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The paper examines the problem of sliding mode manifold design for uncertain nonlinear system with
discontinuous control. The original plant first is decomposed such that the problem is divided into a
number of simpler sub-problems. Then the block control recursive procedure is presented in which
nonlinear sliding manifold is derived. Finally combined high gain and Lyapunov functions techniques are
applied to establish hierarchy of the control gains and to estimate the upper bounds of the sliding mode
equation solutions.
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1 INTRODUCTION

The problem of decomposition and design robust control for dynamical system to be con-
trolled is one of interesting problem in the control theory. A fruitful and relatively simple
approach to solving this problem, especially when dealing with multivariable nonlinear
uncertain is based on the use of Variable Structure Control approach with sliding mode,
Utkin [1]. First and foremost, this enables high accuracy and robustness to disturbances and
system parameter variations to be obtained. Second, the control design problem is con-
veniently divided into two sub-problems: (a) the design of nonlinear sliding surfaces
enforcing motion according to the specified closed-loop performance, and (b) determination
of a control law providing stable motion in the sub-state space of the surface.

In order to illustrate the potential of decomposition with the use of the above technique,
consider the following system subject to uncertainty:

x =f(x,t) + B(x, Hu + g(x, 1) 0))
where x € X C R" is the state vector, u € U C R" is the control vector to be bounded by
luil <Up con Uy >0, u=_u,..., u,,,)r. )

The unknown mapping g(x, f) characterizes external disturbances and parameter variations
which should be not affect the feedback systems. It is assumed the vector fields f(x, f) and
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&(x,7), and the columns of B(x, ) are smooth and bounded mappings of class (i,
f(0,7) =0, and rank B(x, t) = m for all x € X and ¢ > 0. The standard sliding mode design
procedure comprises of the two sub-problems.

First, the nonlinear sliding manifold in the state space of the system

sxX)=0, s=(s1,...,5m) 3)

must to chosen such that the matrix GB(G = 0s/0x) has full rank for x € X and ¢ > 0, and
the sliding mode (SM) equation

x=fx,0)+glx1), sx)=0 @

where f, = (I, — B(GB)—IG)f and g, =, — B(GB)”‘G)g, has the desired properties,
including stability as a minimum requirement. Secondly, a discontinuous control

n .
‘ _u(x,f) if si(x) >0 .
u,(x,t)-__[ui_(x,t) if si(6) < 0 i=1,...,m 5)
is introduced to guarantees convergence of a projection of the motion of the closed-loop
system in the subspace s, described by

s = Gf + GBu + Gg

where u; (x, t) and u; (x, f), are smooth functions to be selected. If g(x, f) satisfies the so
called matching condition, Drajevonic [2] g(x, t) € span B(x, t), i.e. there exists vector u(x, t)
such that

gx, 1) =B(x,Hu(x,t) VxeXandt>0 6)
then g, = (I, — B(GB)_‘G)B,u = 0. In this case, SM equation (4) reduces to simply:
x=fx1, sx)=0 )

Note this equation has the reduced order (» —m), however, it is still nonlinear and
nonautonomous. One possible approach to ensuring stability of the nominal system (7), is
connected with the input—output linearization technique, Isidory [3]. Another approach is the
“backstepping” that based on the use step by step of Lyapunov functions, Krstic [4].

In this paper the universal decomposition block control method, Drakunov [5], is adopted
to design a nonlinear time-varying sliding manifold (3) which stabilizes the perturbed SM
equation (4). Another important aim is to provide robustness of the sliding mode motion with
respect to non vanishing perturbation, g(x, ) in cases where it does not satisfy to the
matching condition (6). A solution for the control of nonlinear, time-varying plants with both
matched and unmatched uncertainties is offered here. A solution is achieved by a combi-
nation of three techniques:

First, the block control method is applied to decompose the control law synthesis problem
into a number of sub-problems of lower order which can be solved independently of one
another. For, a special state representation of the system must be used which will be referred
to as the Block Controllable form (or BC-form). This is achieved either by multiple
decomposition of the original system under some structural conditions on unmatched
uncertainties, employing the integral method, Loukianov [6].

Secondly, the sliding mode technique is used to compensate the matched uncertainty.
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Finally, a high gain approach is used to obtain hierarchical fast motions on the sliding
manifold, the goals being to achieve stabilization of the sliding the mode equation and
compensation of the unmatched uncertainty.

Note that the block control approach has, in fact, successfully been employed for control of
linear systems, Dodds [7], Loukianov [8], including linear systems with delay, Escoto-
Hernandez [9]; for stabilization and regulation of nonlinear (including mechanical) systems,
Loukianov [10, 11], Utkin [12, 13]; for robot and automotive control, Loukianov [14, 15]; for
electric motors and power systems control, Loukianov [16, 18], Sanchez [17]. Here
the possibility of applying the same method for obtaining upper estimations and bounds
of uncertain nonlinear system solutions, is investigated.

2 CONTROL METHOD
2.1 Block Representation of a Class of Nonlinear Systems

The essential feature of the proposed method is the conversion of the system (1) to the
BC-form consisting of » blocks:

x1 =f1(x1,8) + Bi(x1, )x2 + g,(x1, 1) (82)
x,' =fi(ii, t)+B1(i1’ t)xi+] +gi(ii9 t)’ i= 29 ceay b — 1 (8b)
x, = f,(Xr, ) + B.(X,, Du + g,(%,, 1) (8¢c)
where the vector x is decomposed as x = (x,xz,...,X,, x4, X=(x1,...,x)T,

i=2,...,r, X is an; x 1 vector, and the indices (n;, ny, ..., n,) define the structure of the
system and satisfy the following relation:

,
n<m=<---<n<m and Zn,-:n. )
i=1

The matrix B;, before the fictitious x;;; in each ith block of (8a)—(8c), has full rank, that is
rankB; =n, Vxe€eXCR" and te€l0,00), i=1,...,r (10)

The procedure of reducing the system (1) to the BC-form (8a)-(8b) based on the integral
transformation method, Luk’yanov [6], as well as conditions of the BC-form existence, are
presented in Appendix A.

The relation (9) means n; = n;;y or n; < niy1. Let us first consider the plant with the
structure

n<ny<---<n. <m. (11

2.2 Block Recursive Transformation
The following assumptions on the bounds on the unknown terms in (8a)—(8c) are stated:

(H1) There exist positive constants g;; and d; such that

lig,Cer, Ol < guilixi |l + di,
g2 (%2, DIl < garllxill + g22llxall + 2,
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i -
g Ol < D gyllll +di, i=3,...,r—1.
J=1

Taking in the account the structure (11), the following recursive transformation is
introduced:

2 =X1 = ®1(x1, t) (123)
~ X1, 8) + ki D1(xy, ¢ _
2 =By(%1, xy + [f‘( 4 0‘ 1 )] = Oy, 1) (12b)
P fi(xi, 1) + ki, t
Zir1 = Bip1(Xi, Oxiy1 + [f( ) 0 i€ ):‘
=@ (Xig,0), i=3,...,r—1 (120)

where z; is a n; X 1 new variables vector, k; > 0, E,‘_H = [:’ ], E,=[0 I, ]
E;, € RMn—m)xnis I,,,,—n, is the identity matrix. i.2

PROPOSITION 1  The transformation (12a)—(12c) reduces the system (8a)—(8¢) to the fol-
lowing desired form:

21=—ku+Enn+g(z,0) (13a)

% = —kizi + Ei12ip1 + 8%, 1), i=2,...,r—1 (13b)

2 =£.(z,1) + B.(z, Du + 8,(z, 1) (13¢)
where z = (21, ..., z,.)T,j—",(z, X,+1,1) is a bounded function, rank B, = n;, B, = B,_,B,.

The proof is given in Appendix B.

2.3 Discontinuous Control

In order to generate sliding mode in (13a)—(13c), a natural choice of the sliding manifold
using transformation (12a)—(12c), is

=0, 7, =0, 0. (14)

Then, taking in the account the bound (2), the following discontinuous control strategy, is
proposed:

u = —Upsign(B'z,). (15)

PROPOSITION 2 The control law (15) guaranties the convergence of the closed-loop system
motion to manifold z, = 0 (14) in a finite time defined as

1
<ty +;1'“zr(t0)||2, n > 0. (16)

The proof is given in the Appendix C.
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2.4 Robustness to Unmatched Uncertainty

For the system constrained to the sliding surface z, = 0 the system (13a)—(13c) reduces to

2 =—kizi + Enz +g,(z1,1) (172)
5= —kzi + EiZi1 + 8, 1), i=2,...,r—1 (17b)
Zr—1 = —kr12r-1 +gr(zr—l’ t)' (170)

Thus now, the original stability analysis problem is reduced to analysis of robustness property
of a reduced-order sliding mode dynamics (17a)—-(17c) which can be considered as linear
system with nonlinear perturbation. Note that this perturbation is unmatched with respect to
the control # in (8a)—(8c). It will be shown that the convergence rate of the linear part of
(17a)—(17¢) is defined by values of coefficients ki, ..., k,—;. For, the bounds from the
physical constraints on the original system (8a)—(8c) (see Assumption H1) may be rewritten
by using the change of variables (12a)—(12c) as

(H2) There exist positive constants g;; and d;, such that

llg1(z1, DIl < qullzill +di (18a)

llg2(z2, 1) < gu2llz2ll + kigaillzi ]l + 2 (18b)

1853, Ol < g33lizsll + kagsalizall + kg llzi |l + d3 (18¢)
i—1

12 Ol = gidllzdl + >k Pqijligl +din i=4,....r—1. (18d)

J=1

To achieve the robustness property with respect to unknown but bounded uncertainty, the
controller gains ki, ..., k,— have to be chosen hierarchically high. Thus, since g, does not
depend on k;, the value of this coefficient can be chosen so high that the term k;z; in (17a)
will be dominate. By block linearization procedure, the term g, depends on &; but not on
ky, ..., k—1 (see Appendix B). Then for fixed k;, the appropriate choice of value of k&,
provides the dominations of term kyz, in the second block of (17b), and so on.

In order to establish property of the sliding mode motion on the surface z, = 0, the fol-
lowing hierarchy of the control gains ki, ..., k.—; with respect to the given bounds on the
unknown terms of (17a)-(17c), is proposed:

ki > qu (192)
ky > qn +kiguonn, o =i —qn)”" (19b)
ks > 33 + kagaoons + K2 gaions, 023 = (b — g — kigniou) ™', o3 = oiaos (19¢)
i1 i—2 -1
ki > qii+ Zlc;’-j)qijaj,i’ Oj1,i = (ki—l = qi-1,i-1 — Zk}'—j)qi—l‘jdj,i—l) ,
j=1 Jj=1
0,i = O i—1%i—1,i i=4, v b — 1. (19d)

PROPOSITION 3 Let the Assumption H2 holds, and the values of positive scalars
ki, ..., k1 satisfy the inequalities (19a)~(19d). Then there exist positive scalars v;; and h;,
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i=1,...,r—1,j=1i,...,r—1 such that the solutions of system (17a)—-(17c) are esti-
mated by

1
|IZr—l(t)" < Vr—1,r-1 exp[i O‘r—l(t - tO)] + hr—-l (203)

1
HZr—Z(t)” =< Yr—2,r-2 exp[" 'z‘ar_z(t - to)}

1
+ V-2t exp[" Ear—l(t - to)] + hr—2 (20b)
r—1 1
Izl < Zy,»d- exp[—zaj(t - to)] +hi, i=1,...,r=3 (20c)

and these solutions are uniformly ultimately bounded, i.e.

tlir(r)losup ez <h;, i=1,...,r—1. 20

The detailed proof which is constructive since it establish property of the sliding mode
motion on the surface z, = 0, and provides the required values of the controller gains
ki, ..., k—; is derived in Appendix D. It is interesting to note that with increasing the values
of ki, ..., k.1 the values of bounds 4; became arbitrary small. But in this case the domain of
sliding mode stability (C1) (see Appendix C) can be decreased since function f, depends as
well on gains ki, ..., k.

3 CONCLUSIONS

In this paper the decomposition block control method has been formulated for the control of
a uncertain nonlinear system which can be transformed into a BC-form. This method
combined with high gain technique enables to design constructively a sliding mode based
controller whose gains are selected at each step of the algorithm in order to satisfy condition
based on the given uncertainty bounds. The fact that this controller guarantees overall sta-
bility has been shown using Lyapunov techniques. In order to render the method practicable,
future research should be directed to design an observer for nonlinear uncertain system.
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APPENDIX A

Block Decomposition Algorithm

The procedure of reducing the system (1) to the NBC-form described by

X, = f,(xr, ) + By(x, Ox,—1 +8,(x/, 1)
x; = fi(%, ) + Bi(x;, )xi—1 + gi(xi, 1),i=2,...,r—1 (A1)
X1 :fl(x’ t) +Bl(x1 t)u +gl(x’ t)

wherex:(xl,...,x,)T,.i:,- =(x,-,...,x,)T,x,~ €X;CR"i,dimX; =rankB; =n;,i=1,...,r,
with the structure

m>ny >ny--->H,, E n=n
consists of series of steps.

Step 1 Assume that the matrix B(x, f) has an (7, x m) block, B;(x;, X2, ), such that

rank By =rankB =n; <m Vx€ X and V¢t >0 where B(:) = [;'2(('))], x = (x1,x12)7,
- - 2

x; € X1 CR",x12 € X1 CR"™. At this point we introduce the following instrumental

assumptions which will be carried for each step of the procedure.

(A11) The Pfaffian system

Qi(d) = dxyp + Ay (x1, x12, ) dxy =0,  A(x, 1) = —Bi2(x, B (x, 1) (A2)
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is completely integrable, that is the following conditions, Luk’yanov [6]:

0 % (0, 0dy "h d

—, j=1,...,n—n A3
Oxg & “ﬂaxk Oxy — G Oxy J G (A3)

obtained by using the well known Frobenius Theorem, hold, where Q,(d) is a differential
one-form, A(x) = {a@,},j =1,...,n—ny, o and B denote various pair wise combinations
from the set of numbers {(n — ; + 1), ..., n}, ¢ is a parameter, and B} = B,T[Bl,Blr]".
(A12) The unknown mapping g(x, ) can be decomposed in the form

glx, 1) = g"(x1,x12, 1) + g"(x12, 1)
where g"(x, ) satisfies the matching condition, namely
2" (x, t) € span B(x, ?).

Under Assumption All, it is possible to show that a solution of the Eq. (A2) is given by

- - - 0 -
X2 = @y(x1,t,¢), @ =(P,..., (pl.n-—;u)T’ rank (B—cl =hn- ”1)
where ¢ = (cy, - ..,c,,_;,,)T is a vector of integration constants. Using Implicit Function
Theorem, the vector ¢ can be derived as ¢ = ¢,(x1, X12, 1), ®; = (@11, - .-, q’l.n-—?u)r’ and be
taken a local change of state space coordinates:
'VZ = (p](xl1x129 t)

transforming the system (1) under Assumption A12 into

Xy = 5061, X5, 1) + 8,63, 1) (Ada)

X1 =f1(x1, %, 1) + Bi(x1, x5, Hu + g,(x1,X), 1) (A4b)

where x; € X; C R™, x, €X)C R and rank B(x1, X}, t) = n;. The following assump-
tion is fundamental to derive the BC-form.
(A13) The mapping f* in the subsystem (A4a) is affine on its first argument, having the form

Now the following three possible cases are considered:
(i) rank B)(x,,t) = 0.
(ii) rank B)(xy, 1) =iy = n —n1y.
(ili) rank B)(x},t) =n, < n—ny.
The first case is equivalent to have an uncontrollable system. For the purposes of this work, it

is assumed in the sequel that the system is locally controllable. In the second case, after
defining x, = x}, f, = f3, B, = B}, and g, = g}, the NBS-form is

Xy = [o(%x2, 1) + Ba(x2, )x1 + g5(x2, 1)
xl =fl(x|$x27 t) +Bl(x|5x2, t)u +gl(xl9x29 t)
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If n, < n — ny, however, a second step is necessary in which the system (A4a) with (A5) is
further decomposed and transformed with x; regarded as a fictitious control vector, as well as
system (1) on the first step.

Consider the system obtained at (¢ — 1)th step:

X = f1 1) + B (X, 01 + 8, 1) (A6a)
..x,' =f,-(x,-, ...,.x{l,t)+B,~(x,-, . .,x{,,t)x,-_| +gi(x,~, . ,,.qu,t), i= 2, ceesqd — 1,

X1 =f‘(X|, - ,x;, t) +Bl(x1, . ,x;, t)u +g,(x1, e ,x;, t) (A6b)
where x = (xi, . .. ,x;)T, x, € X; C R, x; € X; C R¥, rank B; = 7;.

Assume now that rank B, # 0, that is, the original system is locally controllable. In the
case rankB) =ng=n—n; —--- — g1, we define x, =x.f, =f,. B, =B, 8, =g,
and the algorithm terminates with Eqs. (A6a)-(A6b) having the desired BS-form. If
rank B, =iy <n—iy —--- —iig_ we proceed with the gth step.

Step q The subsystem (A6a) with input x,_,, is partitioned as

xq2 =fq2(xq!xq2, t) + BqZ(xq’xtﬂ» t)xq—l +gq2(xqa quv t)
kq =fq(xq’ Xq2, H+ Bq(xqs X425 t)xq—l + gq(xq9 Xq25 )]
where x; = (xq,xqz)T,xq €eX, C Rﬁq,xqz eXpC R-m——fg rank B, = rankB; = ng.
For this step, the Assumptions A1l and A12 are generalized as follows:
(Aql) The corresponding Pfaffian system
Qy(d) = dxpy +Ay(xg2, X4, )dx, =0, A;= —quB;r

is completely integrable.
(Aq2) The unknown mapping, g (x,, f) can be decomposed in the form

g;(x;; t) = g:;(xq29 xqa t) +g;(xq2» t)
where g7 (x,2, X4, t) satisfies the matching condition, namely
/ /
g, (x,, 1) € span B, (x,, 1).

Proceeding as in the first step, under the previous assumptions, we may find a local change of
coordinates given by

x:;+1 = @,(xq2, Xg, 1)
such that the system is described by

X1 =L a1 (q X410 0) + 8441 (g, X041, )
J'c,-:f,.(xi,,..,x/‘l+l,t)+B,-(x,~,...,x;H,t)x,-_l +g,-(x,-,..., ;_H,l), l=2,,q
xl =fl(x]5"'5-{q+lvt)+81(xl3--'9x;+|,t)u+g|(x]’v--’%.'.],t)
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with rank B; = nj,j = 1, ..., q. In the same way, the Assumption A13 for step g is stated as:
(Aq3) The mapping f ; +1(%g, X, 1, 1) is affine on its first argument, namely

Lo Cq X, ) =Fo (0 + By (0, 0%
From the previous algorithm, we may state the following result:

LEMMA 1 Assume that the system is locally controllable, and at each step of the NBC-form
algorithm the Assumptions Aql, Aq2 and Aq3 hold. Then, there exists an integer v < n such
that the system (1) takes the NBC-form.

Remark A1  For the purposes of the work, it is more convenient to rewrite the obtained NBC
form (A1) by renumber the states by taking i = — j + 1, so we obtain

x; = fi(x;, ©) + Bi(x;, xip + gi(xi,0), i=1,...,r—1
xr =fr(-i'rs t) + Br()—tr, t)u +g,()_cr, t)

where now rankB; =n; and ny <np <.-- <n, < m.

APPENDIX B

Proof of Proposition 1 (Block Linearizing Transformation Algorithm)

In order to prove the proposition the method of induction will be used, considering
xi1,i=1,...,7— 1, as a fictitious control vector in each ith block of (8a)~(8c).

Step 1 Let the fictitious control x; in the first block (8a) rewritten as

21 =f1001, 1) + Bi(x1, )xz + g (x1, 1) (B1)

be selected of the form
x; = =B} (x1, Of 1(x1, 1) + B (x1, H—kiz1 + Eni22] (B2)
where z; =x;,7p is a mn; x1 new variables vector, ki >0,E; =[I, 0],

E,; € R"*™ I, is the identity matrix. The transformed first block (B1) in new variables z;
and z;, with input (B2) has the desired form (13a), i.e.

21 = —hkizy + Enz + g(z1,0).
Now the transformation (B2) is extended by

Ey

M\ (x;, )%, = Epza, Eip=[0 I,,,), Ei,€R™™>m, [Elz

] —I, (B
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B (x1, 1)
M(x,, 1)
has rank n,. Using (B2) and (B3), the variable z, can be obtained of the form (12b), that is

such that the square matrix Ez(xl ) = [ ] with (n; — ny) x ny matrix Mi(xy, ),

= Bz()z‘], Hx; + I:fl(xl 1) +0qu)](xh t)] = Oy(x2, 1).

Step i At this stage it possible to show that if we have, after (i — 1) steps, the transformed
blocks of the system (8a)—(8c) with new variables z;, 23, .. ., z;_; (under structure 7;_; < 7;)
of the form

21=—kiui +Eiz+ 8z, 1)
: (B4)
Zio1 = —ki1zict + Eic112i + 81 @i, 1)

with
zi = Oi(x;, ) (BS)

then on the ith step of the transformation procedure, we will have the transformed ith block
with new state vector z; similar to (B4). To carry out this, take the derivative of (B5) along the
trajectories of (8a)—(8c), results

& =fi(%:, ) + Bi(%i, xiy1 + g%, ) (B6)
where f; = jt;: (0®;/0x))f; + Bjx;41] + (0®;/dx,)f; + (0®;/0t), and B, = B;_\B,

rank B; = rank B; = n;. For the case n; < n;y, the fictitious control vector, x;;; in (B6) can
be selected similar to (B2), of the form

xip1 = —BF @, Of (&%, O + B (%1, —kizi + Ei12i1] (B7)

where l_ij’r is pseudo inverse matrix of B = BB, E;, =[l, 0], E;; € R"*"+_ Thus,
Eq. (B6) with (B7) takes the same form as Eqs. (B4), that is

zi = —kizi + Ei12i41 + &2, 0.
For this step, the transformation (B7) is extended as follows:

Mi(x;, Oxiy1 = Ei2ziy1, Eip =[0 I, _p] € RO+ =) (B8)

B: X, t .

matrix. Thus, using (B7) and (B8), we can obtain the recursive transformation (12c), i.e.

with rank Biyy (%, 1) = nig1, Bii (i, 1) =

Ziv1 = Bip1 (%, D%t + I:f"(x"’ 9 +0ki®i(xi’ t)] = O (Xig1, 0.
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Step r  On the last step, calculating the time derivative of z, = ®,(x,, ), gives the last block
Z =f,@ 0+ B,z Du+ g,z 1)

where  f, = Y7 [(0®,/0x)f; + Bixj1] + (0D,/0x,)f, + (0®,/0f), and B, = B,B,,
rank B, = rank B, = n, < m.
Thus transformation (12a)-(12c) reduces the system (8a)—(8c) to (13a)—(13c). |

APPENDIX C

Proof of the Proposition 2

Taking the derivative of ¥, = (1/2)z7z, along the trajectories of (13c), gives
V, =zl (f, +8&,) — Uoz! B, sign(B'z,).
Using the following relations s” sign(s) = ||s||; and [|s|l; > |is|l,, we have
V, =1/B,Bf(f,+&)— Uollz! Bl < Iz} B, 11,[Uo — B} (£, + &)]
In the following domain:
IBS(f, +&)l> <ro, ro<Up (&)
the derivative
Ve < ~qollz/ Brlla, g0 = Uo —ro,

is negative, that guaranties convergence of the state vector to the manifold z, = 0. In order to
demonstrate that this convergence is finite, first we assume that ||B ||, < by, and using the
following relation:

Nz N, = 127 BB, < 127 BA L B NI, < bollz” B, I,
we have ||z7 B, |l > (1/bo)liz |l,. Therefore, ¥, < —nlizll2, 1 = qo/bo, or

Vr =< —Ny 2Vr (CZ)

Using the Comparison Lemma, Khalil [19], a solution of (Cl) can be estimate as
V(1) < (1/2)(y/2Vi(to) — 0t — 16))*. Thus, iz, < llz(%o)ll, — n(t — to). Therefore, z,(¢)
vanishes in some finite time, ¢, < #, + (1/1)||z-(t0)|l2, and sliding mode starts on the mani-
fold z, = 0 after this time. n
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APPENDIX D

Proof of Proposition 3

First, choose a Lyapunov function candidate V for the system (17a)-(17c) as a sum of
Lyapunov function candidates for the each block of (17a)-(17c), namely

r—1
1
V=ZI/I’ I/i='2'z,'Tz,', i=1,...,r—1

i=1

and let us calculate the derivatives ¥;,i = 1,...,r — 1 step by step from the first block to the
last block of (17a)-(17c).

At the first step, differentiating the Lyapunov function candidate ¥; = (1/2)z7z, along the
trajectories of (17a) and using Assumption H2, namely (18a), we get

Vi = —kizlzi + 2 [Enz + 8,(z1, )]
< =kl + hzliiz2l + guillzill + di)
= —|z1llltk1 — qi)lz1ll = llz2ll = di]

which is negative in the region ||z1]| > [1/(ki — q11)]llz2ll + di/(ki — g11). Therefore, the
state ultimately enter the domain in subspace (z;, z;) defined by

lzill < oizllz2ll + By (b1)

where the parameters oy, and f§,, defined as
o =(h —qu)”' and B, = oindy
are positive if the condition k; > ¢, (19a) holds.
At the second step, following similar lines to those taken for the first block, the derivative

¥ of the Lyapunov function candidate V5 = (1 /2)z5 2, calculated along the trajectories of the
second block of (17b), under conditions (18a), (18b) and (D1), is given by

V) = —kzzszz + z;[Ezlzs +8,(21, 22, 1))
< —kallz2ll* + lz2ll(lz3ll + krgatllzi Il + g22llz2ll + da)
= —llz2lll(k2 — g22)llz2ll — llz3ll — kigarllzill — 2]
< —lz2lltk — g22 — kigarea)llzall — llz3ll — k192181, — db]

which is negative if (ky — ¢22 — kig21012)l|122]l — 23|l — k1921 8,2 — d2 > 0. Hence, the state
ultimately enter the domain in the subspace (z1, 22, z3) defined by

llz2ll < e23llzall + B3

and consequently

llzill < ousllzsll + Bis
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where the scalar parameters a3, ff53, a13 and 3 defined as

Wy = (b — g2 — kigai012) ™', Baz = ws(kig21 By + o),
o3 = o003,  Py3 = 2Py + Pia

are positive if the values of ky and k, satisfy the inequalities k| > g1, (19a) and
ky > g2 + kigai1o12, (19b).

Proceeding in the same fashion for the ith block of the system (17a)—(17c), then the
convergence domain in the subspace (z1, 22, - . . » 2i-2, Zi—1, Zi), 18

llzell < onillzill + By

lz2ll < ozillzill + B
(D2)

lzi-1ll < iy illzill + Bizyi

where  o; = o ;-1 0i—1i, %i—1,i = (Kic1 — Gi=1,i-1 — yi? k;I_j)qi—l,jaj,i—l)_‘, and B, =
% i1Bicri+ Bji—ts J=1,...,i— 1.

At the next step, taking again the derivative of the Lyapunov function V; = (1/2)z]z; along
the trajectories of the ith block of (17a)-(17c), and using (18d), we obtain

V= —kizlzi + 2l [Einzier +8Gis - - -2 2, 1)
-1
< —killzill® + Nzl | Nzl + giillzdl + Dk Vgl + di>~

J=1

Using now (D2), we can majorize Vi as

i—1 i—1
Vi < — izl [(ki —gqii— Y kg, ,-a,-‘i) Nzl = llzastll = Y & Pgi By — d,-]. (D3)
J=1 j=1

From this equation it follows that

lzill < eiivillzietll + By (D4)
where the parameters

. -1
i—1
it = (ki —qi= kf_j)qw“j.i) and

J=1

i-1
Biiy1 = %iit1 (Z k;l_j)qi.j i — di) i=4,...,r—1

J=1

(D3)



ROBUST BLOCK DECOMPOSITION SLIDING MODE CONTROL DESIGN 363

are positive if the condition & > g;; + Y i1 &' 7q; i, (19d) holds. Substitution of (D4) in
(D2) gives the following set of inequalities for the subspace (21, 22, - - - » Zi—2, Zi—15 Zis Zi+1):

Izl < ariptllzigll 4 Brips
lz2ll < it llzigll + Baiv

(D6)

lzic1ll < oicriptlZig | + Biy ipa
lzill < it lzisill + Biiss

where
%1 = 0ji%p1 and B =B+ By =100 i=4,.,r— L

At the last step we have the domain of convergence in the subspace (z1, 22, - . - , 2-—1) defined
by the following inequalities:

lzill < dip—tllzr—ill + By, i=1,...,7r=2.

These expressions are used to evaluate the derivative of the Lyapunov function candidate
Vi1 = (1/2)er_|z,_1 along the trajectories of (17c), that is

: T T
Vici = —kr12p_1%r—1 + 2, 18,115 ., 221, D)

r—2
< —krotllze 17 + Nzl (qr_l.,_l + 3k gzl + d,_l)

J=1
r—2 |
— 11— 2
<—\k-1—- r—1,r-1— ij(r j)qr—lJ“j.r—l llzr =1l
=

r=2
+ ( K g, 1B, +4d, _1) lz—1
J=1
If k,_; is chosen such that the condition (19d) for k,_; presented as
r—2 1
k-t > gr—1.-1 + Zk;r_ _j)qr—l‘/aj'r—l
Jj=1

holds, then we obtain

Voot = =201 Vyoy + oy v/ 2V, (D7)
with positive
r—2

— (r=1-j)
Op—1 = kr—l —qr-1r-1— ij qr—1,%.r-1
=
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and

N

r—

—1—j
ﬁr—l kj(r ])qr—l\iﬁj,r—l +d,-1.
Jj=1

Il

By the Comparison Lemma, we have

1O = -y 5P| 0010 = 1)+ ©9)
and thus
lim sup ||z, 1 (O] < Ay (D9)
1—00
where Yr—1r-1= ”zr—l(t())" —hy—y, and b,y = ﬂr-—l/ar—‘l‘

Therefore, using the obtained upper (D8) and the ultimate (D9) bounds on the solution
zr—1(#), and the inequalities (D3), and going back, from the (» — 1)th block to the first block
of (17a)~(17¢c), we can find step-by-step upper estimations and ultimate bounds on the
solutions z,_»(?), z-—3(t), . . - , 21 ().

At the next step, we use the inequality (D3) for V,_, which takes the form

Vir < —tallzr—al* + (21| + Bo_p)lizr—2
< =20, 9V, + (zr—ill + B-2)V2Vi2

where the positive parameters «,_, and f§,_, are calculated by using (D5), of the form

(D10)

1 r=3

— — (r—=2-j)
Uy = =kr—2 — Gr-2,-2 — _S_ k; Gr-2,%r—2
op—2,r—1

j=1

B —2,r—1 __ - (r—2—j
Br—Z B E kj' J)qr—z\jﬂj,r_z +d—3.
0pr—2,r—1 =1

Substituting (D8) in (D10) and applying again the Comparison Lemma, yields (20b), that is

1 1
"zr—Z(t)" = Vr—2,r-2 expl:_iar—l(t - t())] + VYr=2.r—1 exp[_zar—l(t - tO):I + hr—Z (Dl 1)

and thus

Jlim sup ||z, (D)1l < hr— (D12)

where

”z' l(t())” - r——
Veezpez = ler2@l = Vy—2po1 = hro2s Vpgpoy =——,
Oy — Olp—2

and

ﬁr—Z + hr—1
0r—2

ey = = Op_2 - 1hr—1 + Br—Z,r—l .
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The obtained estimation (D11) and bound (D12), and the inequality (D3) are used at the next
step to obtain the upper and ultimate bounds on the solution z,_3(f).

Proceeding in the same fashion, the inequality (D3) for the (¢)th can be represented similar
to (D10) of the form

Vi < —aillzill® + Ulzipa Il + BIlzill < =203V + (lziga | + B)V2Vi (D13)

where

1
o =

i—1
— =k —qi;— kg"_l)q‘ .
G ; 7o

and

Bii SN
Biit1 = A Zk,( I)quﬁj.i_di .

®i,i+1 =

Then substituting the obtained on the previously step the estimation for the solution z;; () of
the form

r—1
|
Nz @I < Y Vit expl:—iaj(t - to)] + hi

Jj=it+l

in (D13) and applying again the Comparison Method yields, the estimation for the solution
zi(?) is derived of the form (20c), that is

r—1

1

lz: @Il < ZVU exp[-—iaj(t - to)] +h, i=r—3,r—4,...,2,1
j=i

and thus

tlim sup llzi(H|l < hi;, i=r—-3,r—4,...,2,1. [ ]
— 00
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