomplete. The complementation of this space is a Banach

space, and we denote it by R,. This is the conjugate space for R°. The scalar product of
x° € R and a, € R, can be defined as

(Ao, X°) g 1= J ZE{aa‘;x“"'} dm
A=t
for which the Cauchy-Bounyakovski—Schwartz inequality evidently holds.
(a6, x°)g < llaol - IIx°|l

4.2 Proof of Properties 1-3

In this subsection consider the vector x°(7’) only.
The index « € A is said to be & A h%-active if the given & > 0

ER°GX(T))} > m%}E{ho(ia(T))} —& (25)
and, it is & A h/-active if
E(WGEX(T))) > —¢ (26)

First, assume that there exists a set of a positive measure GC.A and a set
Qc QP{w € Q} > 0) such that for all &A hl-active indices « € A we have that
NR2G*(T))I| < ¢ for all w € Q € Q and almost everywhere on G. Then selecting (without
violation of the transversality and nontriviality conditions)

O #0, w0, =0, W=0 Maedj=1,...)

it follows that ¢*® = y*@©(T) = 0, C*® = Y*E(T) = 0 for almost all w € Q and almost
eve here on G. In this situation, the only nonanticipative matrices g*®(f) =0 and
(t)=0 are admissible, and for all ¢ ¢ [0,T], as a result, H*(t,x,u,{,q) =
|//°‘ (F)(t) 0 and ¥*®(£) = 0 for almost all @ € Q and almost everywhere on G. Thus, all
conditions 1-4 of Theorem are satisfied automatically whether or not the control is robust
optimal or not. So, it can be assumed that ||h%(x*(T))|| > &(P — a.s.) for all & A h%-active
indices o € A. Similarly, it can be assumed that |\2(x*(T))|| > &(P — a.s.) for all & A h/-
active indices o € A.
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Denote by Q; C R° the controllability region, that is, the set of all points z° € R® such
that there exists a feasible control u(f) € U3, [0, T] for which the trajectories x°(£) = (x*(¢)),

feas

corresponding to (3), satisfy x°(T) = z° with probability one:

Q== {z° € R:x°(T) € 2°, u(t) € US,, [0, T], x*(0) = xo} 27
Let Q,; € R® denote the set of all points z° € R® satisfying the terminal condition (4) for
some fixed index j and any « € A, that is,

Q= {z° € R®: E{K/(z")} > OVu € A) (28)

Finally, denote by ng) C R® the set, containing the optimal point ¥°(T) (corresponding to the
given robust optimal control #(-)) as well as all points z° € R® satisfying for all « € 4

E(R() < max k (HE M) —¢

that is, Vo € A

QY := (*(T)Uz° € R E(R° ()} < max E{R°GX(T))} — ¢} (29)
[ 15
In view of these definitions, if only the control i(-) is robust optimal (locally), then
QPN NQ,N---NQy = F((T)) (P—as.) (30)

Hence, if K, K7, K3y, . . . , Ky are the cones (the local tents) of the sets Qg), Q, Uy, ...,Q
at their common point x°(T’), then these cones are separable (see Ref. [12, 13] and the Neustad
Theorem 1 in [37]), that is, for any point z° € R there exist linear independent functionals
L,G(T), 2°)s =0,1,2j;5 = 1,...,]) satisfying

!
LE(T),2°) + LE(T),2°) + Y 1(F(T),2°) 2 0 @31)
Jj=1

The implementation of the Riesz representation theorem for linear functionals ([54]) implies
the existence of the covariant random vectors v(z°)(s = 0, 1, 2j;j = 1, ..., ]) belonging to
the polar cones Kj,, respectively, not equal to zero simultaneously and satisfying

L(x°(T),2°) = (v3(2°), 2° = ¥°(T))g (32)
The relations (31) and (32), and taking into account that they holds for any z° € R, imply the
property

/
WET) +viET) + Y _WET) =0 (P-as) (33)

J=1

More details about this construction are in [10, 12, 13].
Consider then the possible structures of these vectors.
(a) Denote

Q= {* € R™: (E(R°(%)) > max E(R(F(T)) = o} U (¥(T))
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Taking into account that #°(z*) is L,(C?)-mapping and in view of the identity

1
h(x) — h(®) = he(®) " (x — %) + J tr[0h (0% + (1 — O)0)(x — X)(x — %) "1 (34)
=0

which is valid for any twice differentiable function 4: R” — R and x, X € R”, it follows that
E(R°@(T))) = E(h°)) + (h), GX(T) — 20 + E(O(I* = (DI*)}  (35)

So, the corresponding cone K at the point x°(7") may be described as

K= {z* € R*: (h2(z*), **(T) — %)) = 0} if a is & A h%-active
0 R* if « is & A A%-inactive

Then the direct sum K := @4 4K is a convex cone with apex point x*(T’) and, at the same
time, it is the tent fo) at the same apex point. The polar cone Ky, can be presented as

Koo = conv(U KOO,)
ac A

(here Ky, is a the polar cone to K C R"). Since, v(z°) = (v3(z*)) € Koo, then Ko, should
have the form

W(2°) = pOr(z°) (36)

where p? > 0 and u = 0 if « is & A h-inactive. So, the statement (1(i)) (Complementary
slackness) is proven.

(b) Now consider the set £,;, containing all random vectors z° admissible by the terminal
condition (4) for some fixed index j and any a € A. Defining for any o and the fixed index j
the set

5 = 12" € RME{h/(2*) = —¢)
in view of (35) applied for the function A/, it follows that

o _ |12 € R (W) (@ — (D)) > O} if o s & A hi-active
¥ R* if « is ¢ A W -inactive

Let Qy; = @y and K5, = @, 4K5;. By analogy with the above,

Ko = conv(U Kz;u)

acA

is the polar cone, and hence, Kjj, should consist of all
Vi) = v ") (37)

where v\ > 0 and v\ = 0 if & is & A h/-inactive. So, the statement (1(ii)) (Complementary

slackness) is also proven.
(c) Consider the polar cone Kj,. Let us introduce the so-called needle-shape (or, spike)
variation #°(£)(d > 0) of the robust optimal control #(f) at the time region [0, 7] as follows:

uﬁ(t) = [ l_l(t) if [0, T+ 5]\T5,,

u(t) € U, [0, T] if t€ Ty, (38)
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where Ts5 C [0, T] is a measurable set with Lebesgue measure |T5| = 9, u(¢) is any s-feasible
control. Here it is assumed that u(f) = #(T) for any ¢t € [T, T + J]. It is clear from this
construction that u%(f) € Usssl0, T1  and, hence, the corresponding trajectories

x°(f) = (x*(£)), given by (3), also make sense. Denote by A* := lims_,o 0~ [x¥*(T) — X¥*(T)]
the corresponding displacement vector (here the limit exists because of the differentiability of
the vector x*(¢) at the point ¢t = T). By the definition, A* is a tangent vector of the con-
trollability region ;. Moreover, the vector

T+ps

T+
g B)p=ss == hm 5! U b°(s, x(s), u(s)) dt+J

s=T s=T

a°(s, x(s), u(s)) dW(s)]

is also the tangent vector for ;, since

T+f; T+B5

b%(s, x(s), u(s)) dt + J a®(s, x(s), u(s)) dW(s)

s=T

T+ ) =X (D) + |
s=T
Denoting by Q) the cone (linear combination of vectors with non-negative coefficients)

generated by all displacement vectors A* and the vectors g°(+1), it is concluded that
K? =x*(T) + Q:. Hence

v =c® ek, (39)

(d) Substituting (36),(39) and (37) in to (33), the transversality condition (16) is obtained.
Since, at least one of the vectors v2(z%), v} (z%), v2'(z%), . .., v?!(z*) should be distinct from
zero at the point z* = X*(T'), the nontriviality condition is obtained too. The transversality
condition (17) can be satisfied by the corresponding selection of the matrices C*®. The
statement 3 is also proven.

4.3 Proof of Property 4 (Maximality Condition)

This part of the proof seems to be more delicate and needs some additional constructions.
In view of (32), (33), (36), (37) and (39), for z = x*(T) the inequality (31) can be represented
as follows

]
0 < F3(u’() := 1@ (T), ¥(1)) + LiE (D), x(1) + Y 15(x*(T), x*(T))
j=1

=2 [uff)(hg(xa(T ), X(T) = (D)) + (D, 2(T) = x*(T)) g

aeA

+Zﬁwwmnw>wm4 (40)

valid for any s-feasible control 1°(?).
As it has been shown in [56] and [53], any #°(f) € U
trajectory variation

[0, T] provides the following

feas

X() — X0 = Y () + 2°(O) + o2 (2) a1
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where y*(£), z%*(f) and 0%*(¢) are {F, 1}1>0-adapted stochastic vector processes satisfying (for
the simplification of the calculations given below, the argument dependence is omitted) the
following equations:

dy’ = byordr + i[o;:’ﬁ“ + A%y, AW “2)
yo=0
where
B = B0 F 0. u0), 0¥ = a6, 7). i(0) @3)
Ac® = [a¥(t, (1), u'(1) — 0™ (t, ¥*(0), (1))

(xr, is the characteristic function of the set 75),
2% = [b22% + 1B*(t) + Ab*yr,1dt
m
+ ) [0¥2" —329(0) + Ao (D)7, JAW (44)
j=1
2%0) =0
where
te[b21 (¢, ¥(8), u(H) Y ()]
B*(t) .= :
tr{B2(t, ¥(2), (1) Y24 (0)] “45)
AB* = b(t, (1), W’ (F)) — b*(t, X*(F), u(t))

0¥ = a¥(t,x(t), u(t))

trfo®Y (¢, ¥(2), u() Y°*(9)]
+9(f) = : G=1,...,m)

trlo2(2, X(0), u(0)Y*(1)] (46)
Ac¥ = a¥(t, ¥(1), u (1)) — 0% (2, X(t), i(t))

Y2 =y ()™ (¢)

and
sup E{|Ix*(H) — (1)I1*) = 0(6")
te[0,7]
sup. E{IY™ (01} = 0(%)
telo,
47
sup E{I2*(0)I1*} = 0(6%) @D
tef0,T]

sup Ello2*(1)|I* = o(6*)
tel0,7]

hold for any o € A and k > 1. The structures (42)—(46) and the properties (47) are guar-
anteed by the assumptions A1-A4.
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Taking into account these properties and the identity

!
hy(x) = he(X) + J hy(X + 0(x — X))(x — X) dO (48)
0=0
valid for any L4(C?)-mapping h(x), and substituting (41) into (40), it follows that

0 < F5(u’(-) = j [ (ROG(T)), y*(T) + 2°(D)) g + (@, y*(T) + (1))

acA
+ V2 RLGEHT)), y*(T) + (1)) g + uP G DWHT), Y (D) g
+ v‘” h GHD)YX(T), y*(T)) ] dm + 0(5) (49)

In view of the transversality conditions, the last expression (49) can be represented as follows:

0 < F3()) = — j E(¥=O(T)Y* (0]} dm + o(6) (50)

aeA

The following fact (see Lemma 4.6 in [53] for quadratic matrix case) is used.

LEMMA 8 Let Y(-), ¥,()) € L%(0, T; R™), P() € I2(0, T; R™") satisfy

dY(r) = O(O)Y (1) + z Wi(f) AW

j_.

dP(t) = ©(O)P(1) + Z 0;(H) aw’
j=1

with

() € L0, T; R™™), () € L%(0, T; R™")
Q) € L>(0, T; R™™),  ©() € Lx(0, T; R™")

Then

E{t[P(T)Y(T)] — t{P(0)Y(0)]}

=0

T m
= E“ (tr[®(t)Y(t)] + tr[P()D(1)] + Z Qj(l‘)‘l’j(t)) d,} (51)
j=1

The proof is based on the direct application of Ito’s formula.
(a) The evaluation of the term E {llla'(”)(T )Ty‘S“(T )}. Applying directly (51) and taking into
account that y%*(0) = 0, it follows that

E{!/Ia'(e)(T)Tyéu(T)} — E{tr[y‘s“(T)lll“‘(E)(T)T]}
T m
_ } : G.E AT Ag¥
E[JI=0“['=I q] (t) A :|XTth}

J
T
= E{ J trlg () " Ac®ly 7, dt} (52)
t=0
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(b) The evaluation of the term E{$*®(T)" 2*(T)}. In similar way, applying directly (51)
and taking into account that z°*(0) = 0, it follows that

E{I/Ia'(e)(T)Tz(sa(T) = E{tr[zéa(T)l/Ja'(s)(T)T]}

T m
- 1 a@aT L1 w7+
_E“ Otr[(zB“w 0 +2;q

1=l

m
+ (Abawﬂl.(ﬁ)T + Z qaj‘(s)TAO'z](t)y(sa) XT(;:] dt}

Jj=1
The equalities

m

tr [B"‘(t)t/f""“)(T)T + 00T (t)] = t{H (Y™ ()]
j=1

Jj=

T m

E “ “[Z q“f'“’(tfAa:f(t>y5“(t>]xn dt} = 0(6)
t=0 j=1

imply

T

EWOm () = £

t=0

trBH O @) + Abm(’)‘/’a'(s)(’fxn] dt} +o(d)  (53)

(c) The evaluation of the term (1/2)E{t[¥*®(T)Y**(T)]}. Using (42) and applying the Ito
formula to Y%(f) = y‘s"‘(t)y‘s"(t)T, it follows that (for the details see Ref. [53])

m
dy> () = [bg Y+ YbT + 3 (0¥Y™0¥T + B + By ]dt
j=1

m ) ) ) . . 54
1 + Z(O_:j Y(Sa + Y‘s‘”aﬁﬂ + (Ao.ajylsaT + y&oon.oij)XT‘i )dWJ ( )

=

Y&a(o) =0
where
ng = (Ac¥Ac¥T + Gf;jyaaAGaj T)Xn

Again, applying directly (51) and taking into account that Y%*(0) = 0 and
T m

E{J Z Q;!.(s)(t)(Aa,ajyéuT +y6aAO.ajT)XT6dt} = 0(5)
t=0 j=1

it follows that
T
E{t¥Y*O(T)Y* (D)} = E J (—tfHZ Y ()] + tr[Ac*T PP Ag® ]y 7, )dt + 0(8)  (55)
=0
In view of the definition (20)
6H = H(t, % (1), v’ (1), ¥ O ), PO (), ¢> (1))

=M, X @), wt), y°O@0), P O0), )

= J (Ab“Tn//(”) + tr[g*@TAc®] + %tr[Aa“T‘I’“'(”)Ao“])dm (56)
acA
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Using (52),(53), (55) and (56), it follows that

T
E” SHOxz, dt}
=0

T
= E“ J (Ab‘”n//“) + tr[g*®T Ac*] + ltr[Aoﬂ\}ﬂ"-@)Ao"‘]) dmyz, dtl
t=0 JacA 2 "

— WD) + PO+ 3 [ B OO o) 67

Since
YT + 22%(T) = 6A* + o™(T)
where A* € K¥ is a displacement vector, and y*)(T) = c¢*® € K, then
WD), XD + 24T = (™, M%) +0(8) < 0 (58)

for sufficiently small 6 > 0 and any fixed ¢ > 0. In view of (50) and (58), the right-hand side
of (57) can be estimated as

T
E{ IRZC dt} = 60,8 +3 [ B ODY=DN dn+ o(6) < o3
Jt=0 Jac A
Dividing by ¢, it follows that
T
5;‘E[ J (5’)-((t)xn_dt] <o(l) (59)
=0

1=l

Using the lemma 1 from ([37]) for
Ts = [to — 0uPB1s o + 0Byl (B1, By = 0; By + B, > 0)
and {d,} so that 5, — 0, and in view of (59), it follows that

T
56| onoms, o} > 8+ B <0 (60)

1=

for almost all #, € [0, T]. Here if ) =0 then f; =0 and if = T then f, =0, but if
to € (0, T) then B,, B, > 0. The inequality (60) implies

E{0H(®)} <0 61)
from which (22) follows directly. Indeed, assume that there exist the control i(z) € Ug,, [0, T
and a time ¢y € (0, T) (not belonging to a set of null measure) such that
P{w € Q(p)} =p >0 (62)
where Qy(p) := {w € Q: 0H(ty) > p > 0}. Then (61) can be rewritten as

0 > E{0H(1)} = E{x(w € Qo(p))dH(1)} + E{x(w & Qo(p))dH(t)}
> pP{w € Q(p)} + E{x(@ & Qo(p))dH()} = pp + E{x(w & Qo(p))dH(t)}

Since this inequality should be also valid for the control #(¢) satisfying

e = u(t) for almost all w € Qy(p)
“ lu( for almost all w # Qo(p)
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there is the contradiction
0> E{6H(1)} = pp + E{x(e & Qo(p))dH(1)} = pp > 0

This completes the proof. |

5 DISCUSSIONS

5.1 The Important Comment on the Hamiltonian Structure

The Hamiltonian function H used for the construction of the robust optimal control u(¢) is
equal (see (19)) to the Lebesgue integral over the uncertainty set of the standard stochastic
Hamiltonians H* corresponding to each fixed value of the uncertain parameter.

5.2 RSMP for the Control-Independent Diffusion Term

From the Hamiltonian structure (20) it follows that if 6% (z, x*(¢), u(t)) does not depend on
u(?), then

arg max H(t, °(1), u, >0, ¥ (1), ¢ V(1))
u
— arg mauxj HA X0, u, YO @), PO (1), ¢ (1)) dm(x)
ue .A
= argmax [ HE(t, (1), u, y*O(0), ¢ @) dm(x) (63)
u J A

So, it follows that 2nd order adjoint process does not participate in the robust optimal
constructions.

5.3 The Complete Information Case

If the stochastic plant is completely known, that is, there is no parametric uncertainty
(A = ap, dm(e) = (a0 — atp)dar), then from (63)

arg max H(E, (1), u, Y1), PO O@), ¢>O(2))
= arg max jA HE(t, X(2), u, Y*O(t), PO (8), ¢ (t))dm(a)
= arg max Ho (2, 32), u, YO (2), PO 1), ¢ (2)) (64)
and if ¢ — 0, it follows that, in this case, RSMP converts to Stochastic Maximum Principle

(see [28, 53, 56]).

5.4 Deterministic Systems

In the deterministic case, when there is no any stochastics

(a%(t, (1), u(1)) = 0),
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the Robust Maximum Principle for minimax problems (in Mayer form) stated in [14] and
[16] is obtained directly, that is, for ¢ — 0 it follows

arg max H(t, %°(2), u, YO @), PO), ¢>O (1))
= arg maJ(J B(t, %(2), u) Y (F)dm(or) (65)
ue A

When, in addition, there is no parametric uncertainties (A = o, dm(a) = d(ox — o) dov),
the Classical Maximum Principle for the optimal control problems (in Mayer form), is
obtained [41], that is,

arg max H(t, (0, u, y> O, YO, > O1)
ue

= arg max H(t, x(2), u, Y(t), Y(2), q(t)) = arg Téag& b(t, x(2), u)Tt//(t) (66)

5.5 Comment on Possible Non-fixed Horizon Extension

Consider the case when the function 4°(x) is positive. Let us introduce a new variable x"**!
(associated with time #) with the equation

Pl =1 67
and consider the variable vector x = (x', ..., x", x"*!) € R**!. For the plant (2), added with
(67), the initial conditions are as follows

x(to) =x0 € R",  x""(#) = 0 (for all « € A)
Furthermore, we determine the terminal set M for the plant (2), (67) by the inequality

M = {x e R A (x) = 1 — x" < 0)

assuming that the numbers #), 7 are fixed (f < 7). Let now u(¢),x(¢),0 <t < T, be an
admissible control that satisfies the terminal condition. Then T > t, since otherwise the
terminal condition x(#;) € M wouldn’t satisfied. The function 4°(x) is defined only on R”,
but we prolong it in to R"*!, setting

o K (x) for »t!' <1
) = [ BOx) + @ —1)? for x>t
If now T > t, then (for every o € A)

REn) = E@) + (6 —1)° > F((@)

Thus F° may attain its minimum only for 7' = , that is, we have the problem with fixing time
T = 1. By this, the Theorem above gives the Robust Maximum Principle only for the
problem with a fixed horizon. The non-fixed horizon case demands a special construction and
implies another formulation of RMP.
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5.6 The Case of Absolutely Continuous Measures for Uncertainty Set

Consider now the case of an absolutely continuous measure m(Ay), that is, consider the
situation when there exists a summable (the Lebesgue integral fRS px)(dx' v .. vdx) is
finite and s-fold) nonnegative function p(x), given on R’ and named the density of a measure
m(Ay), such that for every measurable subset .4y C R® we have

m(A0)=JA p(X)dx,dx:=dx'v-..\/dx"

By this initial agreement, R® is a space with the countable additive measure. Now it is
possible to consider controlled object (2) with the set of uncertainty A = R®. In this case

j F(x)dm =j FIp(x)dx (68)
Ay Ay

The statements of the Robust Maximum Principle for this special case is obtained from the
main Theorem with evident variation. It is possible also to consider a particular case when
p(x) is defined only on a ball A C R* (or on another subset of R®) and integral (68) is defined
only for 4y C A

5.7 Uniform Density Case

If no a priori information on some or others parameter values and the distance on a compact
A C R’ is defined by the natural way as ||y — a3 ||, then the Maximum Condition (22) can be
formulated (and proved) as follows:

u(t) € argmax H°(Y(2), x(¢), u)

uel

uelU

= arg maxJ HE(E, 3(0), u, Y*O ), P*OF), ¢*O(f)) dot
A
almost everywhere on [ty, ;] (69)

that represents, evidently, a partial case of the general condition (22) with an uniform
absolutely continuous measure, that is, when

dm(a) = p(a)do = ﬁdcx

with p(a) = m~'(A).

5.8 Finite Uncertainty Set

If the uncertainty set A is finite, the Robust Maximum Principle, proved above, gives the
result contained in [15, 43, 44]. In this case, the integrals may be replaced by finite sums. For
example, formula (7) takes the form

F% = max h°(x*(1))
acA

and similar changes have to be done in the further formulas. Now, the number ¢ is super-
fluous and may be omitted, and in the complementary slackness condition we have the
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equalities, that is, the formulations in the main theorem should look (when ¢ = 0) as follows:
Jor every a € A the equalities

u® - (EROE TN} - F) =0, v - EWGET)} =0 (70)

holds.

5.9 May the Complementary Slackness Inequalities be
Replace by the Equalities?

It is naturally to ask: is it possible, in general case, to replace the inequalities by the equalities
as it was done above or not? Below we present an example that gives the negative answer.
Consider the case of the absolutely continuous measure for s = 1(R® = R') with the density
p(x) = e, Furthermore, take, for the simplicity, n = 1. Consider the family of the simple
controlled plants given by

2

ol _ o
xd _fa(x5u)__1+a2

+u

with fp = 0,4, = 1/2,x*1(0) = 1,2 € [—1, 1], U = [~1, 1] and no noise at all. The terminal
set M is defined by the inequality 4'(x) < 0 with 4'(x) = x. Finally, we take the cost function
as h%(x) = 1 —x. It is evident (applying the main theorem) that the optimal control is as
follows: u(f) = —1,0 <t <1/2and F 0 = 1. But the complementary slackness condition in
the form (70) implies that u® = v(? = 0 for all « and any ¢ = 0. Consequently the trans-
versality condition gives ¥ ©(#) = 0. But this contradicts to the nontriviality condition. Thus
the inequalities in the main theorem cannot be replaces by equalities (70).

6 CONCLUSION

In this paper the Robust Stochastic Maximum Principle (in Mayer form) is presented for a
class of nonlinear continuous-time stochastic systems containing an unknown parameter
from a given measured set and subject to terminal constraints. Its proof is based on the use of
the Tent Method with the special technique specific for stochastic calculus. The Hamiltonian
function used for these constructions is equal to the Lebesgue integral over the given
uncertainty set of the standard stochastic Hamiltonians corresponding to a fixed value of the
uncertain parameter.

The future investigation may be focused on the Linear Quadratic Stochastic Problem
which seems to us to be solvable by this technique also. However, it will be considered in a
subsequent paper. Furthermore, it makes sense to continue this study in the following
directions:

e formulate RSMP for minimax problem in the general Bolza form,

e consider the terminal constraints with the additional integral terms,

e consider the terminal constraints including the probability of some events,

o formulate RSMP for minimax problem not for a fixed horizon but for a random stopping
time.
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