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Loss and closed queueing network models have long been of interest to telephone and computer engineers
and becoming increasingly important as models of data transmission networks. This paper describes a
uniform approach that has been developed during the last decade for asymptotic analysis of large capacity
networks with product form of the stationary probability distribution. Such a distribution has an explicit
form up to the normalization constant, or the partition function. The approach is based on representing the
partition function as a contour integral in complex space and evaluating the integral using the saddle point
method and theory of residues. This paper provides an introduction to the area and a review of recent work.
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1 INTRODUCTION

Many problems in design of large computer systems, voice and data network with randomly
fluctuating demand require analysis of queueing network models consisting of many service
stations. In this paper we describe work on asymptotic analysis of two particular classes of
networks, called loss networks (LN) and closed queueing networks (CQN). Our aim is to
present a unified approach to asymptotic analysis of these networks based on integral
representations in complex space. This paper provides an introduction to the area and a
review of recent work.

1.1 The Historical Context

A loss network is a generalization of the famous model of a telephone system published by
the Danish mathematician Erlang in 1917 (see [10], p. 139). In the Erlang model, calls arrive
at a link as a Poisson process of rate v. The link comprises of M circuits and a call is blocked
and lost if all M circuits are busy. Otherwise the call is accepted and holds a single circuit for
a random period of time. Call holding periods are independent of each other and of arrival
times and are identically distributed with unit mean. Then Erlang’s loss formula
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gives the proportion of calls that are lost, where G.(M) is the normalization constant (or
partition function)

Mvn

GuM) =} —. )

n=0
The stationary probability that » circuits are busy is given by
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") = G an @
By replacing the Poisson arrival stream in the Erlang model by the finite number N sources of
calls, we obtain the Engset model [56]. A new call from the same source will be generated
after an exponentially distributed idle period with parameter A. The idle period starts either at
completion of service if the previous call was served, or at the time of blocking if the previous
call was blocked. Then the stationary probability that » circuits are busy is given by

1 N\.,
0 =i ()

where the normalization constant, or partition function

M
GL(N, M) = Z(A: )x" @

n=1

The loss probability is defined by the last expression in the right-hand side of (1) as before
but with G, (M) replaced by G.(N, M) given by (4).

Loss networks are generalizations of the Erlang and Engset models. First, one can
introduce different services. Calls of service j,j = 1, ..., C are generated by its own Poisson
arrival stream or finite source of size N, they require b; circuits and hold them for the holding
period of call with mean 1/p;. If a service j request does not find b; free circuits then it is lost.
The state of the system is described by a vector (ny, ..., nc), where n; is the number of
service j calls being served. In [11] another generalization of the Engset model is introduced
where sources require random number of circuits. Second, in addition to different services, a
network with more than one link is considered [27]. Link / comprises M; circuits,

=1,...,L. Let R; be the set of all routes for calls of service j,j=1,...,C. A route
r € R; identifies the subset of links £(r) € {1, ..., L} from which simultaneous service is
required. A call on route » requires b, circuits from link /. A call requesting route 7 is blocked
and lost if on any link / € £(7) there are fewer than b, circuits free. Otherwise the call is
connected and simultaneously holds all the necessary circuits on route » for the holding
period of the call. Let #, be the number of calls in progress on route . The state of the
network is described by a vector n’ = (ny, ..., ng) where R is total number of routes and the
prime denotes transpose.

We describe next the class of closed queueing networks. Closed queueing networks are
generalizations of another famous model originally studied by Khinchine [28] and Palm [50].
This model known in literature as the machine servicing model [19] or the machine inter-
Serence model [15] in which a server (repairman) is assigned the responsibility of maintaining
a group of N machines. Each machine is in one of two states: either “up” (running) or
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“down” (requiring repair service). When a machine breaks down, it joins the queue for
repair. The repair of the first machine in the queue starts as soon as the server is free.

A relatively recent interest in this model is explained by the fact that it can be viewed as a
general model of a multiaccess system [33]. In the simplest case

(a) on any one machine, breaks occur completely randomly in running time, at the same rate
A for all machines and independently for all machines;

(b) the distribution of repair time is exponential with mean 1/u. The repair times for dif-
ferent breaks are independent, and the repair times are independent of the number of
machines awaiting for service.

The ratio p = A/p is called the servicing intensity. Under these assumption the stationary
probability that » machines are broken can be written as

N!

P(n) = P(0) —— W= " )

and

Ge(N) = P(O) =N 2 (N — ©)

is the normalization constant (or partition function) for the machine interference model.

A single-chain CQN with N customers is obtained from the machine interference model by
adding more servers and defining the routing probability matrix. In the direct generalization
of machine interference model a broken machine is directed for service to server i
with service rate y;,i,i=1,...,K with probability p;, where ) ,p; = 1. The state of the
network is described by a vector (nj,...,nx) where n; is the number of machines
(called customers in a general case) including those in service at server i. A more general
multichain CQN is obtained from the machine interference model by having J types of
machines (customers). There are N; machines with breakdown rate A; in group j,
j=1,...,J. The state of the multichain network is described by a matrix n with elements
mi,j=1,...,J;i=1,..., K representing the number of type j customers (including those
in service) at server i. Closed queueing networks have been originally motivated by job-shop
type systems [23]. The advent of multiprogramming computers and computer networks
sparked off new interest to them [26], with the result that studies of CQN models have
multiplied in the last 30 years.

1.2 Large Capacity Networks

A large class of loss and closed queueing networks has the so-called “product-form” solu-
tion: the stationary distribution of the network state decomposes completely into a product of
individual node functions and the normalization constant (see [26, 27]). We are interested in
asymptotic behavior of these product-form networks when their capacity defined by para-
meters M; and N, increases. To make the problem nontrivial we assume that offered traffics
(parametrized by Poisson arrival rates v, for route 7 or by the number of request sources N;)
and service rates y; also increase with ratios M;/v, (or M;/N;) and N,/p; respectively held
fixed.

There are four main approaches to the asymptotic analysis of the product-form
stationary distributions with finite number of states. A direct approach is based on
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observation that for a large network the product-form distribution has the following
asymptotic representation:

P(n) ~ Cexp{NF(x)},

where N is a large parameter (e.g., the total number of customers in the network) and
x = n/N. Then the problem of finding the most likely state n is reduced to maximizing
the function F(x) under natural constraints, and a maximizing value of x can be found
by Lagrangian methods. If the maximum point x* is unique then simple approximations
(e.g., by Gaussian and Poisson distributions) for P(n) the can be derived. This approach has
been introduced by Pittel [S3] in 1979 in the context of CQN and later Kelly (see survey [27])
applied it to LN. More accurate asymptotic approximations can be obtained using three other
approaches based on singular perturbation methods and integral representations in real and
complex space. The application of singular perturbation methods to queueing networks has
been developed by Knessl et al. [29, 30] and Kness and Tier [31]. These methods are applied
to the forward Kolmogorov equation for the probability distribution or recursions for the
partition function, and, in general, their application does not require the product form
solution. In contrast with the singular perturbation techniques, the methods based on integral
representations can be applied to a relatively narrow subset of product-form networks, where
the probability distribution or the partition function can be expressed through Laplace or
contour integrals with explicit integrands. The main advantage of such explicit representa-
tions is significant simplification in derivations of asymptotic expansions.

Integral representations in real space provide an easy way for asymptotic analysis of Erlang
and machine interference models. These representations are based on the Euler formula
n! = f(;x’ t"e~"dt = I'(n + 1). An integral representation for E(v, M), ascribed to Fortet [56],
has the following form [25]:

Ev,M)™' = vJ e (1 + M dy = vI(M, v). W)
0
Assume that v = cM, where c is fixed while M — oo. Then the integral
M) = 10,0 = |~ e 0 g, ®)
0

where ¢(y) = cy — In(1 +y), can be evaluated by Laplace’s method [17]. We see that
¢” = 1/(1 +y)* > 0. Hence ¢(y) has only one minimum on (—00, 0o) and the minimum
point y* = 1/c — 1 is the solution of equation ¢'(y) = 0. Let yo be the minimum point of the
function ¢(y) on the positive semiaxis [0, 00). Then

*

_Jyt fec<landy*>0ifc<1
=10 ifex>1

The first order approximation for I(M, c) is obtained by expanding ¢(y) — ¢(yp) in the
Taylor series at point yp up to the first non-zero term and then performing the integration
taking into account that the main contribution to the integral comes from the vicinity around
yo. Depending on values of parameter c, there are three following asymptotic approximations
for underloaded, critically loaded and overloaded regimes corresponding toc¢ < 1,¢ = 1 and
¢ > 1 respectively.



ASYMPTOTIC EXPANSIONS FOR LARGE CLOSED AND LOSS QUEUEING NETWORKS 327

(@) If ¢ < 1 then

IM,¢) = %\/%ew—l—'" A1+ oM™ ©)
and by substituting (9) in (7) with v = ¢M we have

E(v,M) = ﬁe’"“‘”lm(l + oM ™y). (10)

(Note that 1 — c+1Inc = ¢(»*) < 0 as ¢(0) = 0). This approximation can be directly
obtained from (1) by applying Stirling’s formula for M! and approximating G, (M) by €*
(see (6.18) in [56]).

(b) If c =1 then

IM,c)= ‘/;—g(l +OM~1/?) (1)

and
E(v, M) = \/%(1 +OoM~"?). (12)

(c) If ¢ > 1 then
~1

IM,c) = Eﬂ—l:—l- +0M™?) 13)

and
E(v,M) =1 ——%+0(M“). (14)

Approximations for E(v, M) have a long history (see [56]). The following normal
approximation was used by Erlang [10]:
1 e—hz/Z
Ehv M)~ ——————,
(V ) ﬁjnfoo e_x2/2 dx

where h = (v — M)/./v. With our assumption v = cM, this approximation provides correct
asymptotics only for ¢ > 1. In 1966, Borovkov (see Theorem 15 in Chapter 7 in [9]) derived
asymptotic approximations for a generalization of the Erlang model, where interarrival
times are i.i.d. random variables with a general distribution. In 1974, Jagerman [25] obtained
asymptotic expansions for E(v, M )~! when ¢ > 1 and ¢ = 1 using integral representation (7)
and a theorem on Abelian asymptotics for Laplace transforms. Finally in 1992, Pinsky [51]
derived a new “simple” approximation:

[ Y
E(v,M) ~ exp(Mln X—;+M - vs) %—i, (15)
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where

S_M+v+1—\/(M+v+1)2—4vM
- 2v ’

Denote the right hand side of (15) by S(v, M) and assume that v = c¢M. Then it is easy to
see that

en)™? ife<1

. E(v,M) | o\
W S (;) ife=1-

[o%e) ifec>1

Remarkably for the machine interference model

1 _ _ *© —t N _ _l__ — E N_’l
%_GC(N)_L (1 + pt) dt—E(p,N)_(r>I( : ) (16)

where the last equality is obtained by assuming » = pN and changing variables y = rt/N.
Hence we have the following simple relation between the repairman utilization U = 1 — P(0)
and Erlang’s loss function E(v, M):

U=1—E(1,N). (17)
p

Substituting in (17) approximations (10), (12) and (14) we see that utilization is exponentially
close to 1 if » > 1 (heavy usage), U = 1 — \/2/aN~! + O(N~') if r = 1 (moderate usage)
and U =7+ OWN™") if r < 1 (normal usage). The asymptotic expansions for G¢(N) have
been derived in 1971 by Ferdinand [20], who represented the partition function through
gamma and incomplete gamma functions and used their asymptotic expansions in [32].
Apparently, authors of the early papers on asymptotic expansions for the Erlang and the
machine interference models have been not familiar with Laplace’s method. (Approximations
(10) and (14) have been obtained by Laplace’s method only in 1994 [48].) Neither of them
has been aware about simple relation (16) between the two models.

Integral representation (7) is unique in the class of loss networks as its generalizations,
except for one special case [44], are not known. In contrast, integral representation (16) can
be generalized to single- and multi-chain generalizations of the machine interference model
which have been described at the end of Section 1.1. In 1981, McKenna et al. [42] used
Laplace’s method and provided complete asymptotic analysis for a multichain generalizations
of the machine interference model with one single server. For a CQN with K single-server
nodes the integral representation becomes K-dimensional and its asymptotic expansion has
been derived in [43] only in normal usage when the minimum of the function @(x)
(K-dimensional analog of ¢(x)) is at x = 0.

Finally, the last approach to the asymptotic analysis of the product-form stationary dis-
tributions with finite number of states utilizes the fact that the generating function of the
partition function (later generating partition function) has an explicit expression for
many models. This makes it plausible to recover the partition function using the inverse
Cauchy formula, which provides an integral representation in complex space. For large
capacity networks the Cauchy integral can be transformed into the integral over the saddle
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point contour and evaluated asymptotically using the classical saddle point theory. In general,
the generating partition function has poles, and the above transformation of the original
contour into the saddle point contour requires calculation of residues for the poles inside the
saddle point contour. This results in three different approximations for the partition function
depending on whether the poles of the generating partition function are outside, inside or
close to the saddle point contour. The advantage of the method based on integral repre-
sentations in complex space has been initially demonstrated by the author in 1989-90
[34, 39] for relatively simple classes of LN and CQN. In subsequent author’s paper [35] and
papers coauthored with Birman [6, 7, 36], Berger [2-4], Choudhury and Susskind [11], Hofri
[24], Shenfild [38] and Yakovlev [40], this method has been applied to a wide variety of LN
and CQN models, where other methods lead to more complicated derivations or not
applicable at all. Integral representations in complex space also stimulated development of
new methods for the exact computation of the normalization constant [12, 13] and refined
asymptotic expansions for partition functions and probability distributions [2—4, 47].

The outline of the paper is as follows. In Section 2 we present results on asymptotic
expansions for one-dimensional partition functions and review their application to bottleneck
analysis of single-chain closed queueing networks (including models of multiprocessor
systems) and loss systems with a single link. In Section 3 we generalize some of the results of
Section 2 for multichain closed queueing networks and loss networks with several links.
Section 4 is motivated by the problem of dimensioning bandwidth for high-speed data
transmission networks. Two models are considered. The first model is described by the
generalized Erlang or Engset model. Asymptotic expansion for the probability distribution of
busy circuits is derived in underloaded regime using uniform asymptotic expansion for the
partition function. The second model is described by a CQN with multiple customer types
that consists of one IS (infinite server) station and many PS (processor-sharing) stations.
Asymptotic expansion for the probability distribution is derived for the total number of
customers at the saturated PS station.

2 ASYMPTOTICS OF ONE-DIMENSIONAL PARTITION FUNCTIONS
AND THEIR APPLICATION

2.1 Integral Representation and the Saddle-Point Method

For single-chain CQN and LN with one link the partition function depends on a single
integer which is the number of customers and the number of links respectively. Then the
generating partition function (GPF) defined as

Ge) = 7'G(n)
n=0

is one-dimensional complex function. The partition function can be recovered from the
generating function either by differentiation as

1 dv
N!dzV
or by the application of the inverse Cauchy formula [14]

G(N) = 9(2) (18)

G(N) = 21714; 9@) 4, (19)

o N
1
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where j is the imaginary unit and C, is any contour around the origin which does not contain
any singularities of the generating function G(z).

Representation (18) is used for deriving recursive computational algorithms for the nor-
malization constant [33, 52]. Such derivations, which are based on the product form nature of
the stationary distribution, do not require the generating function in explicit form.
Representation (19) was originally used by the author [34-36,39] to find exact and
asymptotic approximation for the normalization constant. The same representation has been
used later in [12, 13] to develop efficient exact computational algorithms for the normali-
zation constant. The use of representation (19) requires an explicit derivation of the GPF. In
fact, such explicit formulas can be obtained under some mild assumptions.

In order to asymptotically evaluate the integral (19) using the saddle point method
we represent the integrand as c(N)q(f) exp{Np(¢)}, where c¢(N) is a constant whose
calculation does not require summation, while the functions p(f) and ¢(#) do not depend on
N. Denote

1
Iy = E?J'i 4() exp(—Np(1)) dr. (20)

where C is any contour around the origin, inside which the function #q(¢) is analytic. Note that
G(N) = c(N)I(N). The asymptotic approximation to the contour integral in (20) can be
obtained by the saddle-point method if the following two conditions are satisfied.

1. There is a unique positive solution #) of equation p'(¢) = 0 on the real axis, where the
prime denotes derivative.
2. Lett = ae/”,0 < w < 27n. Then

min max Rep(f) = p(ty) = max Rep().
a |tj=a |ul=tp

This implies [18] that || = # is a saddle-point contour, and ¢ = ¢, is the only saddle point
on it.
If tq(7) is analytic inside the circle |¢| = ) then by the saddle-point method [18]

a0 exp(¥p(0) i = S o) 1 0( ). e

1
27 Jij=1, V2nNp"(ty)

Let 8, <--- < f; be the positive poles of g(¢) inside the saddle point contour. Then the
asymptotic approximation for /(N) has the following form (cf. [6, 36, 58]):

V) = exp{Np(t)}

V21Np" (1)
k

== _q-iexp(Np(B)} +
i=1

lg(to) +ON™N), if 1o < B (22)

exp{Np()}

V2TNp (1)

[qto) + ON7N, if to > By, (23)



ASYMPTOTIC EXPANSIONS FOR LARGE CLOSED AND LOSS QUEUEING NETWORKS 331

where g_; = Res,—g,{q(#)} is the residue of q(¢) at ¢ = B;. If B, is a simple pole and the only
pole of g(¢) in the vicinity of the saddle point ¢, then

IN) = eNP('°>[ -

1 ///( 0) 32 24
+\/27T_Np/7(7(5|:q (0) q- l ,,(t )] (N )]i ( )
where
2 (o.¢]
erfc(x) = 7; L e dy,
b= sen(1 =) VB~
and
q'(t) = q(t) —

=
= EWWMthR

where A(f) = q(t)(t — f,). The uniform asymptotic expansion formula (24) covers the case,
when ) = f,. This critical point separates the regions with different asymptotic expansions.

2.2 Bottleneck Analysis in Single-chain Closed Queueing Networks

We start with a simple CQN consisting of N customers and K + 1 service stations with
exponential service times. The state of the network is described by a vector (ng, ny, ..., ng)
where #; is the number of customers (including those in service) at station, i,i =0, 1, ..., K.
Station 0 has an infinite server (the number of servers coincides with the number of custo-
mers N) with service rate y, = Ang. The other K stations have single servers with fixed rates
M, 1 <i <K.Let(pij),i,j=0,...,K, be the routing probability matrix for the network,
i.e., a customer completing service at service station i is routed to service station j with
probability p; ;. The stationary probability distribution of queue length at the single servers
can be written as:

1 1 .
P(ny,...,ng) = GO (N — ZzK=1 ) zl:llpi (25)

where p; = Api/p;, {pi:0 < i < K} is the unique solution to:
po=1, pi=ijpj,i l<i<M
j=0

and the partition function

W= 2 &- Zumnp'

ny+-+ny <N
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(For K =1 distribution (25) coincides with (5) up to the normalization constant.) The
respective GPF

G) = éﬂ (26)

—piz

The utilization of single server i is denoted by U;(NV) and it can be expressed through the
partition function as

GN-1) .
PG 1 <i<K. 27

UN) =
Assume X is fixed while N > 1. To avoid trivial results it is also assumed that the parameters
p; are of the order N7!, i.e. p, =r;/N for some constants r;. Then, after the change of
variables t =z/N we have ¢(N) =NV p()=t—1Int, and g@t) =t"'0 —r)~".
(1 — rgt)™". (Without IS station p(f) =0 and G(N) is expressed explicitly through the
residues of #q(f) [22].) In this case the saddle point #fp =1 and B, = 1/r; assuming
rp>ry--->rg. If rp < 1 then (22) and (27) imply that U; = r; + O(1/N) that coincides
with the server utilization in M/M /1 system with traffic intensity r;,i = 1, ..., K (normal
usage). For 7| > 1 the main contribution in (23) is provided by the first term r{eV/" with an
exponentially small remainder. Then Eq. (27) implies that U;(N) can be approximated by
(17) with p=p, and it is exponentially close to 1 (heavy usage), while for
2 <i <K, U(N) = r;/r; + O(1) that coincides with the server utilization in M /M /1 system
with traffic intensity »;/r; (normal usage). Based on this result the single-server station 1 is
referred to as bottleneck.

In general, station i, 1 <i < K may have several identical servers or a limited queue
dependent (LQD) server [36]. In such a case the term p;* in (25) is replaced by
p;'/ T, si(k), where function s;(k) is constant for n > L;, where L; < N is a fixed integer.
For a CQN with LQD servers the GPF

K
60) = & I-[ 4i(p;z) 28)

iy 1= (pi/siLi))z’

where 4;(z) is a polynomial of order L; — 1 defined in [36]. In this case the saddle point
to = 1 as before while 8, = max; s;(L;)/r; and the bottleneck analysis is similar to the
previous case.

The bottleneck analysis can be generalized to CQN, where K is also large such that
K/N =y, for some constant y. We consider three examples of such networks. In the first
CQN, there are Q LQD servers and T ‘large’ groups of identical LQD servers. Then after the
change of variables ¢ = z/N we have ¢c(N) = N7V,

T
pty=t—Int—=> yfin(l —ayt) — In 4;(r;1)], (29)
Jj=1
and
ot = T2, (0)

tia 1 — ot
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where o; = r;/si(L;), 1 <i < Q and y; = M;/N where M; is the number of identical stations
in group j. In this case £, is a positive root of a polynomial equation and f; = max;<;<g 1/%;.

In the second CQN, there are K + 1 single servers. The first K single servers have a special
form of intensities which can be written as [31, 35]

1 (i
pizﬁr(ﬁ), (31)

where 7(s) is a piecewise smooth function in [0, y] and y = K/N. The intensity for the last
single server is pg,; = rx41/N, where rg;y is a constant. In this case it is convenient to
rewrite the the product in (26) as

lf!(l_%’(ziv)) “e"pl Z‘n( ——r( ))} (32)

By the Euler-MacLauren formula we can approximate the sum in (32) by an integral and
obtain the GPF

B 1 1 — (z/N)r(0)\/? v z
R o/ i) M Gl RU (R LT of o

Then, after the change of variables t = z/N we obtain ¢(N) = N7V,

p@)=t—Int— r In(1 — tr(s))ds
0

and

1 1 —t(0)\"/?
0= (1 —rg411) (1 - tr(v)) '

In this case ff; = 1/rk4+1 and the saddle point ¢ is a single root of the equation

o 1 (" rs)ds
p(’)‘l_?+J01—tr(s)

in the interval (0, @), @ = min{1, ming<,<, 1/7(s)}. For related results and generalizations see
[41, 16]. The third CQN is related to the multiple-bus multiprocessor model [24]. In a par-
ticular case of the multiprocessor model [37] with N processors, K memory modules and
crossbar interconnection network, we have p; = p = A/Kp and G(z) = /(1 — pz)%. (The
behavior of a processor consists of cycles of computation followed by a request to one of X
memory modules.) The state of this model is defined by the total number of processors /
queued for memory modules, and the stationary distribution

Py = ( <[+ 1) (34)
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where (N), = N!/(N —I)! A multiple-bus interconnection network with B < min(N, K)
buses studied in [24] is more cost-effective than the simpler crossbar organization. In this
case contention may occur for buses as well as memories. The stationary distribution for
CQN model of the multiple-bus multiprocessor system has the following form:

P(l) = PO)(N),A(Dp', (35)

where

B-1 .
40) =1, A(1)=§A(1—1)+Z(1—§)(f)<}’.j}). G36)

=0

The asymptotic analysis of distribution (35) is reduced to that of the combinatorial factor A(/)
whose generating function has the following explicit expression:

B—1 . .
A@) =Y AW = (1 =y ;(1 —%) (Ij)(1 iz)’, y =%. G7)

>0

The complexity of .A(z) makes asymptotic analysis of A(/) significantly less trivial than in the
previous cases. However, the nature of results is similar as the following approximations
show Let /[y = KB/(K — B) and xy = lo/N. Then application of the saddle-point method to
the integral

1
_2—751;(: A(2)dz = A())

leads to the following approximations [24]:

Ao(D) if xo>1
A ~ 3 Ap(D) ifxo<landl <l
Ap() if xo <1 and [ > I,

where

(K—1+1 (=02 v\
wn=(57) a0 = (5) ()

and —A4,(/) is an approximation for the residue Res{.A(z); z= y~'}. These approximations
have an interesting and important interpretation: when xo > 1, as N increases, the system
becomes asymptotically equivalent to the crossbar multiprocessor system, i.e., bus-sufficient.
For xy < 1 and / > Iy, the residue of A(z), being closer to the origin than the saddle point,
dominates and the bus interconnection network becomes a bottleneck.
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2.3 Generalized Erlang and Engset Models

For the generalized Erlang model the stationary distribution

1 C v;'.l' C
n(nl,...,nc)—mga, ;b,‘anM, (38)

where v; = 4;/p;, 4; is mean arrival rate of service j calls and the partition function

GM) = Z ]"[ ) (39

Z bnj<Mj l.

The loss probability of service j is

_GWM —b))
7T GWw)
The respective GPF is [55]
c .
exp[Y i, viz¥]
Glz) = —=L 7 -
11—z
Assuming M = N, v; = Nc;, where ¢;,j=1,...,C are constant, while N > 1 we have
c(N) =1,
c
pH)=) " —Int (40)
Jj=1
and g(r) = [t(1 — 0)]7".
In the generalized Engset model [11], calls of service j, j =1, ..., C are generated by a
finite source of size N;, N = (Ny, ..., N¢). Service j call requires by; circuits, or resource

units with probability py;, where k € Kj and } ;. pij = 1. Let M be the total number of
available resource units. If the requested number b,g of resource units is available then the
call will hold them for the holding period with mean 1/4;. Otherwise the call will be blocked
and lost. Let 1/4; be the mean intergeneration time for service j calls and py; = (4;/1)py.
For each k € K; denote by ny; the number of type j requests holding by resource units
and n = {ny, k € K;,j = 1,..., C}. If holding times are exponentially distributed then the
stationary distribution

1 < N;! ny
"™ =5, M)g<ﬂkex,. g\ ~ Lk mg-)!) 3 G(N G

where

G(N, M) = #(n)

n
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and the summation is only over permissible values of n given by

C
ZZbkjnkjSM, anjSNj.

J=1 keK; keK;

The loss probability of service j is

G(N — e;, M — by)
Lj = 1 bl p]g J N
S

where e; is the vector with elements e;; = J;;, where J;; denotes the Kronecker delta. The
respective GPF is [11]

Hf:\(l + D kek, P2

11—z

G(2) = (41

Assuming M = N, N; = No;, where o;,j =1,..., C are constant, while N > 1 we have
c(N)=1,

C
p@y=73 aln (1 +2 ijzb’*) —Int 42)
J=

kek;

and the same g(f) = [#(1 — £)]”" as in the Erlang model.

Under some natural conditions [11,38,47] there is a unique positive solution # of
P'(£) = 0, where p(¢) is given by Eq. (42) or (40). Moreover, it is easy to prove that |¢| = #; is
a saddle-point contour, and ¢ = £y is the only saddle point in it. Now asymptotics of the
partition functions for generalized Erlang and Engset models can be obtained using
expansions (22), (23) and (24) with f; = 1 and f8; = 0 for i > 1. For the Erlang and Engset
models the equation p/(f) = 0 is linear. In particular, for the Erlang model # = 1/c (the
subscript 1 is omitted) and we obtain the same three approximations as in Section 1.1 (see
(9)-(14)) for underloaded (# > 1), critically loaded () = 1) and overloaded (% < 1)
regimes. The same classification applies to generalized Erlang and Engset models
[11,38,45-47]. 1t is interesting to note that for both LN and CQN the three asymptotic
regimes are defined by comparing some number with 1. For LN this number is the saddle
point of p(¢) while for CQN it is the closest to the origin positive pole of g(¢).

3 ASYMPTOTICS OF MULTIDIMENSIONAL PARTITION FUNCTIONS
AND THEIR APPLICATION

For multichain CQN and LN with several links the partition function depends on several
integer parameters whose number equals to the number of customer types and the number of
links respectively. Then the generating partition function defined as

Gzrr..nzm) =D e D 2w Glny, . ),

n =0 ny,=0
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where m =J or m = L, is a multidimensional complex function. In this section, we first
provide explicit expressions for the GPF for both classes of networks and then generalize
some of the results in the previous section using the integral representation for the partition
function in multidimensional complex space. Similar to the one-dimensional case, the key
step in asymptotic evaluation of the multidimensional contour integral is its transformation to
the saddle-point contour integral, which has an explicit asymptotic expression. This approach
requires one to find the saddle-point contour, move the initial integration contour to the
saddle-point contour, pick up the residues between these two contours, and, finally, find the
term providing the main contribution to the asymptotic expansion of the partition function.
However, in contrast to the one-dimensional case, implementation of these steps is generally
far from trivial.

3.1 Explicit Expressions for GPF

First, consider a CQN with J customer types and K + 1 service stations, one of which is
infinite server (IS) and K others are processor-sharing (PS) stations. We assume that custo-
mers of each type visit all stations. It is convenient to number the IS-station by 0. Let n
denote a J x K matrix whose element nj; represents the number of type j customers at PS-
station i. The population of customers of type j is a constant N, | <j < J. The state space is
the set S of matrices n which have integer components, and satisfy the population constraints

S={n|05nj,,2nj,_<_1\/},l5]5],151§K]
i

Then the product form solution has the form [26]:

Rji

Gi (N — 2imilid “ni! G ’
where n; = ), nj; and the normalization constant

G=GW,...,N)=)_P(n).

nes
Moreover,

gjitj

ji '
Hji

where ej; is the relative visiting rate of type j customers to PS-station i as compared to the IS-
station, 1/4; is the mean service time of a type j customer at the IS-station, 1/ is the mean
service time of an isolated type j customer at PS-station i. Using the definition of the mul-
tidimensional GPF and performing the summation we have

K J -1
g()ezn(z:) | “
=1

k=1
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Next, consider a special multichain CQN that has been introduced in [6] in the context of
modeling large multiprogramming systems. This CQN consists of J dedicated single servers
(one for each chain) and T groups of stations with identical single servers inside each group.
After service completion at the single server in chain j a customer visits a station in group /
with probability p;;/K;, where K; is the number of stations in group / and ZL, pji =1 for
each j. Let y; is service rate of the single server in chain j, and 6, is service rate of a single
server in group /. Then the respective GPF is

P 1 & -
g(zl,...,zj)=]']( u,-) ]’[(1—%;:,;,,;,) : (45)

j=1 I=1

Finally, consider the LN with independent Poisson arrival streams of rate 4, and generally
distributed holding time with the mean 1/, or route ». Its stationary probability distribution
has the form [27]

n(n) = ! ﬁvnr
Gl
where v, = A,/u, and the normalization constant
R n,
G=GM) =) HF’

Bn<M r=1

Here B is the matrix with elements b, and M = (M|, ..., M}). The respective GPF is [48]

R L bir
I @

Whittle [57] obtained a result equivalent to (46) but with an additional factor in the
numerator, which is redundant. The multidimensional generalization of (41) is given in [11].
Let L, be the stationary probability that a call requesting route 7 is lost. Then

_ G(M — Be,)

b=1""%om

where e, is the vector with elements e, = 0,5, where ¢ denotes the Kronecker delta.

3.2 Asymptotic Approximations

As before, the partition function can be recovered from the generating function by the
application of the inverse Cauchy formula [54]

e G ... 2)
Gl ) = g o, g g @)
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where y} = {zx = ee/™, w; €[0,2n]},e K 1,k =1,...,mand is the imaginary unit. Note
that this integral is just an application of one-dimensional Cauchy integral m times. Bertozzi
and McKenna [5] tried to generalize Gordon’s [22] result and obtain an explicit expression
for the partition function through the residues of the GPF for a multichain CQN consisting
only of FCFS or PS nodes. However, a multidimensional residue cannot always be calculated
explicitly, and therefore Gordon’s result does not have a direct analog in multichain networks.
Explicit expression for the partition function is not available even for the simplest two-chain
CQN which consists only of two FCFS or PS nodes (see [5, Section 4.5]). There are four
main differences between asymptotic evaluation of the contour integral in one-dimensional
and multidimensional cases. First, the saddle-point contour is no longer a circle, but a two-
dimensional surface that must lie in the domain of analyticity of the generating function,
whose singularity set is defined by two-dimensional varieties. It is worth noting that this
condition is quite independent from that defining the generic properties of the saddle-point
contour. Second, in general, the geometric relation between the two contours in multi-
dimensional case is not as evident, and one has to apply the theory of homology. Third, the
residue calculation is non-trivial, even in the two-dimensional case. Only some of the resi-
dues can be explicitly calculated, while others are reduced to one-dimensional integrals and
then evaluated by the saddle-point method. Fourth, the identification of the main contribution
in the asymptotic expansion is also more complex.

In this section, we provide explicit asymptotic expressions for partition functions with GPF
given by Egs. (45), (46) and (44). Asymptotic results for a CQN consisting of only PS nodes
can be obtained as a byproduct of our more general results. For simplicity of notation we
formulate the results in two-dimensional case. Similar to one-dimensional case we introduce
a large parameter N and represent the integrand in (47) for m =2 as w(N)q(t, t2)
exp{Np(1, 1)}, where w(N) is a constant whose calculation does not require summation,
while the functions p(#, ;) and ¢(#, ©,) do not depend on N. Denote

1
100 = =34 § ot expl-Np(n, ) s, @)
Y1 Y72

where y, = {t = e/, w; €[0,2n]}, e K 1,k =1,2. Note that G(N) = w(N)I(N). To
evaluate the integral /(V) by the saddle-point method we have to find a saddle-point contour.
Let t=(#,%) and the notation |t| = ¢ stand for |f;| = ¢y, || = ¢». Assuming that the
function p(t) has a single maximum in real space at t = t° and using the fact that the series
expansion for the respective generating function has positive coefficients (cf. [18]) one can
prove that

min max | exp{Np(t)} = exp(Np(t’)},

which means that 39 = {t; = 2e/”, wy € [0, 2n]}, ¢ K 1,k = 1, 2 is a saddle-point contour,
and the saddle point £ = (#?, £?) satisfies the following system of equations:

op(t, 1) —

o 0, k=12 (49)

Denote

1
L(N) = — Z;tiio i° q(t1, ) exp{—Np(t1, )} dt; dt,. (50)
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Then (see [18, 58])

V) = q(®}, ) exp{Np(#}, 1)) (1 + O(—l-)) 1)

27N [det pl!, (10, 12) N
11

where p|, (1), #) is the Hessian matrix of p(t1, 1) at (11, &) = (#{, £)) and det stands for the
determinant of the matrix.

First, consider a special case q(t1, t,) = q1(t1)g2(t2), where transformation of the initial
two-dimensional contour integral to the saddle-point contour integral is quite similar to the
one-dimensional case. For simplicity, assume that g (#;) has only one simple positive pole at
te =Prk=1,2.1f B > 12,k = 1,2, then approximation (51) holds. Otherwise we move
the initial contour to the saddle-point contour and calculate the residues as follows. We have
(cf. [6, 11])

1
1(N)=—q-.2—w.§ a2t exp(=Np(By, 1)} dts + o) if By <, By > £ (52)
V2

1 .
=—q_ -275% qi(t) exp{—Np(t1, B} dty + I(N) if B, > 1), B, <85 (53)
N

= q-19-2exp{Np(By, B} + Lh(N) if B <1, k=1,2, (54)

where g_; = Res,—p, {gx(?)} is the residue of g(f) at t = f;, k = 1, 2. The first term in (52),
(53) and (54) is one- and two-dimensional residue respectively of the integrand at
ty = PBr, k = 1, 2. It is not difficult to prove that it provides the main contribution to I(N) with
an exponentially small remainder. Finally, contour integrals in (52) and (53) can be evaluated
using relations (22)—(24).

Equations (52)—(54) can be applied to asymptotic analysis of the CQN with GPF (45) and
the LN with GPF (46). In the CQN case we assume the following scaling:

b =Nugy, Ny=oN, K =yN,

where pg;, 05,/ =1, 2 and y,,/=1,...,T are bounded while N — oco. Then after the
change of variables £ = z;/N in the initial integral representation for the partition function
we have

11—\
w(N) = N—-(oc|+az)N’ q(t) = [tk< , k)] k=12

0k

and

2 T 2
1
t,t =—E cx~lnt-——2 In 1——2 at: 1.
p(t, ) r G 1L 2 Y1 ( 91'))1j=l P}lj)

In the LN case we assume

v,=Nvy, r=1,...,R and M=o, 1=1,2,
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where v, and o; are bounded while N — oo. Then
R 2
wiN) =1, qw) =0t -t]", k=1,2, pti,o)=) voti"s” =Y olnt.
r=1 =1

Asymptotic approximations for the loss probabilities in a particular case by = by =
by =1, by = 0 are derived in [48]. For asymptotic analysis of the LN with finite sources
see [11].

We conclude this section with asymptotic analysis of the partition function whose GPF is
given by (44). We assume the following scaling:

Ne=ouN,  py="F,  %>0, >0, k=12 N>oo, (59

where a; and r; are bounded. After the change of variables # = z;/N in the integral
representation for G(Ny, N,) we have

w(N) = N—(a,+u2)N, piti,b)=t+t—alnty —opln ty

and

g(t1, ) = [h1t(1 — rty — rat)(1 — ruty — rat)]™"

In this case g(#;, t;) does not have the form ¢;(#)q2(#;) and the analysis becomes much more
complicated. Denote

n; =rad) +rpdy, i= 1,2.

Equation (49) has a unique solution (£, 3) = (a1, o) that provides the saddle point. If both
n, and #, are less than 1 (normal usage) then the function g(t;, $,)/(t:%2) does not have
singularities inside the saddle-point contour and /(N) = Iy(N) with the approximation given
by (51). To evaluate the integral I(N) when at least one of #; is greater than 1 (heavy usage at
least at one of the PS stations) we have to we move the initial integration contour to the
saddle-point contour and, as before, to pick up all the residues of the integrand between the
two contours. These residues are defined by the set of singularities of g(¢;, #,). More exactly,
denote by S the set of singularities of the integrand. (The integrand is holomorphic in C2\S.)
We have:

4
S=(JS Si={n=0} S={=0}
U 50

S3={l—ruti —rptr =0}, Ss={1 —rut; —rpnt, =0}.

The exact relation between the two integrals can be expressed in terms of some “basis”
integrals, corresponding to the points of intersection of S; and S;, i,k = 1, ..., 4. It turns out
that these “basis” integrals provide the main contribution to the asymptotics of I(N), rather
than the saddle-point integral. The dimension of the basis integrals is readily reduced at least
by 1, and they are evaluated by one-dimensional saddle-point method or calculated explicitly.
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Denote

1 —r:
Pi(t)=p<t, rr”t), i=1,2,

i2
A = ryryn —rir,
1
11 —rat)(rp — r3—ia + A1)’

qi(t) = i=1,2.

Let also f; be the least positive roots of the equation pi(f) = 0,i =1, 2. Assuming A # 0,
denote

_In—=rn _'i—r
Bro = A vﬁzo—'———A .

(B10s Bao) is the intersection point of S3 and S4. Now we can formulate the main result in [40].

THEOREM 1  If(55) holds and at least one of n; is greater than 1, then the partition function
has the following asymptotics (as N — 00) :

1. If n; > 1 while n_; < 1 then

I(N) = ——2 gt (1 + ON7Y), i=1,2. (57)

V2nNp! (to;)

2. Let both n, and n, are greater than 1.
(@) If in addition A # 0 while p}(B10)P5(B2) < O then

VP(B10.Br0)

1Ny = BioBaolAl

(1+O0W). (58)

(b) Otherwise asymptotics (57) holds.

4 ASYMPTOTIC EXPANSIONS FOR PROBABILITY DISTRIBUTIONS

This section is motivated by the problem of dimensioning bandwidth for high-speed data
transmission networks. Two models are considered. The first model is described by the
generalized Erlang or Engset model. It can be applied to engineering of the router uplink
whose utilization should be well below 100%. The second model is described by a CQN with
multiple customer types that consists of one IS station and many PS stations [4]. It is applied
to bandwidth engineering of peering links which are usually saturated. In prior work, [2], we
motivated a CQN model and, using asymptotic approximations, determined dimensioning
rules for the case of a single link and single type of connections. As in a classical situation of
the sum of independent random variables (see e.g., [19, Chapter XVI]) these asymptotic
expansions provide the normal approximation and a correction to it which have an explicit
expression up to a solution of polynomial equations.
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4.1 Generalized Erlang and Engset Models

Let Q be the total number of busy circuits, or resource units in the generalized Erland or
Engset model. Then

PriQ>m)=1—-———, (59

where G(k) is the partition function with the total number of available resource units equal k.
Under scaling assumption in Section 2.3 we have

G(m) _l_i; exp{Np(t, 1)} dr, (60)
c

Tafe -1

where p(t, x) is obtained from Eq. (40) or (42) by substituting —xIn ¢ instead of —In ¢ and
x = m/N. Assume that the saddle point #, of the function p(¢, 1) = p(¢) is greater than 1 that
implies underloaded regime. Then one can prove (see e.g. [38]) that Q/M converges with
probability 1 to

ZjC:, cib; for generalized Erlang model

x* = ZC djpjbj

- for generalized Engset model.

j=1 1 + pj g g

Let #(x) be a single positive root of equation p)(¢, x) = 0. We assume that x > x* and x is
close to x*. This implies that #y(x) is close to 1 and 7y(x) > 1. Now asymptotic expansion for
the probability distribution (59) can be obtained using for G(m) the uniform asymptotic
expansion (24) or more accurate but quite complicated expansion in [47]. The first term of
the asymptotic expansion for Pr{Q > m} provides the normal approximation:

Pr{Q > m} ~ 1 — ®(y/2N[p(1) — p(to(x), X)),

where @(x) is the standard normal distribution function with mean 0 and variance 1.

4.2 A Large Closed System with Multiple Customer Types

We consider a CQN that consists of one IS station with multiple customer types and one PS
station [4]. This model can be applied to the dimensioning of bandwidth and of admission
control for different data sources subject to feedback control in packet-switched commu-
nication networks when available bandwidth at the network nodes is shared between all
active sources. Data sources are modeled by an IS station, network nodes are modeled by
processor-sharing (PS) stations, and a ‘customer’ in the CQN represents an active data
source. The distinguishing property of this application is that this CQN model is valid only if
the PS station is saturated (heavy usage); see [2] for further details. The saturated station is
defined asymptotically as the station where the number of customers grows proportionally
to the total number of customers in the network as the latter increases with service rates at
the PS station. The application includes the performance metric that the bandwidth received
by an active data source at a given network node is greater than a target value with probability
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1 — a, where a is in the range of 0.001 to 0.1. As the network nodes of interest have a packet-
based implementation of processor sharing, the performance metric can be restated as the
number of active data sessions at a network node (the total number of customers at the PS
station in the CQN model) is less than a target value with the given probability 1 — o. As the
above probability will be calculated in the context of network planning and of network
operations, the calculation will need to be done often and quickly.

Let Q; be the random variable for the steady-state number of type-j customers at the PS
node. The steady state probability distribution for the CQN is obtained from (43) with K =1
and can be written in the following form:

”j

Pr{iQy=m, ..., Qs =ny} Gl—[(N_nj)l

where n = ZJ L 1y
Denote by Q ZJJ_ O; the total number of customers at the PS node, and let

P =PrQ=n}= ) Pr(Qi=m.....0r=n)

ny+-+ny=n

be its probability mass function. In general, the above sum does not seem to be reduced to a
product of functions depending only on » and/or network parameters. However the expo-
nential generating function P(z) for the sequence P(n) has the following simple expression:

P2) = ZP(n)—_-G ‘]‘[(1+p, )N

n=0

which is easily derived from definitions of P(n) and P(z). Using the Cauchy formula, we
obtain for P(n) the following integral representation in complex space:

P(n) = —=nl=— § [ +p2)"
_G 2njJe ozt

where C is any circular contour around z = 0.
We study the asymptotics of P(n) under the following two assumptions.

1. The total number of customers in the network N = "5 | Ny is large, ie. N > 1 and
moreover

rp=Np, and o =-— (61)

where 7; and o, j = 1, ..., J, remain bounded as N — oo.
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2. The PS station is saturated which is expressed by the following heavy usage condition

J
D o> 1. (62)
Jj=1

Now we can formulate the main results in [4].

PROPOSITION 2 Let conditions (61) and (62) be satisfied and N — oo while n = Nx, where
both x and 1 — x are O(1). Then the probability distribution of the total number of customers
at the PS station has the following asymptotic expansion Pr{Q = n}

- \/%f(—%) e -N(F(3) - F)) (1 + 0(%))

where x* is a single positive solution of equation

J
; +r,x

J ajrjz
oA+

Fx) =x—xIn x — S(u,(x))

J&) =

__x
uo (x) S //(uo(x))’

Su) = Zocjln(l +ru)—xlnu
j=1

and u,(x) is a unique positive solution of equation
ot
S/ JJ
) = Z 1 +ru u
on the real axis for each x € (0, 1).

COROLLARY 1 The function F(x) defines the logarithmic asymptotics of the probability
distribution P(n) = Pr{Q = n} in the following sense:

lim

N—>oo

In P(n) N
v = ~FE) - F&T).

Moreover, F(x*) defines the logarithmic asymptotics of the normalization constant
G = G(N):

lim

N—>oo

In (:J(N) — _F(Y).
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COROLLARY 2 The normalized total number of processor sharing customers Q/N
converges to x* in probability and

Q — Nx*
JN

is asymptotically normal with mean 0 and variance
o2 = A" —x*.

Asymptotic expansion for complementary probability distribution has the following form:

Pr{Q > m} ~ %erfc[\/N (F(a) — F(x*))] -/ %elN(F(X*)-F(a))}

(28)"'2 — f(@)lF(a) — F")]'[F ’(a)]_'>
[F(a) — Fe)]'? ’

x (f (a)H(a) +

where
H@) =L — 1 _ 0.5+ 300 F@)'/(+2)! ’
Fl@) exp{F'@}—1 1+Y2[F(@])/d+ 1)
and
F'(a) = —Ina + Inu,(a).
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