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An effective machine learning implementation means that artificial intelligence has tremendous potential to help and automate
financial threat assessment for commercial firms and credit agencies. )e scope of this study is to build a predictive framework to
help the credit bureau by modelling/assessing the credit card delinquency risk. Machine learning enables risk assessment by
predicting deception in large imbalanced data by classifying the transaction as normal or fraudster. In case of fraud transaction, an
alert can be sent to the related financial organization that can suspend the release of payment for particular transaction. Of all the
machine learning models such as RUSBoost, decision tree, logistic regression, multilayer perceptron, K-nearest neighbor, random
forest, and support vector machine, the overall predictive performance of customized RUSBoost is the most impressive. )e
evaluation metrics used in the experimentation are sensitivity, specificity, precision, F scores, and area under receiver operating
characteristic and precision recall curves. Datasets used for training and testing of the models have been taken from kaggle.com.

1. Introduction

For this study, the term “credit” refers to a method of
e-commerce without having funds. A credit card is a thin,
rectangular metal or plastic block provided by the banking
institution, allowing card users to borrow cash to pay for
products and services. Credit cards enforce cardholders to
repay the financial leverage, interest payment, and any other
fees decided from time to time. )e credit card issuer often
offers its customers a line of credit (LOC), allowing them to
lend cash withdrawals. Issuers usually preset lending
thresholds depending on specific creditworthiness [1, 2].)e
use of credit cards is vital these days, and it plays a significant
role in e-commerce and online funds transfer [3, 4]. )e
ever-increasing use of credit cards has posed many threats to
the users and the companies issuing such cards. Fraudsters

keep on finding new ways to commit cheating, which can
cause considerable losses to card users and these companies
as well [5, 6].

1.1. Credit Card Payment Processing Steps. Figure 1 illus-
trates how payments are transferred to the vendor’s bank
account, whenever the clients make purchases through the
credit card [7]:

(a) A client sends a credit card purchase via Internet of
)ings- (IoT-) enabled swipe devices/POS/online
sites.

(b) Payment gateway collects and transfers the trans-
action details safely to the merchant’s bank com-
puter-based controller system
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(c) )e bank processor forwards the verification (i.e.,
processing, clearing, and settlement) process to the
Credit Card Interchange (CCI)

(d) )e CCI transfers the transaction to the client’s
credit card provider

(e) )e card provider accepts or rejects the purchase
based on current funds in the client’s account and
passes back the transaction information to the CCI

(f) )e CCI transmits transaction information to the
vendor’s bank computer-based controller system

(g) )e controller system of the vendor’s bank transmits
transaction details further to the payment gateway

(h) )e payment gateway keeps and delivers transaction
details to the vendor and/or client

(i) )e CCI transfers the required funds to the vendor’s
bank, which further transfers funds into the mer-
chant’s account [7]

1.2. Fraud in Credit Card Transaction. Fraud and illegal
behavior have various perspectives. )e Association of
Certified Fraud Examiners (ACFE) is a professional fraud
examiner organization. Its activities include producing
information, forming tools, and imparting training to
avoid frauds. )e ACFE has termed “fraud” as usage of
one’s profession for self-benefit via deliberate misappli-
cation or misuse of assets of the organization [3]. A fraud is
committed with the chief intention to acquire access by
illegal means. It adversely affects the economic growth,
governance, and even fundamental social values. Any
technical infrastructure involving money and resources can
be breached by unethical practices, e.g., auction site sys-
tems, medical insurance, vehicle insurance, credit cards,
and banking. Cheating in these applications is perceived as
cyber crime, potentially causing significant economic losses
[3, 8].

Fraud can lower the trust in the industry, disturb the
economic system, and significantly impact the overall living
costs [9, 10]. IoT-enabled systems maintain the trace of their
operational activities, which can be beneficial for analyzing
some specific patterns. )e previous methods based on
manual processing such as auditing were cumbersome and
ineffective due to large-size data or its attributes. Data
mining techniques are considered effective in assessing small
outliers in large datasets [9, 11, 12]. Frauds lead to heavy
business losses. )e credit card frauds contribute hundreds
of millions of dollars per year for the lost revenue, and some
estimates have indicated that US cumulative annual costs
could surpass $400 billion [9].

1.3. Types of Credit Card-Related Frauds. )e advancements
in technology such as the Internet and mobile devices have
contributed to increased fraudulent activities in recent times
[13]. Fraudsters keep on finding new techniques, and
therefore, monitoring systems are required to evolve cor-
respondingly. Frauds related to credit cards can be broadly
categorized into offline and online frauds [14]:

(i) Offline credit card fraud occurs whenever fraudsters
stole the credit card and used it as the rightful owner
in outlets. )is is unusual as financial firms will
promptly block the missing card whenever card-
holders suspect the theft [3].

(ii) Online credit card frauds are more common and
serious as compared with offline frauds in which
credit card details are compromised by fraudsters
through phishing, website cloning, and skimming
and used in digital transactions [3, 15].

Global connectivity through new and advanced tech-
nology has exponentially increased the credit card frauds.
)us, the issue has acquired an alarming dimension in the
present scenario, and a suitable system needs to be devel-
oped for detecting and avoiding such frauds.
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Figure 1: Payment process in the credit card system [7].
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1.3.1. Fraud Prevention System (FPS). FPS is the first form of
defense for technological systems toward forgery.)e aim of
this phase is to suppress first-place fraud. )e techniques in
this phase prohibit, destroy, and respond to cyber attacks in
computer servers (software and hardware), networks, or
data, for example, encryption algorithms and firewall to
decipher data and to block inner private networks from
outside world, respectively [3, 16].

1.3.2. Fraud Detection System (FDS). FDS becomes the next
safety measure to spot and recognize the fraudulent practices
when they reach the networks and notify these to a network
administrator [17]. Earlier, manual auditing methods such
as discovery sampling were used to detect any such fraud
[18]. )is method had to tackle different environmental,
political, legal, and business practices. To improve detection
efficiency, computerized and automatic FDSs were devel-
oped. FDS capacities have been constrained however, as
identification is primarily based on predefined rules set by
the experts. Different data mining approaches are being
developed to detect the frauds effectively. Oddity or outlier
identification in FDS depends on behavioral profiling
methods that model the pattern of behavior for every entity
and assess any divergence from the normal [19]. Many
authors have adopted anomaly-based FDSs in different areas
of fraud detection [20–23].

1.4. Distributed Deployment of Security-Related Aspects.
Financial firms have indeed acknowledged that the de-
ployment of isolated control systems on solo delivery
channels apparently no longer implements the requisite
degree of vigilance toward illegal account operation. An
additional layer of security, i.e., “Fraud Management,” is
enhancing the robustness by combining with security
protocols at the level of standard channel [24]. )e
implemented fraud detection strategy can be distributed as
reactive and proactive, depending on the point where data
analysis is implemented in different transaction orders.
Fraud identification approaches derived from data pro-
cessing, neural networks, and/or various deep learning al-
gorithms conduct sophisticated model processing via
collected datasets in reactive fraud management to identify
suspect transfers.

)e newly arrived operations are evaluated “on the fly”
in proactive fraud management before proper authorization
and finalization, to allow the detection of unusual occur-
rences prior to any financial value movement. Proactive
fraud detection is accomplished by relocating the inherent
security which allows real-time scanning prior to completion
of the transaction. Statistical analysis and data mining-re-
lated approaches have been implemented on classed post-
transactional data to derive common traits correlated to
suspicious occurrences in fraud strategic management.

1.5.Data Imbalance Is aMajorConcern. Skewed distribution
is regarded as one of the chief sensitive problems of FDS [3].
Usually, the skewed data problem is the scenario where there

are far fewer instances of fraudulent cases than usual [25],
making it difficult for learners to uncover trends in minority
class data [26]. Moreover, class imbalance has a significant
influence on the efficiency of classificationmodels, which are
normally dominated by majority class labels. Imbalanced
datasets have a detrimental effect on classification perfor-
mance that tends to be overshadowed by the majority class,
thereby ignoring the minority class. As shown in Figure 2,
the data-balancing methods can be divided into two sub-
categories, viz., data level methods and algorithmic level
methods [27].

1.5.1. Data Level Methods. Such methods are taken as
preprocessing to reorient the collected data before applying
the classification algorithms. Many investigators have used
the balancing methods, viz., undersampling or over-
sampling, in FDS-related studies [3]. In undersampling, a
portion of the dataset of the dominant class is eliminated
[28]. A broad range of FDS has used the undersampling
technique to equalize training samples. )e oversampling
method duplicates minority class data samples. )e over-
sampling technique is not frequently used because it induces
overfitting of a model, especially for noisy data [29]. Syn-
thetic minority oversampling technique (SMOTE) [30] is
being used for fraud detection and considered as a superior
complement to its current peers. SMOTE synthesizes new
minority instances in the reported zone. Investigators, in
their study [31], have conducted many simulations using
various data level methods (SMOTE and EasyEnsemble) to
identify the most suitable credit card FDS [3].

1.5.2. Algorithmic Level Methods. In this category, classifiers
have been used to detect suspicious classes in a sample
dataset. )e algorithmic level approach uses cost-sensitive
learning (CSL) to counter unequal class distribution. CSL
places a cost variable to misinterpret the various classes by
presuming that a cost matrix is present for various errors.
Cost matrix structure is significantly correlated with these
observations: false negative/positive and true negative/
positive [32]. Another algorithmic approach followed in the
FDS literature would be to use learners to manage imbal-
anced distribution. Such learners are either immune to class
inequality by the learner’s intrinsic characteristics as with
Repeated Incremental Pruning to Produce Error Reduction
(RIPPER) [33] or the learners are reinforced against the issue
by intrinsic alterations [3].

Falsified transactions have a narrow percentage in the
overall dataset that may hinder the efficiency of FDS. In
credit card systems, misclassifying legitimate transactions
causes dissatisfied customers, which itself is regarded more
detrimental than fraud itself. As mentioned above, two
approaches, viz., algorithmic and data levels, were used to fix
class imbalances. )e researchers, in their works [34–38],
have used undersampling techniques while dealing with the
concern of class skewness in credit card FDS. However,
Stolfo et al. [26] have used the oversampling method in the
preprocessing stage of credit card FDS.
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On the contrary, an algorithmic level approach has been
followed using cost-sensitive learning techniques or by using
the learner itself to manage uneven distribution. Sahin et al.
[39] have used cost-sensitive classifiers to address the class
imbalance. Dorronsoro et al. [21] have used nonlinear
discriminant analysis (NLDA) neural models to tackle the
class with imbalances. Ju and Lu [40] have used an enhanced
imbalance class weighted support vector machine (ICW-
SVM) to handle the skewness of the dataset. Bentley et al.
[41] have given a fraud density map to enhance detection
accuracy. In a study by Pozzolo et al. [42], the authors have
suggested a race model to choose the right approach for an
imbalance dataset. Chen [28] has used the binary support
vector system (BSVS) and genetic algorithm (GA) to achieve
a higher prediction accuracy from imbalance inputs.
Minegishi and Niimi [43] have suggested the creation of a
very fast decision tree (VFDT) learner, which could be
tailored for extremely unbalanced datasets. Seeja and Zar-
eapoor [44] have proposed FraudMiner for managing class
imbalance via explicitly entering unbalanced data to the
classification model. G.C. de Sá et al. have customized the
bayesian network classifier (BNC) algorithm for credit card
fraud detection [45]. Husejinovic has introduced a meth-
odology to detect credit card fraud using naive bayesian and
C4.5 decision tree classifiers [46]. Arya et al. have proposed
deep ensemble learning to identify fraud cases in real-time
data streams. )e proposed model is capable of adapting to
data imbalance as well as is robust to innate transaction
patterns such as purchasing behavior [4].

2. Scope of the Study

)is manuscript explores the concern of classifying imbal-
anced data by merging data level and algorithm level
techniques to detect the fraudster from the log files gen-
erated for credit cards used at IoT-enabled terminals.
Furthermore, an appropriate alert message can be sent to
either the credit card holder or the issuer for reverting/
blocking the transaction. Here, the random undersampling
(RUS) approach has been deployed at the data level and
boosting at the algorithmic level. )e merger of these two
components is RUSBoost [47]. Here, RUS is a data sampling
technique that aims to mitigate class inequality by modifying
the training dataset’s class distribution. RUS eliminates
instances from the majority class completely at random
before a reasonable class distribution is reached [48, 49]. )e

boosting method helps in improving the classification
precision of weak classifiers by combining weak hypotheses.
Initially, all training dataset examples are given equal
weights. Base learner forms a weak hypothesis during each
iteration of adaptive boosting (AdaBoosting). Boosting is
said to be adaptive since poor learners are subsequently
tweaked in support of cases which are not classified by
former classifiers. )e inconsistency connected with the
hypothesis is determined, and the weight of each instance is
modified in such a manner that incorrectly classified cases
raise their weights, whereas correctly classified samples
decrease their weights. )us, successive boosting steps will
produce hypotheses which are able to correctly classify the
previous incorrectly labeled instances. After all repetitions, a
weighted vote would be used to allot a class to samples in the
dataset [48]. RUSBoost is less costly than oversampling and
bagging when used for classification (like SMOTEBagging).

3. Methodology

Figure 3 highlights the various phases, taking credit card
transactional logs (imbalanced dataset) as input and giving
an alert to the bank or the credit card holder regarding the
status of the transactions performed at some IoT-based
terminals.

Figure 3 shows that on the credit card transactional logs,
the customized RUSBoost (CtRUSBoost) gets applied and
results into showing the status of the transaction held. Here,
the approach constitutes random undersampling and
boosting using decision tree as per the normal RUSBoost
algorithm with a further add-on/customization of having
bagging process using SVM. CtRUSBoost can be deployed at
the stage/step of either Credit Card Interchange or Credit
Card Provider Computer Controller System (as shown in
Figure 1), and from these controlling systems, an alert
message can be escalated for suspending or stopping the
financial transaction.)e various symbolic notations used in
the proposed algorithm CtRUSBoost have been defined in
Table 1.

)e RUSBoost given by Seiffert et al. [48, 49] has been
modified by the authors here in this research work. )e
rounded rectangles at steps 2d, 2e, 3a, 3b, and 4 show the
customization proposed by the authors here, which has
resulted in comparatively better outcomes. In step 1, the
weights of each sample are initialized to (1/x), where x is the
total of instances in the training dataset. )e weak hy-
potheses, viz., DT and SVM, are iteratively trained in steps
2a–2i. In step 2a, random undersampling has been imple-
mented to suppress the class labels until the required mi-
nority class proportion is reached in the current (temporary)
training dataset SEGz

′. For example, if the required class
proportion is 50:50, thenmost class instances are predictably
excluded until majority and minority class instances are
comparable. )erefore, SEGz

′ will have a new distribution of
weight as DISz

′. Step 2bmoves SEGz
′ and DISz

′ to the decision
tree, generating the weak hypothesis hz (step 2c). In step 2d,
support vector machine has been employed to compute the
weak hypothesis hsvm

z in step 2e.)e pseudo loss εt (based on
SEG and DISz) has been determined in step 2f.

Data-based

Data imbalance
approaches

Algorithm-based

UndersamplingOversampling

Figure 2: Various techniques of handling the concern related to
data imbalance.
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In step 2f, the hypothesis values for those tuples have only
been considered where there is a misclassification. Here, in
the subexpression qk ≠ q, qk means the original label/class of
the kth row/tuple in the dataset and q is the label/class ob-
tained after employing/deploying the weak learner decision
tree. Subexpression hz (pk, qk) is the numeric confidence
value in zth iteration for the instance pk, where the label is qk,
and subexpression hz (pk, q) is the numeric confidence value
in the same zth iteration for the instance pk considered earlier,
where the label is mismatched and obtained as q instead of qk.
In step 2g, the parameter α is computed as (εz/(1 − εz))which
symbolizes the weight update. In step 2h, the weight distri-
bution gets updated DISz+1. Step 2i normalizes the value
computed in the previous step. After the completion of Z

iterations, in step 3a, the maximum value of hz has been
computed among the ones given by decision tree under
boosting, where the knowledge/learning from the previous
dataset segment has been used for getting the hypothesis value
of the next dataset segment, but in the last step, all the results
have not beenmerged to obtain the final one. Instead, the final
value of the hypothesis has been obtained from the last dataset
segment. In step 3b, hypothesis values as obtained by
employing SVM for each dataset segment in Ziterations have
been finalized by performing voting or averaging among all

the values of hsvm
z . In step 4, the final hypothesis H (p) has

been computed taking themaximum of the value obtained for
hz and hsvm

z .

4. Results and Experiment

)e results obtained after using the three different datasets,
viz., (i) Abstract Dataset for Credit Card FraudDetection [50],
(ii) Default of Credit Card Client Dataset [51], and (iii) Credit
Card Fraud Dataset [52] are shown in this section. Cus-
tomized RUSBoost results were compared using RUSBoost,
decision tree (DT), logistic regression (LR), multilayer per-
ceptron (MLP), K-nearest neighbors (KNN), random forest
(RF), AdaBoost, and support vector machine (SVM).

)ree separate datasets based on the number of tuples
were taken for the current work. Datasets of less than five
thousand tuples were considered as small; tuples with a
range of over five thousand and less than ten thousand were
considered as medium; and those with a range of over ten
thousand entries were considered as large. All the datasets
have been divided into two partitions, i.e., 80% and 20% of
the full dataset, where the bigger portion has been taken for
training and the smaller one for testing of the machine
learning models.

TRANSACTIONAL
LOG

Credit card
holder

Alert
message sent

Classification of
transaction as

normal/abnormal
BaggingBoosting

Random
undersampling

(RUS)

Credit card
bank/issuer

Figure 3: Steps involved in classification of imbalanced transactional logs as normal or abnormal.

Table 1: Symbolic notations used in the proposed algorithm CtRUSBoost.

SEG Dataset segment under consideration

hsvm
z (pk)

Hypothesis value obtained through support vector machine in zth iteration for the instance pk (this serves as a numeric
confidence rating)

hz(pk) Hypothesis value obtained through decision tree in zth iteration for the instance pk (this serves as a numeric confidence rating)
εz Cumulative pseudo loss
αz Parameter to update the weight factor

Cz

Factor for normalizing the (z + 1)th distribution of weights taking the full training dataset/or normalized value for the
distribution

DISz (k) Distribution of weights at zth iteration taking the full training dataset for the kthsample
DISz+1 Distribution of weights at (z + 1)th iteration taking the full training dataset
DISz
′ Distribution of weights for zth temporary training dataset

SEGz
′ zthtemporary training dataset

pi ith row with values of all columns except the last one (i.e., label)
qi A label for the ith row
qr Minority class label
Z Total number of iterations employed in the ML model
k or x Total counts of samples present in the SEG
P Rows/tuples in the dataset (excluding the last column having labeled entries)
Q Total available labels in the dataset
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4.1. Small Dataset. )e dataset called Abstract Dataset for
Credit Card FraudDetection (Dataset A) [50] has been taken
from the kaggle.com database.)e authors classified this as a
small dataset with less than 5,000 tuples. )e dataset in-
cluded the usage of 3,075 clients and 11 attributes. Of the
3,075 samples, 2,627 represent nonfraudulent transactions
and 448 are fraudulent transactions (about 6:1). )e eleven
variables taken in this dataset are described in Table 2.

4.2. Medium Dataset. )e dataset called Default of Credit
Card Client Dataset (Dataset B) [51] has also been taken
from the kaggle.com database. )is includes details on
default payments, demographic factors, credit data, payment
history, and credit card company bills in Taiwan from April
2005 to September 2005. Among the 30,000 observations,
23,364 are cardholders with default payment as no and 6,636
with status as yes (about 4:1). Default payment in the finance
domain is known as nonrepayment of debt such as interest
or principal toward credit or estate. A default can result
when a purchaser could not render payments on time, slows
payouts, or declines or drops payment [53].

)is dataset used a binary variable default payment as the
answer variable. Table 3 explains the twenty-four variables
taken up in Dataset B.

4.3. Large Dataset. )e dataset called Credit Card Fraud
Detection (Dataset C) [52] was taken again from the kag-
gle.com database. )is dataset includes purchases by Eu-
ropean cardholders in September 2013. )is sample dataset
outlined two-day activities, with 492 frauds out of 284,807
total transactions. )e dataset is highly imbalanced, where
the positive class (fraud) constitutes 0.172% of all transac-
tions deemed. )e details of the dataset’s features are given
in Table 4 and include all numeric values.

It includes only numerical variables resulting from PCA
transformation. Kaggle did not provide any original features
as well as additional details due to privacy concerns. Features
V1, V2, . . . , andV28 are the key PCA components with
untransformed attributes as “time” and “amount.”

4.4. EvaluationMetrics. Assessment measures are employed
to calculate statistic or machine learning model efficiency. A
confusion matrix gives us the output matrix that charac-
terizes the model’s complete efficiency. Here, in the pro-
posed model, the security context is said to be robust if the
model is capable of finding/classifying fraudster transactions
accurately. )e metrics used for comparing ML models for
their accuracy are sensitivity and specificity from the con-
fusion matrix, precision, F1 score, receiver operating
characteristic (ROC), and area under precision recall
(AUPR).

4.4.1. Confusion Matrix. )e confusion matrix is a repre-
sentation of an algorithm’s performance in the field related
to machine learning. )e term “Confusion” has appeared
from the fact that if the machine learning model causes
confusion between two classes, it is easy to see. Figure 4

depicts a confusion matrix providing sensitivity, specificity,
recall, and fall-out information. )e column in this matrix
represents instances in the actual class, while each row
represents instances in one expected class.

Sensitivity is an estimate of the total of truly positive
instances expected to be positive. )e larger sensitivity value
will have a high true positive value and less false negative
value. Models with high sensitivity are required for health
and financial purposes. Specificity is defined as the share of
actual negatives, predicted to be negative.)is ratio may also
be called the false positive rate. )e higher specificity value
will mean the higher true negative and lower false positive
rate.

4.4.2. Precision and F1 Score. Precision and F-measure-
ments are considered more suitable for estimating the
performance of a classification algorithm when the dataset is
imbalanced, where precision is characterized as the positive
predictive value. F-measure in the confusion matrix is the
weighted harmonic mean of sensitivity and precision [54]:

precision �
TP

TP + FP
,

F1 �
2 × precision × recall
precision + recall

.

(1)

Precision is the percentage of true positives to all pos-
itives. For our problem statement here, the precision would
be the measure of fraudster transactions that we correctly
identified as fraud out of all the transactions, which are
actually fraud. Recall refers to the proportion of the overall
predictions of the algorithm being accurately categorized.
Furthermore, the value of F1 gives a single score that bal-
ances out both recall and the precision.

Here, decision tree, logistic regression, multilayer per-
ceptron (MLP), K-nearest neighbor (KNN), random forest
(RF), AdaBoost, and support vector machine (SVM) models
have been compared w.r.t. sensitivity, specificity, precision,
and F1 score. Decision tree is a nonparametric, supervised
learning system for classification and regression tasks. )e
decision tree is designed using an algorithmic method that
recognizes ways of splitting data based on different condi-
tions. Logistic regression is an algorithm for machine
learning that is based on the probability principle. It is an
algorithm for classification used to attribute observations to
a specific class set. Using the logistic sigmoid function, lo-
gistic regression transforms the output to return a proba-
bility value. A multilayer perceptron is a neural network that
links different layers in a directed graph, meaning the signal
path through nodes only goes one directional. In MLP, every
node is having a nonlinear activation function, except the
input nodes. K-nearest neighbor is a single algorithm that
holds all existing cases in a similarity measure (i.e., distance
function) and classifies new cases. )e random forest al-
gorithm generates decision trees on data samples and then
obtains predictions from each and finally, picks the best
option by voting. In AdaBoost, a sequence of weak learners is
linked so that each weak classifier attempts to enhance the
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classification of observations incorrectly labeled by the
preceding weak classifier. Support vector machine uses a
kernel trick to transform data and then determines an
optimal boundary between potential outputs. )e results
showing comparison among customized RUSBoost, deci-
sion tree, logistic regression, multilayer perceptron (MLP),
K-nearest neighbor (KNN), random forest (RF), AdaBoost,
and support vector machine (SVM) models have been
presented in Tables 5–7.

In Table 7, the value that has been observed for the
precision and F1 score is NaN under SVM because the zero
divided by zero is undefined as a real number, and in
computing systems, it can be represented as NaN.

4.4.3. Receiver Operating Characteristic (ROC). In machine
learning, measuring efficiency is an integral activity. ROC is
considered the most significant measurement to test the
efficiency of any classification model. It tells how much the
model can differentiate between classes. )e higher the
AUC, the better it would be to predict 0 s as 0 s and 1 s as 1 s.
)e curve for ROC is plotted with TP rate vs. FP rate, taking
TP and FP rates at y-axis and x-axis, respectively [55].
Figures 5–7 depict the ROC for the customized RUSBoost
and its peer techniques, i.e., simple RUSBoost, DT, LR, MLP,
KNN, RF AdaBoost, and SVM, indicating the optimality of
the proposed customization in RUSBoost on the benchmark
datasets A, B, and C, respectively.

(i) Input: x, SEG, P × Q(with qr ∈ Q, |Q| � 2)
(ii) Output: maximum of [(maximum of hz value), (maximum of hsvm

z value)]
Begin

(1) Initialization of DIS1(k) � 1/x for all k

(2) Do for z � 1, 2, 3, . . . , Z

(a) Create temporary training dataset SEGz
′ with weight distribution DISz

′ by using random undersampling
(b) Call decision tree, considering the sample set as SEGz

′ and distribution of weight DISz
′

(c) Compute a hypothesis hz: P × Q⟶ [0, 1]

(d) Call support vector machine considering the sample set as SEGz
′ and distribution of weight as DISz

′
(e) Compute a hypothesis hsvm

z : P × Q⟶ [0, 1]

(f ) Compute the pseudo loss for SEG and DISz

εz � 􏽐(k, q): qk ≠ qDISz(k)(1 − hz (pk, qk) + hz(pk, q))

(g) Compute the parameter to update the weighing factor:
αz � (εz/1 − εz)

(h) Update DISz:

DISz+1(k) � DISz(k)α(1/2)(1+hz(pk,qk)−hz(pk,q: qk ≠ q))
z

(i) NormalizeDISz+1: Let Cz � 􏽐zDISz+1 (k)

DISz+1(k) � (DISz+1(k)/Cz)

(3) Find the values for hz and hsvm
z

(a) For each value of hz, where z � 1, 2, . . . , Z{ }, find out the maximum value of hz

(b) For each value of hsvm
z , where z � 1, 2, . . . , Z{ }, apply bagging either by performing voting or averaging among all the

values of hypothesis obtained
(4) Compute the final hypothesis H (p) as the maximum value between hzand hsvm

z

End

ALGORITHM 1: CtRUSBoost (customized RUSBoost).

Table 2: Attribute number, name, and definition of Dataset A.

Attribute Description
X1 Merchant ID : ID of the merchant
X2 Average amount/transaction/day
X3 Total amount of transaction
X4 Is declined: declining or falling transaction (yes or no)
X5 Total number of declines/days: total transaction numbers declined daily
X6 Is foreign transaction: transaction carried out is or is not a foreign transaction
X7 Is high-risk country: transaction is performed in countries under high risk
X8 Average daily chargeback amount
X9 Average chargeback (taken for six months)
X10 Frequency of chargeback (taken for six months)
X11 Is fraudulent: transaction is a fraud or not
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Besides ROC, the precision recall (PR) curves are also
considered better for evaluating the algorithmic efficiency
when the sample set is highly biased. )e results of the
current work are also presented through an AUPR curve
obtained on various machine learning models.

4.4.4. Area under Precision Recall (AUPR). )e ROC curve
has some drawbacks, including class skew decoupling. )at
is why the precision recall (PR) curve, which plots precision
against recall and is equivalent to the false discovery rate
curve, has gained attention in recent years. )is output

Table 3: Attribute number, name, and definition of Dataset B (amount in New Taiwan or NT dollar).

Attribute Description
X1 Credit amount

X2
Gender of the borrower

1 for male
2 for female

X3

Level of education
1 Graduate school

2 University
3 High school

4 Others
5/6 Unknown

X4

Marital status of the borrower
1 Married
2 Single
3 Others

X5 Age of the credit card holder (in years)

X6–X11 PAY_1 to PAY_6: status of payment return in September to April 2005

Paid on-time payment� −1
One-month payment delay� 1
Two-month payment delay� 2

.

.

.
Nine or above months of payment delay� 9

X12–X17 BILL_AMT1-6: amount of bill for the months April to September 2005
X18–X23 PAY_AMT1-6: previous payment in April to September 2005
X24 Status as 1 for yes and 0 for no under the default payment

True condition
Total

population Actual condition positive Actual condition negative

Pr
ed

ic
te

d 
co

nd
iti

on

Predicted
condition
positive

True positive (TP) rate, sensitivity

=
Σ True positive

Σ Condition positive

False positive (FP) rate

=
Σ False positive

Σ Condition negative

Predicted
condition
negative

False negative (FN) rate

=
Σ False negative

Σ Condition positive

True negative (TN) rate, specificity

=
Σ True negative

Σ Condition negative

Figure 4: Sensitivity, specificity, FP rate, and FN rate formulas in the confusion matrix.

Table 4: Attribute number, name, and definition of Dataset C.

Attribute Description
V1 . . . V28 )e parameters have been anonymized with principal component analysis (PCA) to protect the user identities
Time Time intervened between transactions (in seconds)
Amount Amount of the transaction
Class Final label; 1� fraud, 0� otherwise
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metric has been widely used in various fields such as
computer vision, computational biology, data analysis,
medicine, and natural language processing. As a single score,
the AUPR summarizes the precision recall curve and can be
used to easily compare different binary classification models.
)e AUPR ′s value for a perfect classifier is 1. )e high

precision and recall system will provide correctly labeled
results [55]. Figures 8–10 depict the AUPR for the cus-
tomized RUSBoost and its peer techniques, i.e., simple
RUSBoost, DT, LR, MLP, KNN, RF, AdaBoost, and SVM,
indicating the optimality of the algorithm on the benchmark
datasets A, B, and C, respectively.

Table 5: Sensitivity, specificity, precision, and F1 scores obtained on Dataset A executing RUSBoost, customized RUSBoost, DT, LR, MLP,
KNN, RF, AdaBoost, and SVM.

Model name Sensitivity Specificity Precision F1 score
RUSBoost 50.6 99.8 33.4 40.2
Customized RUSBoost 96.3 85.6 94.2 88.6
DT 76.5 97.9 72.6 75.4
LR 57.0 99.0 86.0 68.7
MLP 70.4 99.5 95.8 81.1
KNN 80.6 99.9 95.1 87.2
RF 53.2 99.0 82.3 64.5
AdaBoost 73.4 99.0 83.7 78.2
SVM 61.2 99.9 96.8 75.7

Table 6: Sensitivity, specificity, precision, and F1 scores obtained on Dataset B executing RUSBoost, customized RUSBoost, DT, LR, MLP,
KNN, RF, AdaBoost, and SVM.

Model name Sensitivity Specificity Precision F1 score
RUSBoost 34.6 98.3 85.9 59.4
Customized RUSBoost 99.6 98.7 95.7 97.6
DT 40.6 81.0 49.5 50.7
LR 23.6 97.0 69.6 35.0
MLP 38.5 93.2 61.4 47.3
KNN 37.8 89.4 50.0 43.1
RF 5.5 99.2 68.2 10.2
AdaBoost 30.8 95.8 67.3 42.3
SVM 33.2 95.2 67.8 44.5

Table 7: Sensitivity, specificity, precision, and F1 scores obtained on Dataset C executing RUSBoost, customized RUSBoost, DT, LR, MLP,
KNN, RF, AdaBoost, and SVM.

Model name Sensitivity Specificity Precision F1 score
RUSBoost 34.6 98.3 85.9 59.4
Customized RUSBoost 99.6 98.7 95.7 97.6
DT 40.6 81.0 49.5 50.7
LR 23.6 97.0 69.6 35.0
MLP 38.5 93.2 61.4 47.3
KNN 37.8 89.4 50.0 43.1
RF 5.5 99.2 68.2 10.2
AdaBoost 30.8 95.8 67.3 42.3
SVM 33.2 95.2 67.8 44.5
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Figure 6: ROC curve obtained on the Credit Card Fraud Detection
Dataset after deploying RUSBoost, customized RUSBoost, DT, LR,
MLP, KNN, RF, AdaBoost, and SVM.
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Figure 7: ROC curve obtained on the Abstract dataset for Credit
Card Fraud Detection after deploying RUSBoost, customized
RUSBoost, DT, LR, MLP, KNN, RF, AdaBoost, and SVM.
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Figure 8: AUPR curve obtained on the Dataset A after deploying
RUSBoost, customized RUSBoost, DT, LR, MLP, KNN, RF,
AdaBoost, and SVM.
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Figure 5: ROC curve obtained on the Default of Credit Card Client
Dataset after deploying RUSBoost, customized RUSBoost, DT, LR,
MLP, KNN, RF, AdaBoost, and SVM.
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5. Conclusion

In this research work, the existing RUSBoost algorithm has
been customized by using a combination of bagging and
boosting. )e results obtained after customizing the RUS-
Boost in the proposed methodology are more reliable and
authentic when compared with simple/normal RUSBoost,
DT, RF, AdaBoost, SVM, LR, KNN, and MLP. )e scores
obtained for the CtRUSBoost algorithm on three benchmark
datasets A, B, and C taken from kaggle.com are 96.30, 99.60,
and 100, respectively, for sensitivity; 85.60, 98.70, and 99.80,
respectively, for specificity; 94.20, 95.70, and 99.30, re-
spectively, for precision; and 88.60, 97.60, and 99.60, re-
spectively, for F1 score. )e results obtained from
CtRUSBoost have outperformed all the peer approaches
used in this study by a large margin, which means it can
detect fraudster transactions more robustly. In the future,
the work proposed here can be customized further by adding
weak classifiers to the process such as K-nearest neighbors,
linear regression, and multilayer perceptron.

Data Availability

)e datasets used during the current study are available at
kaggle.com, and web links to the datasets are as follows:
kaggle small-sized dataset, https://www.kaggle.com/
shubhamjoshi2130of/abstract-data-set-for-credit-card-
fraud-detection, kaggle medium-sized dataset, https://www.

kaggle.com/uciml/default-of-credit-card-clients-dataset,
and kaggle large-sized dataset, https://www.kaggle.com/
mlg-ulb/creditcardfraud. )e datasets used to support the
findings of this study are included within the article at
reference numbers [50–52].
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