Hindawi

Mobile Information Systems

Volume 2020, Article ID 8896252, 12 pages
https://doi.org/10.1155/2020/8896252

Research Article

Hindawi

Smart Edge Broker for Location-Based Transfer between Services
and Distributed Data in IoT Smart Services

Junguk Ahn ®' and Byung Mun Lee ®*

'Department of IT Convergence Engineering, Gachon University, Seongname-Daero 1342, Seongnam, Republic of Korea
’Department of Computer Engineering, Gachon University, Seongname-Daero 1342, Seongnam, Republic of Korea

Correspondence should be addressed to Byung Mun Lee; bmlee@gachon.ac.kr

Received 20 April 2020; Revised 3 June 2020; Accepted 17 June 2020; Published 7 July 2020

Academic Editor: Jinan Fiaidhi

Copyright © 2020 Junguk Ahn and Byung Mun Lee. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Various kinds of smart sensors are being developed and released with the growth of sensor technology and Internet of Things
(IoT) technology. IoT smart service can provide convenience in our daily lives with these smart sensors. However, the increasing
number of mobile sensors and amount of data may increase latency. It may cause network congestion on a particular network.
Therefore, we propose a Smart Edge Broker (SEB) to intelligently transmit data traffic generated by a smart city in this paper. SEB
can prevent the traffic congestion from being transmitted or bypassed to a location where traffic is not necessary. In addition, SEB
can prevent overload in a specific area between services through a location-based transfer. Plus, SEB is suitable to operate it as a fog
computing model by placing it at the edge of a smart city network. We conducted a latency measurement experiment and load
measurement experiment to evaluate the effectiveness of the proposed Smart Edge Broker. As a result, we found that the latency
was reduced by 72%, and the CPU usage was reduced by 63% compared to when the Smart Edge Broker was not used.

1. Introduction

To provide convenience in our daily lives, it is possible to
configure a smart home using various IoT technologies
[1-6]. For example, if we attach health sensors such as an
ECG recorder and blood glucose meters to our body and link
them to a smart home system, it is possible to remotely
monitor our health [7]. Alternatively, by linking a sleep care
device to a smart home system, it is possible to measure sleep
and create an environment for improving sleep [8]. If smart
home services are linked to a smart city platform, it can
provide a variety of services [9-12]. For example, a smart
home system can monitor the activities of elderly people and
people with dementia at home and provide more complex
medical support services through a smart city platform in the
event of an emergency [13]. However, as the coverage of the
network becomes broader, the number of sensor devices
increases, which may cause several problems [14, 15].
First, latency can be prolonged. This means that it takes a
long time to transmit data because the transmission distance

of sensor data is too far. If the distance between smart home
sensors that generate data and a service that consumes the
data increases, there will be latency in transmission. This will
impair the immediateness of sensor data, thereby lowering
the quality of the service. Second, overload could happen.
When measuring by increasing the number of sensors and
widening the range, the amount of the data that needs to be
processed increases, which may lead to bottlenecks due to an
excessive concentration of traffic in a specific data center. If
this problem happens, it will delay data processing and
service provision. The third is service scalability. When new
services are added to a smart home and smart city, all the
related services need to be changed, increasing the cost as a
result. These problems need to be solved when a smart city is
configured. To that end, an intelligent distributed computing
device is needed between sensors and services.

In this paper, we propose a Smart Edge Broker [16] as an
intelligent broker for distributed computing. The Smart
Edge Broker is located at the edge between sensors, services,
and data centers across the city to intelligently route and

mailto:bmlee@gachon.ac.kr
https://orcid.org/0000-0003-2615-7906
https://orcid.org/0000-0003-1156-2300
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8896252

broker data transmission. Through this process, the data can
be directly transmitted between sensors, thereby reducing
the distance and latency. As it also processes the data
transmission between sensors and services instead of data
centers, it naturally solves the overload problem. If the Smart
Edge Broker can filter only the necessary data, scalability can
be improved.

In Section 2, we examine smart homes and smart cities to
identify likely problems. In Section 3, we define and design a
Smart Edge Broker that can solve the problems of a smart
city. In Section 4, we implement the Smart Edge Broker and
evaluate it by conducting experiments according to sce-
narios. In Section 5, we conclude based on the results of
experiments and evaluations.

2. Related Studies

2.1. Smart Homes for Smart Cities. A smart home is an
automation system that not only remotely controls home
appliances in a house by connecting them to a network but
also detects and actively controls situations using sensors
[17]. Figure 1 shows an example of a sleep care service.
The sleep environment and biometric sleep information
measured from sensors in each house are transmitted to an
IoT sleep care service provided by the cloud [18]. Each home
sensor A, B, C, and D has a sound sensor and a temperature
sensor and a service gateway that collects the measured data
and transmits it to [oT Sleepcare Service. This service collects
and analyzes the data from each smart home and provides
sleep care services to users. If a smart city infrastructure can
be included in the range, it can also provide other services to
the sleep care service [19]. In this case, the smart home
functions as one sensor in a smart city [20]. Also, an urban
sensor [21], which globally measures the urban environ-
ment, such as air temperature and noise, can be used. Home
sensor A and home sensor C are in smart city;, and they can
utilize city sensor;. Similarly, home sensor B and home
sensor D are in smart city,, and they can utilize city sensor,
[22]. As an IoT sleep care service can utilize not only the
sound and temperature sensor data from each smart home
but also the temperature and environmental noise data of the
entire city, it can provide area-based sleep care services.

2.2. Smart City from Smart Homes. A smart city is a system
that provides support for efficient linkages between urban
infrastructure and smart servers using ICT technologies [23].
A smart city platform consists of a sensor for measuring the
environment, a network for transmitting measured data, and
a data center for storing and managing the transmitted data
[24]. Here, sensors include urban sensors that measure an
urban environment and virtual sensors that transmit the
data measured in each smart home. In OneM2M, these
elements of a smart city were proposed by configuring them
as one platform in the technical document “Smart Cities
Done Smarter,” as shown in Figure 2 [25].

As shown in Figure 2, the sensor at the bottom measures
data and transmits it to a gateway. The gateway transmits it
to a city application through a smart city frontend or

Mobile Information Systems

transmits it to a smart city backend through a broker. The
smart city backend acts as a data center to store and manage
the data. After that, it transmits the data to a third-party
application or analytics application through the smart city
backend. In this process, network protocols such as Hyper
Text Transfer Protocol (HTTP), Message Queuing Telemetry
Transport (MQTT), and Constrained Application Protocol
(CoAP) are used.

2.3. Application Protocol for Smart City. HTTP has high
reliability because it communicates synchronously through
the request-response method, but it is slow and consumes a
lot of resources. In contrast, MQTT is fast and light because
it asynchronously communicates through the publish/sub-
scribe method, but it has low reliability because it cannot
guarantee sequential data processing.

In Figure 3(a), a smart city platform of an Array of
Things (AoT) project underway in the city of Chicago is
shown [26]. The temperature, humidity, atmospheric
pressure, light intensity, three-axis acceleration, and in-
stantaneous sound of the city are measured and collected by
Rabbit MQ, and the users are provided with measurement
data in the form of REST APIs using Plenar.io of a Beehive
data server. Plenar.io is a REST API interface to provide data
from the Beehive data server [27].

In Figure 3(b), an example of using MQTT, which is a
framework for a smart city platform called Fog Flow, is given
[28]. In the study that proposed this, the data measured in
the sensor was processed in Worker. After that, it was
transmitted to a service through an MQTT broker so that it
could be used in the platform.

In the previous two studies, the smart city platform was
configured using HTTP and MQTT, respectively. However,
in both studies, the edge where sensors and services are in
contact was not fully utilized. The problems mentioned in
Section 1, such as latency, overload, and service scalability,
occur in the process of transmitting sensor data to a service
through the edge. If a device located at the edge analyzes the
data and automatically routes it, this will not only solve
problems but also enable a smart city network to be con-
figured more efficiently. In addition, as a smart city sensor
corresponds to a smart home service gateway, it can improve
the quality of smart home services. Therefore, in Section 3,
we propose and design a Smart Edge Broker that can rec-
ognize the payload of transmission traffic and actively
distribute data.

3. Smart Edge Broker

3.1. Smart Edge Broker for Smart City. The Smart Edge
Broker is an intelligent broker, and it is located at an edge
between a sensor network and service server to distribute
traffic efficiently. It receives all the data from the sensors and
analyzes who requested the data and how it routes to the
appropriate location. Figure 4 is an example of a smart city
platform when the Smart Edge Broker is introduced.

The boundary points between the sensor area and service
area are divided by the edge. Eight smart homes are

Mobile Information Systems

Smart city,;

Home sensor A

T
»

City
Sensor,;

Sound sensor
@ Temperature sensor
Service gateway

Sleepcare
service

Smart city,

@ City
1
\ Sensor,
1
\\ /
s /
\\ Q S5 ,/
\ /
\ |-¢| /
\ /
N /
\ /7
AN 7
4
*._Home sensor D e
N .

FiGure 1: Example of a smart home system: IoT sleep care service.

Analytics
application

!

Smart city backend (data center)

City
application

3% party
application

Data storage

Data management

| Broker |

! ! !

Smart city frontend

é*% OO AOG OO
Gateway
@ Sensor

FIGURE 2: OneM2M smart city blueprint.

distributed in two areas in the sensor area, and the service
area consists of one data center and two services. It is as-
sumed that Svc; and Svc, use the sensors installed in the
smart home system to provide different services and share
the sensors in the area below. It is assumed that, at this time,

Svc, needs the data measured in S;, Ss, Ss, and S, and Svc,
needs the data measured in S,, Sy, Sg, and Sg. As the data
center needs to collect and manage all data, it receives data
from all sensors. The Smart Edge Broker mediates the ex-
change of data between sensors and services. It has features
that reduce delays and overloads in the process.

The distance to the data center is far greater than the
distance between the service and the sensor, so using sensors
in multiple locations can provide efficient data exchange.
Smart cities are often composed of services beyond the urban
range, so the distance between services and sensors is often
more than several kilometers. In this case, it naturally takes
longer to send and receive data between the sensor and the
service. Additionally, the response time to provide the
service is long, so the quality of the service is reduced. Also,
the wider the range, the more the sensors that are needed to
cover the range, and the burden on the data center to collect
and transmit data becomes greater. Furthermore, once a
smart city has been configured, if you want to add new
services or reconfigure existing services, you need to fix or
modify the sensors installed around the city, which means
new expenses. The Smart Edge Broker has an intelligent
routing function to solve these problems.

It receives requests for desired data from each service
and collects and analyzes the data from all sensors based on
it. Based on the analysis results, it classifies the data
requested by each service and routes it and transmits all the
collected data to a data center. Figure 5 shows this process.
Figure 5(a) shows the process by which a service receives
data from a smart home and provides services.

Mobile Information Systems

O ®
Ol Q G
@— Rabbit MQ Beehive Plenar.io @ MQTT
(AQMP) data server [(REST API) @ broker

O |y S & LG
O— ®

Worker Worker

@ Sensor @ Sensor

IoT service ToT service
(a) (b)

FiGUure 3: Examples of a smart city: (a) “Array of Things (AoT)” smart city platform; (b) “Fog Flow” smart city platform.

Service
area

Sensor
area

— Datato Svc
Data center Ve
----» Data to Svc,
@ Smart home
@ ToT service

FIGURE 4: Smart city platform with a Smart Edge Broker.

e

Data center
@ ToT service @ Smart home @ IoT service @ Smart home

SEB

(a)

b
-
-
-
|
Do
I
o
SEB o
|
I
-
|
Do
I
-

Smart edge broker Q Data center SEB | Smart edge broker

(b)

FIGURE 5: Scenarios for service routing in the Smart Edge Broker: (a) scenario for collecting data from sensors; (b) scenario for collecting

selective data from sensors.

In the case of (1), if Svc, receives the data of S, S,, and S, this time, if the Smart Edge Broker brokers the data between
the smart home transmits data to the data center and the the smart home and service, as shown in (2), there is no need
service requests data from the data center and receives it. At~ to purposely transmit the data to a remote data center. Svc,

Mobile Information Systems

in (2) receives data of S, S5, and S¢ in the same way as Svc; in
(1), but the Smart Edge Broker does not need to go through a
data center in place of the data center. In this case, the
communication distance is reduced by the distance from the
data center, which in turn reduces the burden on both ends
of the smart home and service. Also, as the data center does
not need to collect data, there is no traffic centralization.

Figure 5(b) shows a case where a service needs only some
data. (3) is similar to (1), but Svc; requests only the data of S;.
In this case, Svc; has no choice but to filter only the necessary
data after receiving all the data. In (4), Svc, requests the data
of S¢, but unlike (3), the data of S, and Ss are filtered in
advance so that the Smart Edge Broker can provide services
more efficiently because there is no need to consume re-
sources to reconstruct the data in Svc,.

If this is applied to the IoT sleep care service, a smart
home can correspond to a sleep care device, and a service can
correspond to IoT sleep care service. It collects the sleep data
measured in each smart home and transmits it to the IoT
sleep care service to provide services. At this time, the Smart
Edge Broker provides intelligent data routing functions at
the edge between the smart home and services, thereby
transmitting data more efficiently. Furthermore, the ad-
vantages of the Smart Edge Broker are highlighted when
providing a wide range of IoT services.

The Smart Edge Broker functions as part of the con-
figuration of the smart city as described above. Figure 6
illustrates the specific benefits of the Smart Edge Broker. The
Smart Edge Broker is installed on the left, the gateway is
installed on the right, and a number of sensors and services
are arranged around it.

First, the latency between the sensor and the service can
be reduced. In general, the sensor must send data through a
central data center to the service. For example, in Figure 6(a),
when S5 delivers data to the data center, Svc, finds and
requests data from Ss, and the data center must transmit it.
However, if you use the Smart Edge Broker on the left, the
Smart Edge Broker automatically passes the data from the
sensor to the service. Data from sensors do not have to go
through the data center. In this case, the movement path of
that much data is reduced. When sending data from S, to
Svc; without knowing each other’s addresses as usual, S,
sends data to the Smart Edge Broker, not to the data center.
Svc, can benefit greatly from the distance by receiving data
using the Smart Edge Broker, which is much closer than the
data center. This leads to a reduction in data latency and an
improvement in response time.

Secondly, the Smart Edge Broker can distribute the load
on the data center. For example, as shown on the right side of
Figure 6(b), when multiple sensor data are used in a service,
multiple sensors transmit data to the data center, and the
data center must also aggregate the data and transmit it to
the service. The data center is responsible for the computing
power that receives and processes the data from Sy, the data
from S5, and the data from Sg and sends them to Svc,.
However, if there is a Smart Edge Broker, as shown on the
left side of Figure 6(b), all the burden is borne by the Smart
Edge Broker, which saves computing power in the data
center.

Finally, the scalability of the service can be further ex-
tended. Unlike Figure 6(a) or 6(b) if a sensor knows the
address of a service, it can send data directly to the service
without having to go through the data center. This saves you
a round trip to the data center, but it can be fatal when you
change services. For example, in the case of the right side of
Figure 6(c), Svc, originally used data of Sy, Ss, and S¢. But,
recently, data from S, and Ss are no longer needed. In this
case, it is necessary to remove S, and Ss or filter the data from
Svcs. However, the Smart Edge Broker can filter out un-
necessary data from the Smart Edge Broker. On the left side
of Figure 6(c), Svc; originally used all data from S;, S,, and
Ss, but now uses only Sy; thus, the unnecessary data is filtered
by the Smart Edge Broker.

3.2. Message Definition for the Smart Edge Broker. The Smart
Edge Broker receives data requests or receives data from
services and sensors through messages. A query is a criterion
to classify the data transmitted from the sensor and is a
medium to select the data to receive. Therefore, a query is the
most important element among the elements of the Smart
Edge Broker. A topic also explains data information, so it
becomes an important clue for routing data together with a
query.

When processing, the query attached to a topic is stored
separately. When checking receivers, the separately stored
query conducts an additional search for whether it is suitable
for the query in the message and filters data according to the
query. At this time, it must transmit the data only if the data
is suitable. If this is expanded further, it is possible to
configure the data transmission process of an IoT Sleep care
service, as shown in Figure 7.

As shown in Figure 7, there are three sleep sensors on the
left and the server and application that provide the IoT sleep
care service on the right. The IoT sleep care service provides a
tailored sleep care service by receiving personal sleep data
from sleep sensors in a smart home. To that end, the server
and application first transmit a QueryReq message to the
Smart Edge Broker requesting data. The server needs the
data for “KIM” in the topic called “/smarthome/sleep,” and
the application needs the data for “LEE” on the same topic.
This need is transmitted to the Smart Edge Broker by
containing the topic and query of the desired data in the
QueryReq message. After that, when personal sleep data is
transmitted through a DataPub message, the Smart Edge
Broker compares the topic and query of the transmitted
QueryReq message with the topic and data of the DataPub
message and filters and delivers them to the appropriate
target.

There is a fixed rule in the form of a query statement in
each message. According to this rule, the Smart Edge Broker
analyzes the payload and processes it. At the end of the topic,
“query?” is added after the identifier. For example, only the
data for the user called “KIM” are wanted in the topic called
“/RFID,” and the topic type is defined in the form of
“/smarthome/sleep/query?user =kim.” DataPub messages
are configured in the JSON form to search data. In other
words, it must be in the form of {“Key”: “Value”}, but Key

®)

Smart edge broker

(5,)

o}
G5

<D
©

Mobile Information Systems

Smart edge broker

SEB

Gateway

Data center

Data center SEB
@ Service Gateway @ Service
@ Sensor @ Sensor
(a) (b)

OO

Sve,

SEB

Smart edge broker

Data center

@ Service
@ Sensor

FIGURE 6: Scenarios for service routing in the Smart Edge Broker: (a) scenario for collecting data from sensors; (b) scenario for collecting

Gateway

(c)

selective data from sensors; and (c) scenario for filtering unnecessary data from sensors.

2. DataPub
d - (Topic : /smarthome/sleep,
z Payload : User{KIM}) 1. QueryReq
Sleep (Topic : /smarthome/sleep/query?user = kim)
sensor
b 3. DataPub -
2. DataP >
zz at.a - q EXXXX] (Payload : User{KIM})
z (Topic : /smarthome/sleep, S
Payload : LEE mart
Sleep ayload : User{LEE}) edge « 1. QueryReq
sensor broker (Topic : /smarthome/sleep/query?user = lee)
3. DataPub
zZ 2. DataPub aard »
— (Topic : /smarthome/sleep, (Payload : User{LEE})
Sleep Data : User{PARK})
sensor
FiGure 7: Function of the Smart Edge Broker.

ToT Sleepcare

server

)

IoT Sleepcare
app

Mobile Information Systems

specifies the search target of the query so that Value has
search values. To process such queries, the following specific
process is needed. If an IoT sleep care service transmits data
through the Smart Edge Broker, it must transmit messages in
the form as shown in Tables 1 and 2.

As shown in Tables 1 and 2, the message transmitted
from the Smart Edge Broker consists of a fixed header,
variable header, and payload. Also, the message is divided
into two types and is defined as QueryReq transmitted when
a service requests data from the sensor and DataPub, which
transmits data from the sensor to the service. A fixed header
consists of two types: an MQTT control packet type for using
the MQTT protocol and the remaining length that indicates
the length of a message. For the variable header, there is a
packet identifier in the QueryReq message, and there are
topics with packet identifiers in a DataPub message
according to the message type. The payload also varies
depending on the message. There are topics and queries in a
QueryReq message, and there is the payload of the data to be
transmitted in a DataPub message.

3.3. Smart Edge Broker Algorithm. To express the process in
the previous example in detail, the operating algorithms of
the IoT sleep care service, the Smart Edge Broker, and smart
home system can be configured, as shown in Figure 8.

First, the IoT sleep care service on the right transmits the
data request message to the Smart Edge Broker through a
QueryReq message. The smart home system on the left is in
the home of a user who receives an IoT sleep care service and
transmits the sleep environment measured by sleep sensors
to the Smart Edge Broker in the middle through a DataPub
message. The Smart Edge Broker analyzes the message in the
middle and routes the data message to the IoT sleep care
service through the DataPub message. The Smart Edge
Broker consists of two modules: a query analyzer and a
context-aware filter. These two modules process QueryReq
and DataPub messages, as shown in Figure 9.

The query analyzer separates the payload of a topic and
query from a QueryReq message transmitted from an IoT
sleep care service and stores them in a message database so
that they can be used for filtering later. The context-aware
filter receives a DataPub Message from the smart home
system and analyzes the topic and payload data to check
whether the data are suitable.

After receiving a QueryReq message, it checks whether
the query is included in the topic name. If it is included, it
separates the topic name into topic and query and stores
them in a message database. This is to use it as a criterion for
filtering when a DataPub message is received later. However,
if the query is not included, it does not perform any task.

Also, when a DataPub message is received, the context-
aware filter filters data by checking whether the topic name
of the message is in the message database. It retrieves the
query and topic stored in the message database during the
filtering process. This is carried out to use the query and
topic as a criterion for analyzing the payload of a received
DataPub message. If the two payloads do not match, it
transmits a message to QueryReq. If filtering is not necessary

TaBLe 1: Smart Edge Broker message definition: QueryReq
message.

Header Byte Description
Fixed Byte 1 MQTT contf‘o} packet type (8)
Byte 2 Remaining length
Byte 1 Packet identifier MSB
Variable Byte 2 Packer identifier LSB
Byte 3 No properties
Byte 1 Payload length MSB
Byte 2 Payload length LSB
Payload ByteYt 3...n Toi])ic ﬁlteri query
Byte n+1 Subscription options (1)

TaBLE 2: Smart Edge Broker message definition: DataPub message.

Header Byte Description
Fixed Byte 1 MQTT control packet type (3)
Byte 2 Remaining length
Byte 1 Packet identifier MSB
Byte 2 Packer identifier LSB
. Byte 3...n Topic
Variable Byy’f[e n+1 Payload leIr)lgth MSB
Byte n+2 Payload length LSB
Byte n+3 Topic filter + query
Payload Payload

because the payload is not registered in the message data-
base, it transmits a message to all those registered. If it is
registered but not suitable for the query, it does not transmit
a message.

For a better understanding, the operation of the Smart
Edge Broker is shown in a sequence diagram in Figure 10.
This sequence diagram shows the data exchange process
between the IoT Sleepcare service and the smart home
system that provides the Sleepcare service.

First, the IoT Sleepcare service on the left sends a
QueryReq message to the Smart Edge Broker. This message
is for requesting data of the user “kim” among data with the
topic “sleep.” The Smart Edge Broker receives the message
and analyzes the message using a query analyzer. It analyzes
the topic filter and query contained in the message and saves
it in the message database. The saved topic filter and query
are used to screen out data later.

After that, the smart home system sends a DataPub
message to the Smart Edge Broker to send the measured data
to the service. The DataPub message contains a payload
along with a topic and is divided into a “User” item and
“Data” item to use Query. The “User” item in the payload
contains the user’s name “kim,” and the “Data” item con-
tains the sleep information measured during the user’s sleep.

The Smart Edge Broker analyzes the received Datapub
message through the context-aware filter. The context-aware
filter loads topics and queries from the message database to
analyze the received messages. These topics and queries are
extracted from previously received QueryReq messages, and
they can be mixed with topics and queries received from other
services besides the IoT Sleepcare Service. The context-aware
filter analyzes the Datapub message and checks whether there

Mobile Information Systems

D)
@ Smart edge broker
(o)

Query Context-aware
analyzer filter
Iﬁ_-l Smart home Query Payload =) 10T Sleepcare
system extractor analyzer — service
HE |
Sleep sensor Message Message }.Que_rych IoT Sleepcare
data process 2. DataPub database query filter application
I
Query . 3. DataPub Query
generator MQTT message generator E—— generator
I f f
Network (MQTT)
FIGURE 8: Function of the Smart Edge Broker.
1
! Query analyzer
i
i Receiving | Topic name > Divide topic name ’
QueryReq : QueryReq message query into topic and query
message | 1
(data request
d 1| Message database . Save
! - topic and query
i | Topic | Query |
i —————
i
I
| Context-aware filter
i
I
! Receiving | Analyze essage database)
! DataPub message message > Topic name
DataPub 1 T
i rue
message |
(data send) ! Filter data
| using query
|
I
I
i Send message to subscriber
I
!]
X]
I

FIGURE 9: Smart Edge Broker activity diagram.

is a corresponding request among the services that sent the
QueryReq message. If there is a QueryReq request that
matches the DataPub message, the Datapub message is de-
livered to the service that sent the QueryReq message. In this
process, the data in the message can be processed or sent as is.

This series of processes allows the IoT Sleepcare service
to collect sleep data from the smart home system and
provide sleep care services to users through the collected
data. This can be performed in 1: n, and the Smart Edge
Broker can process multiple messages. The Smart Edge
Broker mediates this data delivery and takes over the role of
the data center. Additionally, a sensor or smart home that
transmits data through the Smart Edge Broker can reduce
the burden on the communication process since there is not
a concern about data transmission, and the IoT service also
needs to connect with multiple sensors to collect data. It can
be connected to one Smart Edge Broker without the burden
of data communication.

We implemented and tested the Smart Edge Broker in
the next chapter to see the abovementioned effects in the
smart city environment.

4. Experiment and Evaluation

4.1. Testbed and Its Scenarios. To check whether the Smart
Edge Broker can solve the problems that may occur when it
is applied to the configuration of a smart city, we configured
two experiments: a latency measurement experiment and a
load measurement experiment.

These experiments were conducted under two conditions in
the same experimental environment. Under the first condition,
the IoT sensor transmitted data to the IoT service server through
the Smart Edge Broker. At this time, the data to be transmitted
were randomly set so that the Smart Edge Broker could filter
30% of data. Under the second condition, the IoT sensor
transmitted data to the IoT service server through the data

Mobile Information Systems

Smart edge broker

@ IoT Slee'pcar ¢ Query Message Context-aware P | Sms?;rsttilr(r)lme
= service analyzer database filter
T T T T
| L ‘ . 1
iQueryReq) | | i
\(sleep/query?user = kim), ' | |
\ ' Analyze | ! |
\ | message | ! :
| 1 1 1 !
1 1 1 1 :
| | Save topic filter | | !
| P 1
| 1 1 1 !
: | Save query | ! X
I
| | | L DataPub!
1) - 1
: ! | Load topic filters 1 (Topic: /sleep
| i i d Payload : User{kim},:
| | | Load queries | Dataf{..., ..., ..., ...}):
I —
: : : 1 !
1 1 1 1 !
I I i Analyze I !
| i | message : I
1 1 1 1 !
1 1 1 1 :
: DataPubE : Forward | !
! (Topic : /sleep, | ! message ! i
I I |
| | 1 I

Payload : User{kim}, !
Data{..., ..., ..., ...})

FIGURE 10: Smart Edge Broker sequence diagram.

Data
center

()

FiGure 11: Smart Edge Broker experimental testbed: (a) configuration of the testbed; (b) actual configuration of the testbed.

center. In both cases, four IoT sensors simultaneously trans-
mitted 140 bytes of data, 10 times per second, and a total of 4000
data were transmitted for 100 seconds. The measurement
started when all the sensors started to transmit the data.

Experiments are proceeded in an environment as shown
in Figure 11.

First, we divided the experimental environment into three
areas, as shown in Figure 10: an area with a data center (1), an
area with IoT sensors and the Smart Edge Broker (2), and an
area with an IoT service server (3), and the network was
divided by each area. For the data center, a desktop PC was

installed about 4 km away geographically, and CentOS 7.6 was
used. For the IoT sensor and Smart Edge Broker, a Raspberry
Pi 3 B + model was used, and Raspbian Buster 4.19 was used as
the operating system. For the IoT service server, a laptop PC
with the Windows 10 operating system was used.

5. Results and Evaluation

The experimental results are as follows. Latency measure-
ment experience measured Round Trip Time (RTT), which
is the time when each IoT sensor sends data to the IoT service

10

140

Mobile Information Systems

120

100

%
S
!

=N
S
!

Latency time (ms)

—— Without SEB
——— With SEB

FIGURE 12: Smart Edge Broker experiment results: latency time between the source sensor and destination sensor.

CPU load (%)

1 3 5 7 9 1113151719 21 23 2527 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99101

—— Without SEB
——— With SEB

Count

F1GURE 13: Smart Edge Broker experiment results: CPU load rate for the data center.

server and receives responses. Graphs and representation of
the measuring results are shown in Figure 12. The Y-axis on
the left is latency time for RTT, and the X-axis represents the
count of the message.

For latency, the time spent until each message reached
the service was measured. When the Smart Edge Broker was
not used (without the SEB), the average latency was 31.41 ms.
In contrast, when the Smart Edge Broker (with the SEB) was
used, the average latency was 8.83 ms, with a decrease of
about 72%. This was mainly caused by network latency that
occurred in the process of transmitting data to the IoT
service server through the data center, which was 4 km away
from the IoT sensor. In both experiments, the latency in-
stantaneously increased due to the declining function of
Raspberry Pi 3, which was used as an IoT sensor. As a result
of analysis, it was found that performance throttling was
activated during the generation and transmission of mes-
sages due to the increased temperatures of the Cortex-A53

CPU cores mounted on Raspberry Pi 3. Since this was not a
network problem but a device performance problem, it did
not affect the experiment’s results.

For CPU usage of the data center, the CPU usage of the
server process was measured at 1-second intervals during
message transmission. As seen in Figure 13, without the SEB,
10.63% was recorded on average, indicating that the usage
was high because the data center received sensor data and
simultaneously transmitted it to the IoT service server. In
contrast, the SEB did not go through the data center to
transmit data to the IoT service center, so the roles of the data
server were reduced by one. As a result, 4.02% was recorded
on average, and consumption was reduced by 63% in the
same environment.

For the CPU usage of the service server, the CPU usage
of the server process was measured at 1-second intervals
during message transmission. As shown in Figure 14,
without the SEB, 15.95% was recorded and with the SEB,

Mobile Information Systems

11

30

25

)
S
!

CPU load (%)
=
L

1 3 5 7 9 1113151719 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99101

—— Without SEB
With SEB

Count

FIGURE 14: Smart Edge Broker experiment results: CPU load rate for the service server.

6.28% was recorded on average, indicating a reduction effect
of 60%. The amount of data that needs to be processed in the
IoT service server was reduced because the Smart Edge
Broker filtered 30% of the data.

6. Conclusions

In this paper, by proposing a Smart Edge Broker, we could
solve the latency and overload problems that may occur
during the process of using an IoT service through a smart
home system and smart city platform. This is a method of
analyzing and filtering the data using topic and query and
routing it to the proper location.

To find out whether the proposed Smart Edge Broker
could control network traffic by analyzing the payload of
data, we conducted experiments to compare two cases: when
the Smart Edge Broker was used and when it was not used. In
the latency measurement experiment, the latency was re-
duced by 72% when the Smart Edge Broker was used
compared to when it was not used, and the CPU load rate
was reduced by 63% in the load measurement experiment. It
was also found that sensors or services could be conveniently
added to the existing system using the characteristics of the
Smart Edge Broker, even if a sensor or a service was added to
an existing system, which indicates service scalability. In
addition, the Smart Edge Broker works on the application
layer, so that engineers can easily handle it.

However, further studies on security are needed. When
searching for items corresponding to the Smart Edge Broker
according to the 10 recommendations for security specified
by the OWASP [29], there may be the possibility of con-
fidentiality and integrity breaches for injection, broken
authentication, and sensitive data exposure. In the case of a
query used in the Smart Edge Broker, as it is somewhat
similar to SQL, it is possible to acquire data that are not
allowed or the data of a system area. Therefore, there is a
need to improve the Smart Edge Broker with continuous
studies in the future.

Data Availability

The data used to support the findings of this study are available at
https://github.com/woodencatty/SmartEdgeBrokerExperiment.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the Technology development
Program funded by the Ministry of SMEs and Startups
(MSS, Korea) (Grant no. S2798371). This work was sup-
ported by the Gachon University Research Fund of 2019
(GCU-20190787).

References

[1] B.Liand]. Yu, “Research and application on the smart home
based on component technologies and Internet of things,”
Procedia Engineering, vol. 15, pp. 2087-2092, 2011.

[2] Y. Pang and S. Jia, “Wireless smart home system based on
zigbee,” International Journal of Smart Home, vol. 10, no. 4,
pp. 209-220, 2016.

[3] Y. Yin, L. Chen, Y. Xu, and J. Wan, “Location-aware service
recommendation with enhanced probabilistic matrix factor-
ization,” IEEE Access, vol. 6, pp. 62815-62825, 2018.

[4] Y.Yin, Y. Xu, W. Xu, M. Gao, L. Yu, and Y. Pei, “Collaborative
service selection via ensemble learning in mixed mobile
network environments,” Entropy, vol. 19, no. 7, p. 358, 2017.

[5] S. Yoon and J. Kim, “A study on the user’s value of the smart

home service in the Internet of things technology,” Inter-

national Journal of Future Generation Communication and

Networking, vol. 10, no. 6, pp. 65-80, 2017.

W. Jin and D. Kim, “Seamless multimedia service mechanism

based on content profile using user and device ID for personal

mobility in smart home,” International Journal of Grid and

Distributed Computing, vol. 11, no. 1, pp. 45-56, 2018.

[6

https://github.com/woodencatty/SmartEdgeBrokerExperiment

12

[7] M. Talal, A. Zaidan, B. Zaidan et al., “Smart home-based IoT
for real-time and secure remote health monitoring of triage
and priority system using body sensors: multi-driven sys-
tematic review,” Journal of Medical Systems, vol. 43, no. 3,
2019.

[8] H.Han,]J.Jo, Y. Son, and J. Park, “Smart sleep care system for

quality sleep,” in Proceedings of the 2015 International Con-

ference on Information and Communication Technology

Convergence (ICTC), pp. 393-398, Jeju, Korea, October 2015.

K. Skouby and P. Lynggaard, “Smart home and smart city

solutions enabled by 5G, IoT, AAI and CoT Services,” in

Proceedings of the International Conference on Contemporary

Computing and Informatics (IC3I), pp. 874-878, Mysore,

India, November 2014.

[10] G. Jia, G. Han, H. Rao, and L. Shu, “Edge computing-based
intelligent manhole cover management system for smart
cities,” IEEE Internet of Things Journal, vol. 5, no. 3,
pp. 1648-1656, 2018.

[11] Y. Yin, F. Yu, Y. Xu, L. Yu, and J. Mu, “Network location-
aware service recommendation with random walk in cyber-
physical systems,” Sensors, vol. 17, no. 9, p. 2059, 2017.

[12] F.Liand B. Zheng, “Design of the smart city planning system
based on the Internet of things,” International Journal of
Smart Home, vol. 10, no. 11, pp. 207-218, 2016.

[13] A. Gaur, B. Scotney, G. Parr, and S. McClean, “Smart city
architecture and its applications based on IoT,” Procedia
Computer Science, vol. 52, pp. 1089-1094, 2015.

[14] S. Sarkar and S. Misra, “Theoretical modelling of fog com-
puting: a green computing paradigm to support IoT appli-
cations,” IET Networks, vol. 5, no. 2, pp. 23-29, 2016.

[15] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh, and
R. Buyya, “Fog computing: principles, architectures, and
applications,” in Internet of Things, pp. 61-75, Morgan
Kaufmann, Burlington, MA, USA, 2016.

[16] J. Ahn and B. M. Lee, “Enhanced smart edge broker using fog
computing for smart homes,” International Journal of Arti-
ficial Intelligence and Applications for Smart Devices, vol. 7,
no. 1, pp. 1-6, 2019.

[17] V.Ricquebourg, D. Menga, D. Durand et al., “The smart home
concept: our immediate future,” in Proceedings of thr 1st IEEE
International Conference on E-Learning in Industrial Elec-
tronics, pp. 23-28, Hammamet, Tunisia, December 2006.

[18] J. H. Choi, U. G. Kang, and B. M. Lee, “Sleep information
gathering protocol using CoAP for sleep care,” Entropy,
vol. 19, no. 9, p. 450, 2017.

[19] D. h. Lim and B. H. Rhee, “Design study of the U-city home
network architecture of cloud computing,” International
Journal of Smart Home, vol. 7, no. 6, pp. 145-156, 2013.

[20] H.-J. Lee, K.-H. Kim, and Y.-H. Kim, “Wireless sensor net-
work-based 3D home control system for smart home envi-
ronment,” International Journal of Smart Home, vol. 10, no. 1,
pp. 159-168, 2016.

[21] Y. Choe, M. Jang, and S. Kim, “System design for a urban
energy monitoring and visualization environment using
ubiquitous sensor network and social sensor networking,”
Journal of the HCI Society of Korea, vol. 5, no. 2, p. 7, 2010.

[22] S. Vergura, “Smart city, sustainable mobility, home-work
mobility: data analysis and actions,” Renewable Energy and
Power Quality Journal, vol. 13, pp. 768-773, 2015.

[23] S. Pellicer, G. Santa, A. Bleda et al., “A global perspective of
smart cities: a survey,” in Proceedings of the Seventh Inter-
national Conference on Innovative Mobile and Internet Ser-
vices in Ubiquitous Computing, pp. 439-444, Taichung,
Taiwan, July 2013.

[9

Mobile Information Systems

[24] M. Battarra, M. Consonni, S. Domenico, and A. Milani,
“Storm clouds platform: a cloud computing platform for
smart city applications,” Journal of Smart Cities, vol. 2, no. 1,
pp. 14-25, 2016.

[25] O. Elloumi, T. Carey, J. Blanz et al., “OneM2M white paper:
smart cities done smarter,” OneM2M, 2018.

[26] C. Catlett, P. Beckman, R. Sankaran, and K. Galvin, “Array of

things: a scientific research instrument in the public way:

platform design and early lessons learned,” in Proceedings of
the 2nd International Workshop on Science of Smart City

Operations and Platforms Engineering SCOPE’17, pp. 26-33,

Pittsburgh, PA, USA, April 2017.

C. Catlett, I. Foster, T. Malik et al., “Plenario: an open data

discovery and exploration platform for urban science,” Bul-

letin of the IEEE Computer Society Technical Committee on

Data Engineering, vol. 37, 2014.

[28] B. Cheng, G. Solmaz, F. Cirillo, E. Kovacs, K. Terasawa, and
A. Kitazawa, “FogFlow: easy programming of IoT services
over cloud and edges for smart cities,” IEEE Internet of Things
Journal, vol. 5, no. 2, pp. 696-707, 2018.

[29] OWASP, Category: OWASP Top Ten Project—OWASP,
OWASP, MA, USA, 2017.

[27

