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It is increasingly popular that platforms integrate various services into mobile applications due to the high usage and convenience
of mobile devices, many of which demand high computational capacities and energy, such as cryptocurrency services based on
blockchain. However, it is hard for mobile devices to run these services due to the limited storage and computational capacity. In
this paper, the problem of computation offloading that requires sufficient computing resources with high utilization in large-scale
users and multiprovider MEC system was investigated. A mechanism based on the combinatorial double auction, G-TRAP, is
proposed in this paper to solve the above problem. In the mechanism, resources are provided both in the cloud and at the edge of
the network. Mobile users compete for these resources to offload computing tasks by the rule that the edge-level resources will be
allocated at first while cloud-level resources could be the supplement for the edge level. Given that the proof-of-work (PoW), the
core issue of blockchain application, is resource-expensive to implement in mobile devices, we provide resource allocation service
to users of blockchain application as experimental subjects. Simulation results show that the proposed mechanism for serving
large-scale users in a short execution time outperforms two existing algorithms in terms of social utility and resource utilization.
Consequently, our proposed system can effectively solve the intensive computation offloading problem of mobile
blockchain applications.

1. Introduction

With the thriving of mobile communication technology and
the popularity of mobile devices, the platform services have
been expanded on mobile terminals. However, many ser-
vices are restricted on mobile devices owing to complex
computing or too high latency requirements, e.g., autono-
mous driving services and mobile blockchain services [1].
Recently, blockchain has been continuously combined with
many applications in various fields [2], such as e-commerce,
the Internet of things [3], and supply chain. 'ence, various
research institutions attach great importance to this tech-
nology and publish academic achievements related to
blockchain.

Technically, the essence of blockchain is a distributed
ledger based on asymmetric encryption algorithms, and it

consists of a combination of blocks linked by hash functions.
To confirm and secure the consistency and validity of
transactions in the blockchain network, the participants
need to complete a computation-intensive task [4], i.e., the
proof-of-work (PoW) puzzle [5], which is characterized by
the need of consuming significant central processing unit
(CPU) resources. According to [6], the core of the PoW
process is that the consensus node computes the PoW so-
lution to the cryptographic puzzle, which is formed based on
the root hash value of the Markle tree calculated by a newly
generated transaction.'eMarkle tree will be deeper and the
calculation will becomemore complicated when the number
of transactions generated by blockchain increases, which sets
an extremely high demand for computing capability of the
mobile devices. Although the CPU of mobile devices has
developed powerfully, it still can hardly meet the demand of
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many computing tasks of applications in a short time. 'us,
blockchain applications cannot be widely used in mobile
devices, which limits mobile blockchain applications’
development.

Mobile edge computing (MEC) [7] provides an exem-
plary method for solving such problems. To support the
offloading of computation-intensive tasks, mobile edge
computing can provide mobile users with computing and
storage resources to solve limitations related to the hardware
[8, 9]. In particular, it overcomes the drawbacks of mobile
cloud computing, which could cause long latency and
backhaul bandwidth congestion [10–12]. Because the
computing capacity and appropriate incentive policies are of
great importance to users of mobile blockchain applications,
it is vital to decide how to offload the computing tasks of the
PoW puzzle to the mobile edge computing in the mobile
blockchain system.

Given that the resource allocation mechanism involves
an incentive policy to allow participants to maintain long-
term resource transactions independently, the auction
mechanism can be applied in resource allocation as a
market-incentive mechanism [13]. Furthermore, consider-
ing the characteristics of the PoW consensus mechanism [5],
i.e., low latency and rewarding users for broadcasting a new
block successfully, users need computing resources to ac-
complish more computing tasks in a short time to have more
chances for obtaining rewards. Furthermore, the edge
computing service providers hope to get revenues by selling
resources. Consequently, the auction model can provide a
fair competition market for resource trading mentioned
above.

'ere have been several works that focus on using
auctions or other economic methods to solve the compu-
tation offloading problem of the mobile blockchain system.
Jiao et al. first investigated resourcemanagement and pricing
in the mobile blockchain with an auctionmodel [14]. In [14],
the resource allocation problem is modeled to maximize the
social welfare of edge computing service providers (ESPs)
considering the competition between miners and the utility
of blockchain network. In [15], Xiong et al. adopted the two-
stage Stackelberg game to maximize both the profits of the
ESP and the individual utilities of miners. Li et al. designed a
long-term auction-based incentive mechanism POEM+ in
[16], where the edge servers were encouraged to share their
resources to expedite the PoW process execution of mobile
devices with an approximation ratio. However, the defi-
ciency of the aforementioned works is that no algorithm or
simulation addressed the scenario of large-scale user groups
for the mobile blockchain system.

'e lack of edge-level resources has also posed a
significant obstacle in computation offloading. In re-
sponse, Bahreini et al. [17] studied resource allocation
and pricing in the two-level edge computing system. 'ey
proposed a mechanism combining features from both
positions and combinatorial auctions to meet the com-
petition and heterogeneous demand of virtual machine
(VM) instances for mobile users. 'e proposed allocation
mechanism in [17] provides heterogeneous types of re-
sources for multilocation resource selection based on

location information, which contributes to solving in-
tensive computation offloading problems. Unfortunately,
this work only considered resource transactions between
a single provider and mobile application users, without
considering that there will be multiple service providers
at the same time in the market.

With the above observations, the promotion of mobile
blockchain applications is proposed as a research object in
this paper. Correspondingly, a two-level combinatorial
double auction mechanism that includes two levels of re-
sources is proposed to solve the computation-intensive
offloading problem of mobile blockchain applications
mentioned above. In the mechanism, the providers who can
provide cloud-edge two-level service are called cloud-edge
computing service providers (C-ESPs). 'e C-ESP can
schedule cloud-level resources to supplement the edge-level
resources through the cloud computing center. Moreover,
this mechanism considered that mobile users usually prefer
edge-level computing close to applications. 'e main con-
tributions of this paper are summarized as follows:

(i) An allocation mechanism based on the combina-
torial double auction is proposed for cloud-edge
computing resource allocation. In the mechanism,
the computing tasks in generating a new block and
broadcasting throughout the whole mobile block-
chain network to make consensus can be offloaded
to C-ESPs.

(ii) Resource allocation and pricing algorithms are
proposed to determine winners and final prices,
which satisfy the economic attributes of auction
truthfulness, individual rationality, budget balance,
and computation efficiency.

(iii) 'e proposed mechanism is simulated in various
situations. 'e simulation results show that the
proposed mechanism is effective with large-scale
user group participation and outperforms in terms
of resource utilization.

2. Related Work

To overcome the resource constraints of mobile devices, the
existing works have widely studied resource allocation
problem of computation offloading in MEC systems [18]
from different fields. In [18], the authors analyzed that the
computation offloading is a critical use case regarding the
MEC as it can save energy and/or speed up the process of
computation from the user perspective. In [19], the authors
proposed an adaptive wireless resource allocation strategy of
computation offloading service under a three-layered ve-
hicular edge cloud computing framework, which can ensure
endurance mileage of electric vehicles when a large number
of computation-intensive applications bring colossal energy
consumption to the vehicle. To support resource-intensive
applications running on the industrial Internet of things
(IIOT) devices, the authors in [20] presented a distributed
game-theoretic approach to achieving multihop cooperative
computing offloading of the IIOT in the edge computing
system.
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Second, many researchers focused on the resource al-
location of multiple service providers and multiple user
scenarios by applying the double auction model. Moreover,
the double auction model is an economic model widely used
in resource allocation that encourages buyers and sellers to
bid simultaneously to reach a deal by the incentive mech-
anism. And during the auction, buyers can bid on combined
goods, and buyers and sellers choose each other based on
bids’ details. In [21], Singhal et al. proposed a combinatorial
double auction model for resource allocation. Buyers bid for
a package of resources and pay for it one time, which can
improve resource utilization and resource efficiency allo-
cation. In the [22], the authors proposed a breakeven-based
double auction (BDA) and a dynamic pricing-based double
auction (DPDA) to determine the matched pairs between
IIOTmobile devices (MDs) and edge servers, as well as the
pricing mechanisms restricted by the actual situation for
higher system efficiency. 'ese two algorithms mainly
modeled the two-side interaction between MEC servers and
IIOT MDs. 'ey described a double auction framework to
address interaction and maximized the system efficiency
where IIOP MDs request computing services with claimed
bids and servers sell service with a reported price. In [23], the
authors further adopted the auction model and proposed a
resource allocation mechanism based on combined double
auction to allocate VM instances of ESPs to miners by
considering group buying. Although this article considers
multiservice provider and multiuser scenarios, it lacks the
expansion of future intensive task offloading.

Furthermore, a few recent computing offloading studies
have brought edge and cloud computing together to support
computation-intensive and latency-critical applications. 'e
architecture of MEC can be further extended to serve users
in different scenarios. 'e authors in [24] modeled the data-
intensive service as a W-DAG (weight directed acyclic
graph) to investigate the task placement problem for sup-
porting data-intensive services with guaranteed QoS, i.e.,
shorter service delay in a cloud-edge system according to the
business logic analysis. In [25], the authors derived a closed-
form optimal task splitting strategy as a function of the
normalized backhaul communication capacity and the
normalized cloud computation capacity under the collab-
oration between cloud computing and edge computing. Fu
et al. proposed an economical and flexible framework for
IIOT by integrating the function of data preprocessing,
storage, and retrieval based on both fog computing and
cloud computing [26]. In [27], Chen et al. proposed a
multiuser multitask computation offloading framework for a
green mobile edge cloud computing system where the dy-
namics of energy arrivals at the mobile edge cloud and task
arrivals at different mobile devices are jointly considered.

With the investigation of these research studies on
multiposition resource allocation and the computation
offloading in mobile blockchain, a cloud-edge two-level
double auction mechanism is proposed for intensive com-
putation offloading scenarios in mobile blockchain appli-
cations. 'e rest of the paper is organized as follows. 'e
system model and problem formulation are described in
Section 3.'emechanism is presented in Section 4. Section 5

introduces the simulation setup as well as discusses the
simulation results. Finally, the conclusion is given in Section
6.

3. System Model and Problem Formulation

'e considered system provides K types of VM instances
from cloud-edge two levels. In the system, users and C-ESPs
submit bids to a central auctioneer separately to buy or sell
VM instances. When the edge-level computing server
cannot satisfy large-scale offloading requests from mobile
users, resources are scheduled and supplied for edge com-
puting nodes from cloud-level servers to form a cloud-edge
two-level auction market. Moreover, a total revenue opti-
mization problem of the system is formulated by jointly
considering the profit of users and C-ESPs. Compared to
single-level edge computation offloading, this model meets
more needs of multiple users and improves resource
utilization.

3.1. System Model. 'is auction system consists of mobile
blockchain networks, computing service providers, and the
auctioneer. In our mobile blockchain network, the mobile
devices continuously run the consensus protocol to confirm
and secure distributed data or information transmission in
the background. 'erefore, mobile devices need to solve the
PoW problem that involves calculating a nonce output value
that satisfies a given condition. However, it is hard for a
mobile user to continuously run such challenging programs
that require a large volume of CPU computing resources. It
is considered that mobile users could offload the task of
solving the PoW problem to nearby cloud-edge computing
servers deployed by C-ESPs to get over the computing
limitation problem of mobile devices. In particular, C-ESPs
announce to the auctioneer services for the supply of VM
instances and bid information. 'e mobile users submit
their resource demands and bid information to the auc-
tioneer. After receiving the demands and bids, the auc-
tioneer selects winners including users and C-ESPs
according to the allocation algorithm and matching mobile
users and C-ESPs as the allocation matrix X � xij􏽮 􏽯, the
detail of which will be presented in Section 3.2.

As shown in Figure 1, the cloud-edge two-level auction
system includes C-ESPs, mobile blockchain application
users, and auctioneers. C-ESPs sell VM instances to users,
and users purchase the VM instance for completing the
mathematical puzzles of PoW in blockchain applications.
Assume that VM instances can be differentiated by diverse
computing resources, such as memory, CPU capacity, and
storage. It is considered that each C-ESP provides multiple
VM instances at two levels, edge (l � 1) and cloud (l � 2),
where l denotes the location of VM instances. Each user
demands a bundle of diverse sorts of instances to complete
computing tasks.

3.1.1. Defining Bid Information of Users. C-ESPs and users
submit bid information to the auctioneer, and the bid of user
i is determined by a 2-tuple (di

⇀
, vuseri ). In the tuple, di

⇀
is the
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demand vector, which is defined as di

⇀
� (d1

i , d2
i , . . . , dk

i ). dk
i

denotes the demand of user i for the instance k, and vuseri

signifies the reward valuation obtained by users after solving
the PoW problem and broadcasting the result in the whole
blockchain network.

3.1.2. Calculating Reward Valuation as the Bid of Users.
In the mobile blockchain network, users compete to be the
first to solve PoW problem with correct nonce value to
receive rewards that are considered the value, vuseri , offered
by users in this auction system, thence calculating valuation
for rewards of all users at first. Assume that the computing
power of each VM instance is 1 and each user can suc-
cessfully purchase required resources. With the allocation
xij and demand dk

i , the proportion of the computing ca-
pacity of the user i in the whole blockchain network can be
represented as follows:

ci �
xij 􏽐

N
i�1 d

k
i

􏽐
N
i�1 􏽐

M
j�1 xij 􏽐

K
k�1 d

k
i􏼐 􏼑

, ci > 0 and 􏽘
N

i�1
ci � 1. (1)

According to the reference in [14], the generation of new
blocks follows a Poisson distribution process with a constant
rate 1/λ throughout the whole blockchain network. Before
the tournament, users collect unconfirmed transactions into
their blocks. 'e first mobile user to successfully make the
block achieve consensus can get the reward consisted of a
fixed reward R and a flexible fee r. 'e flexible reward is
proportionate to the number of transactions s included in
the block, and the proportionality coefficient is denoted as r.
'us, the potential rewards of user i can be expressed as
follows:

v
user
i � (R + r · s)P ci, s( 􏼁, (2)

where P(ci, s) represents the probability where the user i

is the first to work out the computing task and generate a
new block. However, the user will not be rewarded if the
new block cannot reach consensus on the entire network

in time, and such blocks are called orphaned blocks [14].
'e broadcasting time τ is proportional to the transaction
volume contained in a new block, and the proportionality
coefficient can be denoted as ξ; then, τ � ξ · s. Moreover,
blocks with large transaction volumes require more
propagation time, which may lead to high latency and fail
to reach consensus, so blocks with a larger transaction
size are more likely to become orphaned blocks. 'e time
of generating a new block obeys Poisson distribution, so
the orphaning probability can be approximated as
follows:

Porphan(τ) � 1 − e
− (1/λ)ξ·s

. (3)

'e probability that a user creates a new block and
rewarded can be described as follows:

P ci, s( 􏼁 � ci 1 − Porphan(τ)􏼐 􏼑. (4)

'e potential reward can be rewritten as follows:

v
user
i � (R + r · s) · ci · e

− (1/λ)ξ·s
. (5)

3.1.3. Defining Bid Information of C-ESPs. 'e bid of
C-ESPj is specified as a 3-tuple (qlj

⇀
, pj

⇀
, πj), where

qj

⇀
� (q1lj, q2lj, . . . , qk

lj) and pj

⇀
� (p1

j , p2
j , . . . , pk

j). Moreover,
qk

lj indicates the number of instances provided by C-ESPj

from the lth level, pk
j denotes the ideal price of instance k

determined by C-ESP j, and πj is the basic energy con-
sumption unit for using VM instances provided by C-ESP j.
Besides, K sorts of VM instances are distinguished by
computing resource configuration in this model, and the
weight of each kind of VM instance is defined as ωk. 'e
energy consumption function of VM instances is defined as
cos t(ωk) � ωk · πj based on ωk, which means that the cost of
using computation resource will be higher with the higher
resource configuration of the VM instance.

Edge
 computing

unit

Cloud server

Edge
computing

unit
Cloud-edge computing service provider

Sell bids
Buy bids

Auctioneer

Generate allocation
and compute prices

Mobile device
(bidder)

Mobile device
(bidder)

Mobile device
(bidder)

Mobile device
(bidder)

Mobile blockchain

Allocation algorithm
Pricing algorithm

Figure 1: Cloud-edge two-level auction system for mobile blockchain.
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3.1.4. Calculating Bids of C-ESPs with Communication
Consumption. 'e distribution of C-ESPs and users is
shown in Figure 2, where the communication transmission
between C-ESPs and users comprises the path loss, which is
assumed to include in the bid of C-ESPs. Specifically, h′ is
defined as the threshold of the distance between users and
C-ESPs. When the distance between C-ESPs and users ex-
ceeds h′, the bid will increase in proportion based upon the
excess. For C-ESP j, the price of instance k charged for user i

can be expressed by

p
k
ij �

p
k
j , hij ≤ h′,

p
k
j

hij

h′
, hij > h′,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(6)

where hij denotes the distance between user i and C-ESP j,
and we calculate the average prices of all users.'erefore, the
bid of instance k determined by C-ESP j is formulated as

p
k
j �

􏽐
n
i�1 p

k
ij

n
. (7)

3.2. Problem Formulation. 'e previous section has de-
scribed information of C-ESPs and users as the input to
the system. 'is section mainly defines the output of the
system, i.e., the results of resource allocation and pricing,
and optimizes this allocation problem as much as
possible.

'e mechanism proposed (detailed in Section 4) in this
work is a combinatorial double auction mechanism with
resource location information. 'e rules are as follows: (i)
each user can purchase a bundle of VM instances from no
more than one C-ESP; (ii) selling VM instances of cloud level
will cost more than the edge level due to the consumption
caused by the resource scheduling; (iii) moreover, the bids of
users and C-ESPs should be processed by the auctioneer
separately. Assume that there are M C-ESPs and N users,
and their matched results can be denoted as a M × N matrix
X, whose elements can be denoted as xij.'e value of xij can
be indicated as follows:

xij �
1, if seller j serves buyer i,

0, otherwise.
􏼨 (8)

According to auction rule (i), the first restriction can be
formulated as follows:

􏽘

M

j�1
xij < 1, ∀1≤ i≤N. (9)

In addition, the supply of each C-ESP is limited. When
allocating VM instances to users, the auctioneer will make
sure that the remaining resources of the current C-ESP meet
the requirements of the current user. Namely, the total
demands of matched users cannot exceed the capacity of
C-ESP. 'e capacity constraint of C-ESPs can be formulated
as follows:

􏽘
N

i�1
xijd

k
i ≤ 􏽘

2

l�1
q

k
lj, 1≤ j≤M, 1≤ k≤K. (10)

We define the winner set W containing the user who can
successfully match C-ESP based on above two constraints.

Along with the allocation, the auctioneer also calculates
the payment of users and C-ESPs.'e final charge of user i is
denoted as pi that user i actually pays to the provider. pj is
employed to denote the payment of C-ESP j as the revenue
obtained from matched users for serving. Uj and Ui rep-
resent the utility of C-ESPs and users, respectively, and the
utility of the user i is defined as follows:

Ui � 􏽘
M

j�1
xij v

user
i − pi( 􏼁, (11)

and the utility of the C-ESP j is defined as follows:

Uj � pj − v
C− ESP
j − cj􏼐 􏼑. (12)

For C-ESP j, vC− ESP
j is the total offer of instances supplied

for matched users. cj denotes the cost incurred on the
process that C-ESP j provides service to users. As an edge
computing service provider, the costs generated by the edge-
level are within its bid considerations while the excess
consumption from the cloud level will affect the C-ESP
revenue. 'erefore, we assume that the additional resource
expenses will only be brought by operating cloud-level VM
instances. yk

i represents the number of the instance k

purchased by user i from cloud level of C-ESP j. 'e utility
of C-ESP can be rewritten as follows:

Uj � pj − 􏽘

N

i�1
xij 􏽘

K

k�1
d

k
i · p

k
j − 􏽘

K

k�1
p

k
j · cos t ωk( 􏼁 · y

k
i

⎛⎝ ⎞⎠.

(13)

In this paper, we attach importance to economic effi-
ciency and aim to maximize the total utility of users and
C-ESPs. 'erefore, the allocation of VM instances problem
in the proposed mechanism can be formulated as follows:

User 2

User 1

User i

C-ESPs

hij

• • •

Figure 2: C-ESP distribution structure with users.
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max 􏽘

N

i�1
Ui + 􏽘

M

j�1
Uj

⎛⎝ ⎞⎠,

s.t. 􏽘
M

j�1
xij ≤ 1, ∀1≤ i≤N,

s.t. 􏽘
i�1

i�1
xijd

k
i ≤ 􏽘

2

l�1
q

k
lj, 1≤ j≤M, 1≤ k≤K,

(14)

where two constraints mean that the user can match with no
more than one C-ESP and the capacity of C-ESPs is limited.
'is resource allocation problem can be proved as the NP-
hard problem, which cannot reach the optimal in a limited
time. According to [13], it can be simplified to the winner
determination problem. Table 1 shows the notation used in
this paper.

4. The Resource Auction Mechanism: Greedy
Two-Level Resource Allocation and
Pricing (G-TRAP)

In this section, a corresponding auctionmechanism is proposed
to solve the VM instance allocation and pricing problem. 'e
proposed mechanism, G-TRAP, can be divided into two parts
as follows. In the first part, a greedy mechanism is designed to
complete VM instances allocation since it is unlikely to find a
polynomial-time optimal solution of the allocation problem
mentioned in Section 3. Moreover, this allocation mechanism
trades resource in the two-level resource system under the
consideration of combining location information and weights
of VM instances, which can improve resource utilization. 'e
second part is pricing, in which an improved Vickrey–
Clarke–Groves (VCG) mechanism [28] is applied to calculate
the payments of participants to ensure the truthfulness of the
auction.

4.1. Allocation Algorithm. 'e first algorithm contained in
G-TRAP is the allocation algorithm. Given bids of C-ESPs
and users, our objective is to maximize the total utility of
participants during allocation. 'e resource allocation is an
NP-hard problem, so the greedy algorithm is customized to
solve the problem in this work.

4.1.1. Calculating Bid Density and Ranking. In the first stage,
the bids of C-ESPs and users are sorted based on bid
densities. Considering that users and C-ESPs prefer to trade
in edge-level resources rather than cloud-level resources, we
define the size of resources owed by C-ESP j, sj, related to
the type and the location of VM instances.'e bid density of
the C-ESP can be calculated as follows:

bdj �
vj
��
sj

􏽰 ,

sj � 􏽘
2

l�1
􏽘

K

k�1
αl · ωk · q

k
lj.

(15)

Similarly, the user’s bid density can be expressed as
follows:

bdi �
vi
��
si

√ ,

si � 􏽘
K

k�1
ωk · d

k
i ,

(16)

where αl is defined as the preference factor for level l and set
to distinguish the weight of resources between cloud level
and edge level and vi/vj is the valuation of bidders. 'en,
C-ESPs are sorted in ascending order, and users are sorted in
descending order based on the bid density.

4.1.2. Allocating in Order. In the second stage, users are
assigned to the C-ESPs in sorted order. When a user matches
a C-ESP, the C-ESP will firstly check whether there are
enough resources at the edge level or not. If (1) the bid
density of user i is not less than C-ESP j′s and (2) the
number of K sorts of instances required by user i does not
exceed the remaining resource at the edge level of C-ESP j,
C-ESP j and user i will match each other. Suppose only
condition (1) is satisfied and the remaining of edge level
cannot meet the demands of user i. In this case, C-ESP j will
assign cloud-level instances as complements to user i

according to the constraints. 'en, C-ESP j updates the
capacity if sufficient resources are available to the current
user. Besides, we denote yk

i as the number of kth VM in-
stances purchased by user i from the cloud level.

It is explained here that each user can only purchase all
needed VM instances from one C-ESP. 'e user i will
continue to match with the next C-ESP ranked behind
C-ESP j if the two fail to match. 'e element xij of matrix X

is marked after matching successfully, and user i is added to
the winner set W. 'e specific details of the allocation are
shown in Algorithm 1.

Table 1: Notation.

Notation Description
N Number of C-ESPs
M Number of C-ESPs
vi Valuation of user i

K Types of VM instances
dki Demand of user i for the instance k

qklj Quantity of the kth instance C-ESP j provides
pkj Price of instance k determined by C-ESP j

πj Basic cost for C-ESP j

ωk Weight of instance k

xij Relationship matrix of users and C-ESPs
yki Number of kth instances from cloud level
Ui Utility of user i

Uj Utility of C-ESP j

cj 'e extra cost of C-ESP j

vC− ESP
j Offering by C-ESP j for allocated instances
pi Payment of user i

pj Payment of C-ESP j

αl Weight of VM instance for level l
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4.2. Pricing Schema and Calculating Total Utility. After
matching C-ESPs and users through the allocation algo-
rithm, the payment of users and the revenue of C-ESPs will
be calculated separately. We employ the improved VCG
price mechanism to pricing. VCG auction always charges the
winner the highest bid of losers [28]. In this paper, we define
the VCG price vcg p of a user as the product of the size of
resources obtained by user i and the biggest bid density
among losers:

vcgpi �
��
si

√
· bdmax loser. (17)

To make sure individual personality and maximize the
effectiveness of C-ESP, the final charge price of user i is the
maximum value of VCG price, the offer of matched C-ESP,
and the compromise price. 'e compromise price is defined
as the average value of the next lower bid density of C-ESP
and VCG price. 'e final payment of users can be expressed
as follows:

pi � max bdmax loser, bdj,
bdj+1 + vcgpi

2
􏼨 􏼩 ·

��
si

√
. (18)

After calculating the charge of users, the payment of
C-ESPs can be figured out as follows:

pj � xij 􏽘

N

i�1
pi − cj

⎛⎝ ⎞⎠. (19)

'e total utility includes the utility of users and C-ESPs.
'e details of pricing are shown in Algorithm 2.

4.3. Properties of G-TRAP. In the following, it is shown that
G-TRAP is actually an incentive mechanism to solve the
distribution problem defined above and it satisfies the
economic properties include truthfulness, individual ratio-
nality, budget balance, and computing efficiency [29].

Definition 1. (truthfulness). An auction is truthful if any
participant’s utility is maximized for the actual valuation of
bidders. Four properties, including monotonicity, critical-
ness, exactness, and participation, form the sufficiency for a
mechanism with truthfulness.

Theorem 1. Algorithm G-TRAP is truthful.

Proof 1. From the allocation algorithm, it can be seen that
users are first sorted in descending order according to bid
density and join in allocation. 'erefore, users can improve
their ranking by raising the bids or reducing the config-
uration of purchased resources to make allocation more
likely. Accordingly, the winner decision algorithm of our
mechanism is monotonous. Secondly, the VCG price is
calculated by multiplying the size of resources and the
maximum bid density among losers who would win if the
winner does not participate in the auction. Obviously, our
mechanism is of exactness and participation. 'erefore,
our mechanism is truthful. □

Definition 2. (individual rationality). Individual rationality
means that each participant’s utility is non-negative, i.e.,
Ui > 0, Uj > 0, for∀i, j ∈W.

Theorem 2. Algorithm G-TRAP is individually rational.

Proof 2. Charges of users are determined by the largest
among VCG price, the offer of matched C-ESP, and the
average value of the next lower bid density of C-ESP and
VCG price. VCG price is the product of ��

si

√ and
vmax loser/

��������
smax loser

√ which is the highest bid density of
losers. 'us, VCG price is generally lower than the user’s
valuation. As shown in the 6th to the 12th line of pricing
algorithm, the value of pi is certainly less than user’s val-
uation, which means that user utility must be non-negative.
According to the 5th line of allocation algorithm and the 5th
and 8th lines of pricing algorithm, it can be concluded that
the return of C-ESP must be greater than its valuation, and
individual rationality of C-ESP is also proved. □

Definition 3. (budget balance). Budget balance means that
the final payment of users is not less than the sum of C-ESP’s
consumption.

Theorem 3. Algorithm G-TRAP is budget balanced.

Proof 3. 'e payments of users are paid to C-ESP, and all of
the actual income of C-ESP comes from users. 'erefore,
there is no auctioneer charged, which means the algorithm is
budget balanced. □

Definition 4. (computing efficiency). If an algorithm can
terminate in polynomial time, it can be considered as
computing efficient.

Theorem 4. Algorithm G-TRAP is computing efficient.

Proof 4. For G-TRAP, sorting takes O(N logN) time, and
allocation takes O(NMK) time. If the number of users far
exceeds the number of C-ESPs, the maximum time com-
plexity of allocation algorithm is O(NK) and O(MK),
otherwise. In the algorithm of pricing and calculating total
utility, pricing takes O(N) time and calculating total utility
takes O(NM) time. As a result, the time complexity of
G-TRAP is O(NMK + N logN). □

5. Simulation and Performance Analysis

5.1. Numerical Simulation Setup. In previous research
studies on mobile blockchain application computation
offloading [14–16, 21, 23], the number of users tested in the
simulations did not exceed 900. 'ere were no tests for a
large-scale user group. To build an intensive computation
offloading scenario, we expend the number of users grad-
ually increases from 1 to 5000 during the simulation process
while keeping the number of C-ESP as 200 and the number
of K types of VM instances unchanged. Moreover, the effect
of the cloud-edge capacity ratio of the algorithm is also
tested based on 5000 users. Note that the simulation results
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obtained in this section are based on an average over
multiple iterations.

Two comparing algorithms proposed in existing work
[23] are added to evaluate the performance difference be-
tween G-TRAP and edge-only computing systems.

STGA: this scheme is a combinatorial double auction
[23] called step greedy algorithm. Computing tasks will
match edge computing providers (only supply edge
computing resources) according to the bid size. After
matching, the utility in this scheme calculated follows
the VCG mechanism.
SMGA: compared with the STGA, the only difference is
that the smooth greedy algorithm [23] depends on a
curve discount function to solve the allocation problem
between a group of users and edge computing pro-
viders (only supply edge computing resources). 'e

evaluation results show that it performs better than
STGA.

In order to test the three algorithms legally, we use the
same input file. All data in the figures are obtained by
simulation on MATLAB R2019b.

5.1.1. Calculating Rewards of Users in Mobile Blockchain
Network. Firstly, we calculate the rewards of the PoW
consensus algorithm, which depends on whether the mobile
user broadcasts a block successfully in the mobile blockchain
as the bid of each user. According to Section 3.1.2, the reward
of successfully adding to the chain is divided into two parts,
including fixed bonus R and variable r · s. In the simulation,
we set R � 20 and r � 0.04 and assume that the size of block s

follows the uniform distribution U(0, 1000). Hence, each

(i) Input: bid information of C-ESPs M and users N
(ii) Calculate bid density of user i⟶ mb[i] and calculate bid density of C − ESP j⟶ eb[j]

(iii) Sort users in nonincreasing order of their mb[i] and sort C-ESPs in nondecreasing order of their eb[i]

(iv) X⟵ 0, i⟵, W⟵ 0, l⟵ 0, y⟵0
(v) for i � 1, . . . , n do
(vi) l⟵1, j⟵ 0
(vii) while (j≤m) and (f[i] � 0) do
(viii) if eb[j]≤ mb[i] then
(ix) access⟵ true
(x) for k � 1, . . . , K do
(xi) if (q[[l − 1] jk] + q[ljk]) < d[ik] then
(xii) access⟵ false
(xiii) break
(xiv) if access then
(xv) for k � 1, . . . , K do
(xvi) if l � 2 then
(xvii) if d[ik]≥ q[1jk] then
(xviii) d[ik]⟵ d[ik] − q[1jk]

(xix) q[1jk]⟵0
(xx) q[2jk]⟵q[2jk] − d[ik]

(xi) y[ik]⟵y[ik] + d[ik]

(xii) else
(xiii) q[1jk]⟵q[1jk] − d[ik]

(xiv) else
(xv) q[ljk]⟵ q[ljk] − d[ik]

(xvi) x[ij]⟵1
(xvii) W[i]⟵user[i]

(xviii) f[i]⟵ 1
(xix) else
(xx) if l � 1 then
(xxi) l⟵l + 1
(xxii) else
(xxiii) j⟵ j + 1
(xxiv) continue
(xxv) end if
(xxvi) end if
(xxvii) end if
(xxviii) end while
(xxxi) end for
(xxx) Output: set of winners W, relation matrix X

ALGORITHM 1: G-TRAP: resource allocation algorithm.
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user who successfully adds a new block in the public chain
will gain 20 + 0.04 · s.

5.1.2. Calculating the Bids of C-ESPs Based on the Distri-
bution of the Network. 'e network model is assumed to be
a topological graph, where the locations of C-ESPs and users
are generated randomly. According to the nodes’ distribu-
tion, we assume that the distance between the user i and
C-ESP j, hij, is randomly generated in the range of [40, 60],
and the threshold h′ is fixed to 50. 'e bid of C-ESPs that
includes communication consumption is averagely esti-
mated based on the ratio of hij and h′.

5.1.3. Setting Related Parameters of Auction. Assume that
there are four types of VM instances demanded by users and
the amount of VM instances required is set to obey the
uniform distribution of U(1, 5). Based on Amazon’s Elastic
Compute Cloud (EC2) M3 series instances, we consider that
these four types of VM instances provided by C-ESPs are
defined as medium, large, xlarge, and 2xlarge, each equipped
with a combination of three types of resources, including
vCPU, memory, and storage.'e resources are sold by cloud
level and edge level of C-ESP. 'en, we assume that the
number of VM instances for each C-ESP is subject to a
uniformly distributed dataset of U(30, 35).

'e unit price of C-ESP is randomly generated during
the range of [ 0.1 · Wk − 0.05, 0.1 · Wk + 0.05 ] in which Wk

is the weight corresponding to each VM instance of C-ESP,
and 0.1 · Wk denotes the basic unit price of k

th instance. We
assign the weight αl to differentiate instance in edge-level
(α2) and cloud-level (α1) and set four combinations of αl

which are (α1 � 0.2, α2 � 0.8), (α1 � 0.4, α2 � 0.6),
(α1 � 0.7, α2 � 0.3), and (α1 � 0.9, α2 � 0.1) to construct
sets of VM instances. 'e basic energy consumption unit πj

is set with three different value ranges

([ 0, 0.5 ], [0.5, 1], [1, 1.5 ]) and C-ESPs will pay different
resource costs for diverse types of VM instances. 'e dis-
tribution of parameters of VM instances generated in
simulations is shown in Table 2.

5.1.4. Setting Cloud-Edge Ratio. We define a parameter,
called cloud-edge capacity ratio, Cr, which is the ratio of the
capacity for each VM instance at the cloud and the capacity
at the edge level. 'e values of Cr are expressed as
Cr � 1, (6/4), (7/3), (8/2), (9/1).

5.2. Analysis of Results

5.2.1. Impact of Reward Parameters for Successful Broad-
casting of Users. Firstly, we consider the impact of fixed
bonus R and the transaction fee r for broadcasting a block on
the mechanism. It is observed from Figure 3 that if the
blockchain network raises R and r, the total utility and the
percentage of winners will be increased nearly in proportion.
'e reason is that users can obtain more rewards by
completing computing tasks as expected and the bids in-
crease correspondingly.

5.2.2. Impact of the Number of Mobile Users N. We next
investigate the effects of user amount on the performance of
G-TRAP with different sets of VM instances of C-ESPs. For
this purpose, we keep the number of resources provided to
users unchanged and increase the number of users con-
tinually. And we also compare the performance of G-TRAP
against that of STGA and SMGA in [23].

'e total utility of G-TRAP is shown in Figure 4(a),
which shows that as the number of users increases, the total
utility also increases. Moreover, Figure 4(a) shows that the
greater relative weight of VM instances of edge level brings
more total utility. It is due to the fact that users and C-ESP

(i) for i � 1, . . . , n do
(ii) vcg p← findmax mb[i]⊄W{ }

(iii) for i � 1, . . . , n do
(iv) if user[i] in W then
(v) if vcgp ≤ mb[i] then
(vi) pi←max vcg p, eb[j], (eb[j + 1] + vcg p)/2􏼈 􏼉∗√(s[i])

(vii) else
(viii) if ((eb[j + 1] + vcgpi)/2)≤ mb[i] then
(ix) pi←max eb[j], (eb[j + 1] + vcg pi)/2􏼈 􏼉∗√(s[i])

(x) else
(xi) pi←eb[j] ∗√(s[i])

(xii) end if
(xiii) end if
(xiv) end if
(xv) u[i]←vi–pi
(xvi) u[j]← u[j] + pi–(v[j] – cos t[j])

(xviii) end for
(xix) Calculate sum of u[i] and sum of u[j]

(xx) Output: payment of users, total utility

ALGORITHM 2: G-TRAP: pricing and total utility algorithm.
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prefer to trade VM instances of the edge level. As shown in
Figure 5(a), the total utility of STGA and STMA is far less
than that of G-TRAP since they only provide edge-level
resources and offer group buying discounts without ap-
plying cloud-level resources.

Figure 4(b) shows the percentage of winners with dif-
ferent sets of instances. When the number of users does not
exceed 4300, the percentage of winners exceeds 70%, up to
90%, and not less than 55% at worst. It can be considered
that G-TLRA performs well in intensive scenarios of
computation offloading. Again, the winning ratio is highest
with the setting of α1 � 0.9 and α2 � 0.1. As shown in
Figure 5(b), the winning ratio of G-TRAP is much higher
than that of STGA and STMA. In the STGA and STMA, each
user can purchase VM instances from one C-ESP, and the
resources of edge level are insufficient, which reduces the
probability of users successfully obtaining a bundle of VM
instances. However, C-ESPs in G-TRAP can serve more
users by providing more VM instances from cloud level.

It can be seen from Figure 4(c) that when the number of
users increases, the resource utilization of G-TRAP first
reaches 1 with the setting of α1 � 0.9 and α2 � 0.1. 'us,
G-TRAP performs better with the rise in the weight of edge-
level resources. However, STGA and STMA cannot achieve
the full utilization of resources, as shown in Figure 5(c). In
STGA and STMA, the provider sells VM instances of the
edge level where remaining resources cannot satisfy the

demands of resources requested from the user behind. In
summary, G-TRAP is more suitable for various scenarios of
intensive computation offloading than STGA and STMA.

5.2.3. Impact of Communication Distance of Users. In Fig-
ure 6, we vary the distance range between users and C-ESPs
as [40, 70], [40, 80], and [40, 90] and then compare with
previous results. As expected, the larger communication
distance range will lower the percentage of winners and
lower the resource usage ratio.'is is because that the longer
uploading distances of tasks cause more communication
loss, and the bids of C-ESPs will increase, which lowers the
ranking of several C-ESP and reduces the matching between
C-ESPs and users in turn.

5.2.4. Impact of Cloud-Edge Capacity Ratio. Further, we
examine the impact of cloud-edge ratio Cr on the perfor-
mance of G-TRAP. 'e total number of VM instances of
C-ESPs is set to follow the uniform distribution of
U(0, 2000), and the number of users is set to 5000; then, we
change the value of Cr in G-TRAP.

Figure 7(a) shows the effects of Cr on the execution time
of G-TRAP with different sets of VM instances. It can be
seen that the execution time of G-TRAP is insensitive to
variations in Cr and is less than 0.018 seconds, which can

Table 2: Types of VM instance used in the simulations.

Type Weight Price range
Medium
Large
Xlarge
2Xlarge

1
3
5
7

[0.1 W1− 0.05, 0.1 W1]
[0.1 W2− 0.05, 0.1 W2]
[0.1 W3− 0.05, 0.1 W3]
[0.1 W4− 0.05, 0.1 W4]
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Figure 3: 'e effect of R and r for PoW consensus mechanism on total utility and winning ratio. (a) Total utility. (b) User winning ratio.
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Figure 4:'e effect of the total number of users on total utility, winning ratio of users, and VMusage ratio. (a) Total utility. (b) User winning
ratio. (c) VM usage ratio.
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Figure 5: Continued.
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verify that the computing efficiency of G-TRAP is well when
serving a large-scale user group.

Figure 7(b) shows the impacts of Cr on the number of
served users. When Cr is 1, the value of α1 and α2 has little
effect on the number of usersmatched with C-ESP successfully,
while the higher Cr is, the larger the difference of served user
amount with different sets of α1 and α2 is. Moreover, the larger
difference between α1 and α2 brings a greater change in the
number of served users. With the increasing of Cr, the served
user amount of the last two sets increases well, that
is(α1 � 0.7, α2 � 0.3) and (α1 � 0.9, α2 � 0.1), while de-
creasing in the first two sets.'is is because that the total bids of

C-ESPs remains unchanged when Cr increases, and the total
amount of resources raises because of the increase in ratio
between α1 and α2. As a result, the bid density of C-ESP
decreases so that it matches more users. In a word, increasing
the difference between α1 and α2 and the value of Cr can
encourage more users to participate in the auction.

Figure 7(c) shows the effects of the total utility of G-TRAP
with varying settings of instances. Similarly, the total utility
does not change much with different sets of α1 and α2 when
Cr is 1. As Cr increases and α1 is less than 0.5, the bid density
of C-ESP increases, which can lead to a reduction in the
number of served users and reduce the total utility.
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Figure 5:'e comparison of total utility, winning ratio of users, and VM usage ratio of G-TRAP with STGA and STMA. (a) Comparison of
total utility. (b) Comparison of user winning ratio. (c) Comparison of VM usage ratio.
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Figure 6: 'e effect of communication distance on user winning ratio and VM usage ratio. (a) User winning ratio. (b) VM usage ratio.

12 Mobile Information Systems



6. Conclusions

In this paper, an efficient resource allocation with a pricing
mechanism, G-TRAP, is proposed to support the offloading
of compute-intensive tasks generated by mobile blockchain
from mobile devices to the cloud-edge computing system.
In this mechanism, the two-level resource allocation system
provides users more bidding options, which increases the
matching probability between users and C-ESPs. And the
improved VCG pricing mechanism guarantees the indi-
vidual rationality of participants and maximizes the ben-
efits of C-ESPs as much as possible. Moreover, the
proposed mechanism is proved to satisfy the economic
properties of the auction model by theoretical analysis. 'e
simulated results prove that this mechanism can run with
short execution time and the near optimality of resource

utilization, which make it a suitable candidate for de-
ployment in current and future mobile blockchain systems
and other service applications involving massive com-
puting tasks.
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